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Abstract— This paper uses dissipativity theory to provide the
system-theoretic description of a basic oscillation mechanism.
Elementary input-output tools are then used to prove the
existence and stability of limit cycles in these “oscillators”.

The main benefit of the proposed approach is that it is
well suited for the analysis and design of interconnections,
thus providing a valuable mathematical tool for the study of
networks of coupled oscillators.
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I. INTRODUCTION

Oscillations in physical systems result from a sustained
energy exchange between two or several storage elements.
A basic mechanism for orchestrating the energy exchange is
through the presence of a (static) element that delivers energy
to the system when its energy is low and dissipates its energy
when it is high. The VAN DER POL oscillator is the simplest
electrical realization of this mechanism, the energy exchange
between an inductor and a capacitor being regulated by an
active element, modeled as a static resistance with a negative
characteristic at low energy and with a positive characteristic
at high energy.

The aim of the present paper is to characterize a class of
“oscillators” that fits this energy description, and to study
the existence and stability of limit cycles in such systems by
relying on their dissipativity properties.

An obvious benefit of this input-output approach for the
characterization of limit cycles is that it is not restricted to
low-dimensional systems. This advantage has made for in-
stance the describing function method a popular tool to study
limit cycles, even though this method is only approximate.
A further benefit of the dissipativity approach is that it is
well-suited for the analysis of interconnections. A central
motivation for this paper is to show that the characterization
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of a stable limit cycle for one oscillator extends in a straight-
forward manner when several such oscillators are arranged
in a network configuration through linear coupling.

The study of networks of coupled oscillators has been
an active research area over the last decade in biology and
physics [2], [3], [4], [8], [10]. A dominant tool for the
mathematical analysis of limit cycles in such systems is the
description of each isolated oscillator by a single phase vari-
able [6], [13], [14]. Making this reduction procedure rigorous
usually requires weak coupling between the oscillators, an
assumption not made in the present paper.

The paper is organized as follows. In Section II, we
introduce a dissipativity-based mechanism for oscillations.
In Section III, we characterize sufficient conditions for the
existence of a stable limit cycle for “dissipative oscillators”.
In Section IV, the result is extended to networks of such
oscillators, assuming linear coupling. A numerical illustration
is provided in Section V.

Our approach is based on passivity and related concepts.
Passivity is strongly linked to the stability property of the sys-
tem. In fact, under detectability conditions, passivity implies
LYAPUNOV stability [11]. For the mathematical definitions
of passivity and other related concepts the reader is referred
to [11], [15] and [7].

II. A DISSIPATIVITY MECHANISM FOR OSCILLATIONS

The block diagram of Figure 1 illustrates the architecture
of the “oscillators” considered in this paper. The oscillations
result from the energy exchange between a linear time-
invariant (LTI) passive system H with state xH and storage
function Sa(xH) and a (lossless) pure integrator with state
ξ. We denote by P (s) the transfer function associated to H .

Their feedback interconnection is a passive system with
storage function Sa(xH) + 1

2ξ
2. The sustained oscillation

will be created by the static nonlinearity ψ(σ, y) = −kpy +
φ(σ)y which, when put in feedback with the linear system,
yields a nonlinear system Π characterized by the dissipation
inequality

Ṡ ≤ kpy
2 − φ(σ)y2 (1)

where S is the storage function of the nonlinear system Π.



+ ξ

d = 0
yu

y

y

+

yc

−

+

P (s)

STATIC NL

−kpy + φ(σ)y

y

ψ(σ, y)

ξ

LTI system H

1
s

Π

Fig. 1. A block diagram of the dissipative oscillator.

The nonlinearity φ(.) is a smooth, positive definite and
radially unbounded function such that φ(0) = φ′(0) = 0 and
φ′′(0) 6= 0. An example of such a nonlinearity is φ(.) = (.)2.
This nonlinearity makes the total storage S decrease when σ
is sufficiently large. Its argument σ is left deliberately general
but must provide some (time-invariant) measure of the energy
stored in the system.

The parameter kp > 0 models the “active” part of the static
nonlinearity creating a constant positive output feedback in
the overall system.

The fact that this positive feedback is counteracted by the
nonlinearity φ at high energy and not counteracted at low
energy provides the oscillation mechanism.

The feedback system just described reduces to two well-
known oscillators when H is the pure integrator ẏ = u : the
VAN DER POL oscillator is obtained for φ(σ) = ξ2 and the
RAYLEIGH oscillator is obtained for φ(σ) = y2. These two
second-order systems are well known in the litterature. They
possess a unique equilibrium at the origin (y, ξ) = (0, 0).
This equilibrium is globally asymptotically stable for kp ≤ 0
and undergoes a supercritical HOPF bifurcation at kp = 0.
Moreover, the resulting limit cycle is unique and globally
asymptotically stable.

III. EXISTENCE AND STABILITY ANALYSIS OF A LIMIT

CYCLE IN THE DISSIPATIVE OSCILLATOR

If the dissipative oscillator described in Section II is
a correct higher-dimensional generalization of the second-
order VAN DER POL and RAYLEIGH oscillators obtained for
P (s) = 1

s
, a globally asymptotically stable limit cycle is

expected to arise from a supercritical HOPF bifurcation at a
critical value of the activation parameter kp. Based on the
HOPF bifurcation theorem, the next result provides sufficient
conditions for the existence and local stability of the limit

cycle.
Theorem 3.1: Consider the feedback interconnection Π of

Figure 1. Denote by M the Jacobian matrix associated with
the linearization of Π at the origin and by P (s) the transfer
function associated with the LTI system H . Assume that H is
passive, controllable, detectable, of relative degree one, and
such that P (0) 6= 0. If φ(.) is a smooth, positive definite,
and radially unbounded function such that φ(0) = φ′(0) = 0
and φ′′(0) 6= 0, then,

1) There exists a critical value k∗p ≥ 0 of the parameter
kp such that all the eigenvalues of M have non positive real
parts for kp ≤ k∗p and that two nonzero complex conjugate
eigenvalues of M cross the imaginary axis at kp = k∗p .

