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Abstract

In this paper, we study the behavior of a network of N agents, each evolving on the
circle. We propose a novel algorithm that achieves synchronization or balancing in
phase models under mild connectedness assumptions on the (possibly time-varying
and unidirectional) communication graphs. The global convergence analysis on the
N -torus is a distinctive feature of the present work with respect to previous results
that have focused on convergence in the Euclidean space.
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1 Introduction

Over the past decade, particular attention has been devoted to the study of

collective problems where interacting agents must reach a common objective

under information and communication constraints. These problems arise in a
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variety of disciplines including physics, biology, computer science and systems

and control theory. Analysis and design efforts have been devoted to under-

stand how a group of moving agents (e.g. flocks of birds, schools of fish or au-

tonomous robots) can reach a consensus without an external reference and in

a decentralized way. Applications include formation control of autonomous ve-

hicles [2,14] and sensor networks [5,6]. In physics, synchronization phenomena

in populations of coupled oscillators have received a lot of attention [4,15,16].

These phenomena have been studied mainly by means of phase models giv-

ing rise to the celebrated Kuramoto model and in these last years the related

dynamics have been investigated by means of system theoretic tools [12,3,8].

In those applications, the collective design can be formalized as the design of a

decentralized algorithm for the collective optimization of a suitable cost func-

tion characterizing a common objective [11]. The natural –e.g. gradient-based

– optimization algorithms require all-to-all information exchange because the

cost function depends on the entire state. In the present paper we call such

algorithms global information algorithms. However the communication con-

straints restrict the information available to a given agent at a given instant

of time. In the present paper we call the algorithms that fulfill the communica-

tion constraints local information algorithms. The optimization based design

of local information algorithms either requires to constrain the cost function in

accordance with the communication constraints or to approximate the global

information algorithm with a local one. The first solution –adapting the cost

function – is systematic but challenging when the communication constraints

are uncertain and might change over time, which is the typical situation en-

countered in practice. The present paper focuses on the second solution, which

consists in approximating the global information algorithm.

We focus on the distributed stabilization of a phase model in continuous and

discrete time. Because each phase variable evolves on the circle S1, the total

state-space is the N−torus TN = S1× . . .×S1. The global convergence analy-

sis on the N -torus is a distinctive feature of the present work with respect to

previous synchronization results [9],[8],[3] that have focused on convergence in

the Euclidean space, considering the present problem either by local lineariza-

tion or by restriction of the initial conditions to a subdomain diffeomorphic

to the Euclidean space.

The paper is organized as follows. In the next section, we formalize the problem
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of synchronization and balancing on the N-Torus. In Section 3 we review the

problem of reaching a consensus in the Euclidean space in a distributed setting

and in Section 4 a natural extension to the N -Torus is provided. Section 5 and

Section 6 present local information algorithms and global convergence analysis

of the proposed decentralized algorithms is established. Finally, in Section 7,

we conclude with some observations and perspectives for future research.

2 Synchronization and balancing on the N-Torus

Consider N autonomous agents evolving on the circle, each agent is repre-

sented by its state θk ∈ S1, k = 1, . . . , N. The total state space is the

N -torus TN = S1× . . .×S1; we denote by θ ∈ TN the state of the overall sys-

tem. We consider algorithms that only use relative information such as phase

differences. The resulting state space is then the quotient shape space TN/S1

where all states differing by a rigid rotation are identified. A synchronized

state is a configuration in which all the agents lie at the same position on the

circle. In contrast, a balanced state is reached when the agents are “dispersed”

on the circle. The concept of synchronization and balancing is formalized by

the definition of the centroid

pθ =
1

N

N∑

k=1

eiθk = |pθ|eiψ ∈ C. (1)

The parameter |pθ| is a measure of synchrony of the phase variables θ. It is

maximal when all phases are synchronized (identical). It is minimal when the

phases balance to result in a vanishing centroid. Hence synchronization and

balancing correspond to maximizing or minimizing the cost function

V (θ) =
N

2
|pθ|2. (2)

Its gradient is computed as

∂V

∂θk

=< pθ, ie
iθk >=

1

N

N∑

j=1

sin(θj − θk) , (3)

where the inner product < ·, · > is defined by < z1, z2 >= Re{z̄1z2} for z1, z2 ∈
C ≈ R2 (which is an inner product over the real numbers). A continuous-time
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gradient algorithm associated to the cost function (2) is

θ̇k = −K

N

N∑

j=1

sin(θj − θk) = −K < pθ, ie
iθk >, (4)

for k = 1, . . . , N , where the sign of the parameter K determines a descent

(K > 0) or ascent (K < 0) algorithm for the cost (2). We report here a result

in [12] that provides a characterization of the critical points of (4):

Theorem 1 The potential V (θ) = N
2
|pθ|2 reaches its unique minimum when

pθ = 0 (balancing) and its unique maximum when all phases are identical

(synchronization). All other critical points of V (θ) are isolated in the shape

manifold TN/S1 and are saddle points. The phase model (4) forces conver-

gence of all solutions to the critical set of V (θ). If K < 0, then only the set

of synchronized states is asymptotically stable and every other equilibrium is

unstable. If K > 0, then only the set of balanced states is asymptotically stable

and every other equilibrium is unstable. ¤

Because the dynamics (4) evolve in the shape manifold TN/S1, it is worth

noting that the conclusions of Theorem 1 are equivalently stated in a rotating

frame, that is, for the phase model

θ̇k = ω − K

N

N∑

j=1

sin(θj − θk) = ω −K < pθ, ie
iθk >, ω ∈ R. (5)

This all-to-all model is the most frequently studied coupling in the literature of

coupled oscillators [4,16,15]. It is a particular case of the celebrated Kuramoto

model where each oscillator is modeled by a phase variable θk ∈ S1 that, in

the absence of coupling, obeys the trivial dynamics θ̇k = ωk where ωk is the

natural frequency of oscillator k. Its application in the context of collective

stabilization of steered particles in the plane is discussed in [12]. It is also of

interest to study the discrete-time counterpart of the continuous time model

(4). To this end we interpret (4) as follows: when K < 0 each agent moves

towards the centroid pθ, when K > 0 each agent moves away from the centroid

pθ. This interpretation suggests the discrete-time algorithm [10]

θk[t + 1] = arg
(
(1− δk)e

iθk[t] ± δkpθ[t]
)
, δk ∈ (0, 1), k = 1, . . . , N. (6)

The update (6) amounts, for each particle, to moving towards the centroid

(respectively away from it) in the complex plane and to project the result
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onto the manifold S1 (see Fig.1). It is worth noting that (6) reduces to (4) as

δk → 0, k = 1, . . . , N .

The algorithms (6) and (4) make use of all-to-all communication to calculate

the centroid pθ that appears in the expression of the gradient (3). In a local

information algorithm, this average quantity must be replaced by a local infor-

mation that might change over time. The next section summarizes important

results on this topic, when the state space is an Euclidean space.
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Fig. 1. Interpretation of (6) as a projection onto the manifold S1

(P , (1− δk)eiθk[t] + δkpθ[t])

3 Consensus in Euclidean space

In this section we recall some recent results about consensus algorithms in the

Euclidean space. This Consensus problem, has received considerable attention

in the recent years, see for instance [9,8,7,1].

Let G = (V , E , A) be a weighted digraph (directed graph) where V = {v1, . . . , vN}
is the set of nodes, E ⊆ V × V is the set of edges, and A is a weighted adja-

cency matrix with nonnegative elements akj. The node indices belong to the

set of positive integers I , {1, . . . , N}. Assume that there are no self-cycles

i.e. akk = 0, ∀ k ∈ I.
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The graph Laplacian L associated to the graph G is defined as

Lkj =





∑
i aki, j = k

−akj, j 6= k.

The k-th row of L is defined by Lk. The in-degree (respectively out-degree)

of node vk is defined as din
k =

∑N
j=1 akj (respectively dout

k =
∑N

j=1 ajk). The

digraph G is said to be balanced if the in-degree and the out-degree of each

node are equal, that is,

∑

j

akj =
∑

j

ajk, ∀ i ∈ I.

It is both of theoretical and practical interest to consider time-varying commu-

nication topologies. For example, in a network of moving agents, some of the

existing links can fail and new links can appear when other agents enter an ef-

fective range of detection. In the following we assume that the communication

topology is described by a time-varying graph G(t) = (V , E(t), A(t)), where

A(t) is piece-wise continuous and bounded and akj(t) ∈ {0}∪ [β, γ], ∀ k, j, for

some finite scalars 0 < β ≤ γ and for all t ≥ 0. The set of neighbors of node

vk at time t is denoted by Nk(t) , {vj ∈ V : akj(t) ≥ β}. We recall two defin-

itions that characterize the concept of uniform connectivity for time-varying

graphs.

Definition 1 Consider a graph G(t) = (V , E(t), A(t)). A node vk is said to

be connected to node vj (vj 6= vi) in the interval I = [ta, tb] if there is a path

from vk to vj which respects the orientation of the edges for the directed graph

(N ,∪t∈IE(t),
∫
I A(τ)dτ).

Definition 2 G(t) is said to be uniformly connected if there exists T > 0

such that for all t there is one node connected with all the other nodes across

[t, t + T ].

Consider a group of N agents with state xk ∈ X, where X is an Euclidean

space. The communication between the N -agents is defined by the graph G:

each agent can sense only the neighboring agents, i.e. agent j receives infor-

mation from agent i iff i ∈ Nj(t). We use the notation k ∼ j to indicate

the presence of a communication link from agent j to agent k, i.e. k ∼ j iff

vj ∈ Nk.
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In continuous time, we consider the continuous dynamics

ẋk =
∑

k∼j

akj(t)(xj − xk), ∀k ∈ I. (7)

Using the Laplacian definition, (7) can be equivalently expressed as

ẋ = −L(t) x. (8)

A discrete time version of (8) is

x[t + 1] = x[t]− ε[t]L[t]x[t], ε = diag(ε1, ε2, ..εN), εk ∈ (0, 1/din
k ). (9)

The bound on εk is connected to a centroid computation: for the value εk =

1/din
k , (9) becomes

xk[t + 1] =

∑
k∼j akj[t]xj[t]∑

k∼j akj[t]
.

Algorithms (8) and (9) have been widely studied in the literature and asymp-

totic convergence to a consensus value holds under mild assumptions on the

communication topology. The following theorem summarizes some of the main

results in [7], [8] and [9].

Theorem 2 Let X be a finite-dimensional Euclidean space. Let G(t) be a uni-

formly connected digraph and L(t) the corresponding Laplacian matrix bounded

and piecewise continuous in time. The solutions of (8) and (9) asymptotically

converge to a consensus value α1 for some α ∈ X. Furthermore if G(t) is

balanced for all t, and εk = εj for all j, k ∈ I, then α = 1
N

∑
i∈I xi(0). ¤

A general proof for Theorem 2 is based on the property that the convex hull

of vectors xk ∈ X is non expanding along the solutions. For this reason, the

assumption that X is an Euclidean space is essential (see e.g. [8]). Under the

additional balancing assumption on G(t), the norm xT x is non increasing.

Moreover, the balancing assumption implies 1T L(t) = 0, which implies that

the average 1
N

∑
j∈I xj is an invariant quantity along the solutions.

To draw a connection between Section 2 and 3, it is of interest to rewrite

Algorithm (8) in the particular case of a complete graph, i.e. L = N Π, with

Π = I − 11T

N
a projector. Then (8) rewrites as

ẋk = −(xk − 1

N

∑

j∈I
xj) = −1

2

∂

∂xk

< x, Π x > (10)
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yielding the interpretation of (10) as a descent algorithm for the cost function

‖Π x‖2 = 1
N

< x, Lx > in a way analogous to the algorithm (4) on the

torus. For this reason, the consensus algorithm (8) can be viewed as a local

information algorithm that retains the convergence property of the global

information descent algorithm (10).

4 Synchronization and Balancing on the N-Torus: static algorithms

We now return to the problem of designing local information algorithms to

optimize the cost function V (θ). In light of the results of the preceding section,

the main idea is to replace the global quantity pθ with a local one in the

dynamics (4) and (6). This is the approach followed in [14] and [3], to generalize

(4) to arbitrary communication topologies. In continuous-time, (4) is replaced

by

θ̇k = K < Lk(t)e
iθ, ieiθk >= −K

∑

k∼l

akl(t) sin(θl − θk), ∀ k ∈ I, (11)

where eiθ = [eiθ1 , . . . , eiθN ]T .

The discrete time counterpart proposed in [10] is

θk[t + 1] = arg
(
(1− δk)e

iθk[t] ± δkLk[t] e
iθ[t]

)
, δk ∈ (0, 1), ∀ k ∈ I. (12)

We note that the dynamics (12) particularize to the Vicsek model when δk =

1/din
k . This model was proposed in [17] to describe the discrete-time evolution

of interacting particles that move with unit velocity in the plane.

The dynamics (11) and (12) should be viewed as the counterpart of the dy-

namics (8) and (9) on the N -torus. In particular, (11) and (12) linearize to (8)

and (9) in the neighborhood of a synchronized state. Nevertheless, the con-

vergence theory of (11) and (12) is less complete than the convergence theory

summarized in the previous section. If the graph is undirected and fixed, then

(11) is a gradient algorithm for the Laplacian potential V = 1
2

< eiθ, L eiθ >

and solutions converge to the critical points of V [14]. The synchronized state

is always a (global) minimum of V but the potential may posses other local

minima, in which case the convergence to a consensus value does not hold

globally.
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The discrete algorithm (12) is also a descent (or ascent) algorithm for the

Laplacian potential, provided that the states are updated asynchronously or

provided that δk is small enough [10]. For time-varying and directed graphs,

that is under the general assumption of Theorem 2 on G(t), it is an open

question whether convergence to a consensus value is generic. Only local re-

sults have been proposed in the literature [8,3]. As suggested in [8], the proof

argument of Theorem 2 can be extended to (11) and (12) by mapping the

dynamics onto the Euclidean space, but this requires to restrict the set of

critical conditions to half a circle. The lack of global convergence results for

the descent algorithm (11) and (12) leads us to propose a dynamic algorithm

in the next sections.

The simple idea behind the proposed approach is to combine the gradient

system defined on the N-Torus (Section 2) and the consensus algorithm defined

in CN (Section 3). Following the lines of [11], the local information provided

by the consensus algorithm is used to estimate the global information required

by the gradient algorithm.

5 Global synchronization on the N-Torus: dynamic algorithms

First we consider the synchronization problem. For notational convenience we

use the following conventions. We denote by θjk the difference between the

angles θj and θk, i.e. θjk := θj − θk. We denote by ∆θ[t + 1] the increment

of angle θ at time t + 1, i.e. ∆θ[t + 1] := θ[t + 1] − θ[t]. Synchronized states

coincide with the global maxima of the cost function V = N
2
| pθ |2. We replace

the (global information) gradient algorithm

θ̇k =
1

N

N∑

j=1

sin(θjk) =< pθ, ie
iθk >,

by the local information algorithm





θ̇k = < xk, ie
iθk >,

ẋk = −Lk(t)x, k ∈ I, xk ∈ C,

(13)

and

θk[t + 1] = arg
(
δkpθ[t] + (1− δk)e

iθk[t]
)
, δk ∈ (0, 1), ∀ k ∈ I.
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by 



θk[t + 1] = arg
(
(1− δk)e

iθk[t] + δk
xk[t]
‖xk[t]‖

)
, δk ∈ (0, 1)

x[t + 1] = x[t]− ε[t]L[t]x[t], ε = diag(ε1, ε2, ..εN)

(14)

where εk ∈ (0, 1/din
k ) and xk[t] ∈ C. The convergence analysis of algorithms

(13) and (14) is straightforward. Since the consensus algorithm is decoupled

from the optimization algorithm, Theorem 2 guarantees that each local esti-

mate xk converges to a consensus value α =:| α | eiφ. As a consequence, the

first equation of (13) and (14) asymptotically converge to a system whose only

stable equilibrium is the synchronized state. Before detailing the convergence

analysis, we express algorithms (13) and (14) in shape coordinates in order to

recover the invariance of the phase dynamics to rigid rotations. Defining

rk = (xk)e
−i θk , ∀ k ∈ I,

(13) is rewritten as





θ̇k = < rk, i >, ∀ k ∈ I

ṙk = −irkθ̇k −∑N
j=1 Lkj(t) rj eiθjk , rk ∈ C

(15)

In the same way we rewrite the discrete-time algorithm (14) as





∆θk[t+1] = arg
(
δk

rk[t]
‖rk[t]‖ + (1− δk)

)

rk[t + 1] =
(
rk[t]− ε[t]

∑N
j=1 Lkj[t]rj[t] e

iθjk[t]
)

e−i∆θk[t+1], rk ∈ C.

(16)

Theorem 3 Suppose that the communication graph G(t) is uniformly con-

nected and that L(t) is bounded and piecewise continuous. Then all the solu-

tions of the decentralized algorithms (15) and (16) asymptotically converge to

an equilibrium. Moreover, the only stable equilibrium in the shape space TN/S1

is the synchronized state characterized by N identical phases. Furthermore, if

G(t) is balanced for all t, εk = εj for all j, k ∈ I and rk(0) = 1, for all k ∈ I,

then the asymptotic consensus value for eiθk is α = ( 1
N

∑
i∈I eiθi(0)), that is the

centroid pθ(0) of the initial condition. ¤

Proof: (continuous time) Set xk = rk eiθk . Then x(t) obeys the consensus dy-

namics ẋ = −L(t)x, which implies that the solutions converge to a consensus

value α =:| α | eiφ. This implies that the dynamics

θ̇k =< rk, i >, (17)
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asymptotically converge to the (time-invariant) dynamics

θ̇k =< α, ieiθk >=| α | sin(φ− θk), (18)

for ∀ k ∈ I. Since the consensus dynamics for x(t) are invariant with respect

to translations in the plane, for any particular graph sequence, α has an equal

probability to take any value in the complex plane if the initial conditions

xk(0) are randomly chosen (in the complex plane). This is sufficient to con-

clude that α 6= 0 with probability 1. Solutions of the complete system (15)

are known to converge to a chain recurrent set of the limiting (autonomous)

system (18) [18]. The limiting system is decoupled into N identical scalar sys-

tems whose only chain recurrent sets are the two equilibria of (18) (one stable

node and one unstable node). Then the only limit sets of the local information

algorithm (15) are equilibria that satisfy θk = φ mod π for all k. The synchro-

nized equilibrium θ = 1φ is exponentially stable while all other equilibria are

exponentially unstable. If G(t) is balanced, it follows from Theorem 2 that

α = 1
N

∑
i∈I ri(0)eiθi(0) = pθ(0).

The proof of the discrete time counterpart follows the same lines and is omit-

ted. ¥

We conclude that synchronization on the circle can be achieved with a local

information algorithm whose exchanged information is not only the relative

phase but also the estimate of a vector that serves as a consensus reference

direction. The global convergence analysis obtained in this way is in contrast

with the local convergence analysis proposed in [8,3], for the algorithms (11)

and (12). The numerical simulation in Fig.2 illustrates a situation where the

(dynamic) local information algorithm (13) achieves synchronization while the

(static) algorithm (11) fails to converge. In this example, the communication

is a fixed ring topology and the initial phase distribution spreads over more

than half a circle. The static algorithm (11) converges to a balanced state

where pθ = 0, which is a local minimum of the potential 1
2

< eiθ, L eiθ >.

6 Global balancing on the N-Torus: dynamic algorithms

Balanced states coincide with the global minima of the cost function

V = N
2
| pθ |2. Similarly to the synchronization algorithms discussed in the
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different local information algorithms when the initial conditions spread over the en-
tire circle: the (dynamic) algorithm (15)(full line); the (static) algorithm (11) (dash
line). Only the first algorithm achieves synchronization. The simulation involves
N = 20 particles with a random initial condition.

previous section, we now seek to replace the (global information) gradient al-

gorithm with a local one. To this end, we consider the continuous-time system





θ̇k = − < rk, i >,

ṙk = −i(rk − 1)θ̇k −∑N
j=1 Lkj(t) rj eiθjk ,

(19)

where rk(0) = 1, ∀ k ∈ I, and its discrete-time version





∆θk[t+1] = arg
(
(1− δk)− δkrk[t + 1]ei∆θk[t+1]

)

rk[t + 1] = 1 +
(
rk[t]− 1− ε[t]

∑N
j=1 Lkj[t]rj[t] e

iθjk[t]
)

e−i∆θk[t+1],

(20)

where rk(0) = 1, ∀ k ∈ I, and ε ∈ (0, 1
dmax

), dmax = maxk∈I din
k .

Theorem 4 Suppose that the communication graph G(t) is uniformly con-

nected and balanced for all t ≥ 0 and that L(t) is bounded and piecewise con-

tinuous. Then all the solutions of the decentralized algorithms (19) and (20)

asymptotically converge to an equilibrium. Moreover, the only stable limit set

is the set of balanced states characterized by pθ = 0. ¤
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Proof: (continuous time) Set xk = rke
iθk . The solution x(t) satisfies the dy-

namics

ẋ = −L(t)x +
d

dt
eiθ. (21)

The Lyapunov function

W (x) =
1

2
< x, x >,

is not increasing along the solutions of (19): note that, since the graph is

balanced, L(t) is a positive semi-definite matrix [19] and then

Ẇ = − < L(t)x, x > −
N∑

k=1

< xk, ie
iθk >2= − < L(t)x, x > −

N∑

k=1

θ̇2
k ≤ 0.

(22)

We deduce from (22) that θ̇ is a function in L2(0,∞) since (22) implies that

lim
t→∞

∫ t

0

N∑

k=1

θ̇2
k(τ)dτ = W (x(0))−lim

t→∞

(
W (x(t))−

∫ t

0
< L(τ)x(τ), x(τ) > dτ

)
≤ N

2
.

We also deduce from (22) that x(t) is uniformly bounded. To prove that θ̇

asymptotically converges to zero observe that

θ̈k =< Lk(t) x, ieiθk > +(< xk, e
iθk > −1)θ̇k

is uniformly bounded, which implies that θ̇ is Lipschitz continuous. We con-

clude that θ̇ is uniformly continuous. Then θ̇ is a uniformly continuous function

in L2(0,∞) and from Barbalat’s Lemma we obtain that θ̇ → 0 as t →∞ [20].

Thanks to the balancing assumption on the graph, 1 is a left eigenvector of

L(t), and we obtain from (21) that

1

N
< 1, ẋ >=

1

N
< 1,

d

dt
eiθ > . (23)

Integrating both sides of (23), and using the fact that xk(0) = eiθk(0), one

concludes that 1
N

∑
i∈I xi(t) = pθ for all t ≥ 0. Because x(t) converges to a

consensus equilibrium, each component xk must asymptotically converge to

pθ. As a consequence, the dynamics θ̇k = − < rk, i > asymptotically converge

to the time-invariant dynamics

θ̇k = − < pθ, ie
iθk >, ∀ k ∈ I. (24)

Since θ̇ is asymptotically convergent to zero, the solutions asymptotically con-

verge to a set of equilibria of (24). We conclude that θ(t) asymptotically con-

verges to the critical set of V and, form Theorem 1, that only the set of

balanced states is asymptotically stable.
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(discrete-time) Set xk = rke
iθk . The solution x[t] satisfies the dynamics

x[t + 1] = x[t]− ε[t]L[t]x[t] + eiθk[t+1] − eiθk[t]. (25)

As in continuous-time consider the Lyapunov function W (x) = 1
2

< x, x >.

First, we note that, because (I − εL[t]) is a doubly stochastic matrix [2], then

‖I − ε[t]L[t]x[t]‖2 ≤ ‖x[t]‖2

so that

W (x[t + 1])−W (x[t]) ≤ ‖x[t + 1]‖2 − ‖I − ε[t]L[t]x[t]‖2. (26)

Next, we observe that

‖x[t + 1]‖2 − ‖I − ε[t]L[t])x[t]‖2

=< x[t + 1], eiθ[t+1] − eiθ[t] > + < eiθ[t+1] − eiθ[t], (I − ε[t]L[t])x[t] >

= 2 < x[t + 1], eiθ[t+1] − eiθ[t] > −‖eiθ[t+1] − eiθ[t]‖2

≤ −‖eiθ[t+1] − eiθ[t]‖2, (27)

where the last inequality uses the property that, by definition of θk[t + 1],

< xk[t + 1], eiθk[t+1] >≤< xk[t + 1], eiθk[t] >,

for every k. Using (26) and (27) and summing over t yields

∞∑

t=0

‖eiθ[t+1] − eiθ[t]‖2 ≤ W (x[0]).

The rest of the proof follows from the argument used in continuous-time. ¥

It is worth noting that in contrast to the algorithms (15) and (16), algorithms

(19) and (20) are coupled; moreover, this coupling leads (in the discrete-time

version) to implicit update equations through the presence of rk[t + 1] in the

nonlinear update equation for θk.

Theorems 3 and 4 generalize the global convergence results of the all-to-all

gradient control (4) and (6) under mild assumptions on the communication

graph. This generalization is obtained at the prize of increased communication

between the communicating agents. They must communicate not only their

relative configuration variables θjk but also their estimates rk and rj. In both

14



theorems, the variable rk can be interpreted as a local estimate of pθ in the

local frame attached to particle k while xk is the local estimate in the absolute

(reference) frame. In design applications, it might be meaningful to exchange

additional information between communicating agents in order to relax the

cost of global communication architectures.

7 Conclusion

In this paper a novel algorithm is proposed for synchronization and balancing

in phase models on the N -torus. In the spirit of earlier work on phase syn-

chronization, we view synchronization as the task of maximizing the norm of

the centroid and balancing as the task of minimizing the norm of the centroid.

Gradient-based algorithms require global information because the update law

of each agent requires the centroid information. In the proposed algorithm, this

global information is estimated on the basis of locally available information,

in such a way that the global convergence properties of the original algorithm

are asymptotically recovered by the new one. The global convergence analy-

sis on the N -torus is a distinctive feature of the present work with respect

to previous convergence results that have focused on consensus algorithms in

the Euclidean space. The proposed approach extends beyond phase models

on the N -torus. In particular, it can be used to extend in a local information

framework global information algorithms proposed in [12], see [13].
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