2) If no more than two simple eigenvalues of M are on
the imaginary axis at kp = k∗p , then the system Π undergoes
a HOPF bifurcation at kp = k∗p . If H is OFP(k∗p) 1 then this
bifurcation is supercritical and gives rise to an asymptotically
stable limit cycle for kp & k∗p . 2

Proof:
Part 1)
At equilibrium, ξ̇(t) = 0 = y(t) = −P (0)ξ. This implies

that ξ = 0 since P (0) 6= 0. From the detectability assumption
of H , we conclude that xH → 0 as t → ∞. Π is thus
detectable and has the origin as unique equilibrium point.

Let R(s) denote the transfer function of the feedback sys-
tem Π linearized around the origin. Since H is controllable,
the eigenvalues of the linearization M are the unobservable
modes of H , necessarily asymptotically stable since H is
detectable, and the poles of R(s).

Let Q(s) = sP (s)
s+P (s) . Since R(s) = Q(s)

1−kpQ(s) , the position
of the poles of R(s) as a function of the parameter kp ≥ 0
is given by the (negative) root locus of Q(s) in the complex
plane.

The root locus starts at the poles of Q(s) for kp = 0. Since
Q(s) is the feedback interconnection of two passive systems
it is passive and all its poles are in the closed left-half plane.
As a consequence, the root locus starts in the closed left-half
plane. The root locus ends at the zeros of Q(s). The finite
zeros of Q(s) are those of P (s), all in the closed left-half
plane, plus a zero at the origin.

The intersections of the negative root locus with the real
axis are given by the parts of the real axis located at the right
side of an odd number of singularities (pole(s) or zero(s)).
Because the total number of poles and zeros is odd and
because they are all located in the closed left-half plane,
the entire positive real axis is part of the root locus. By
continuity, two distinct branches must cross the imaginary
axis at some critical value k∗p .

Part 2)
At kp = k∗p , the system is passive and possesses a

center manifold of dimension two. Using the KALMAN-

1H is output feedback passive (OFP) if it is dissipative with respect to
w(u, y) = uy − ρy2, ρ ∈ R, i.e. ∃S(x) ≥ 0 s.t. Ṡ ≤ uy − ρy2 [11].

2A & B means A greater than B but sufficiently close to B.
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Fig. 2. R(s) expressed as the feedback interconnection of Q(s) and
proportional gain kp.

YAKUBOVICH-POPOV lemma [11], the reduced dynamics
are of the form ẋ = Jx− (dTx)2bbTx+ O(||x||4), x ∈ R

2

with J = −JT and b 6= 0, d 6= 0. This system has a LYA-
PUNOV function that verifies V̇ ≤ ||x||4 + O(||x||5), which
proves 3-asymptotic stability (3-as) of x = 0, a sufficient
condition for the HOPF bifurcation to be supercritical [1,
Theorem 7.2.3].

Remark 3.2: Theorem 3.1 is merely a local result and
can be alternatively proven by applying a frequency-domain
version of the HOPF bifurcation theorem [9].

The proposed proof generalizes to interconnections, as
shown in the next section, and is expected to lead to a
global version the result. In a forthcoming publication, we
will also show that the OFP condition of Theorem 3.1 can
be weakened using multipliers theory [12].

IV. EXISTENCE AND STABILITY OF LIMIT CYCLES IN A

NETWORK OF INTERCONNECTED OSCILLATORS

The analysis of Section III is now extended to a network of
N identical oscillators satisfying the assumptions of Theorem
3.1. Each oscillator is coupled to the rest of the network
through an additionnal input which is chosen to be a linear
combination of the oscillator outputs yj : ui = −yci

−
∑
γijyj . 3

The interconnexion matrix Γ is assumed to be normal, i.e.
ΓΓ∗ = Γ∗Γ where Γ∗ denotes the adjoint of Γ. Let k0 be
a scalar such that Γ′ = Γ + k0IN×N is a normal positive
semidefinite matrix of rank q < N and define k′p = kp + k0.

The network admits the representation illustrated in Figure
3 which is a MIMO extension of the block diagram in
Figure 1. The MIMO linear blocks have the same passivity
properties as in Section II as parallel connections of passive
systems.

3The indice i refers to the ith oscillator and the quantities u, y and yc
are defined for one oscillator in Figure 1. γij denotes the ijth element of
the interconnexion matrix Γ.
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Fig. 3. MIMO representation of a network of interconnected oscillators.
diag{φ(Σ)} =diag{(φ(σ1), . . . , φ(σN ))}.

The coupling matrix is included in the static nonlinearity
which is therefore no longer diagonal. However, the static
block can still be expressed as the sum of a strictly output
passive map diag{φ(Σ)} + Γ′ and a strictly active map
−kpIN×N .

As a result the MIMO dissipativity characterization of
the block diagram in Figure 3 is rigorously identical to the
(SISO) dissipativity characterization of the block diagram
in Figure 1 in spite of the coupling of the oscillators. This
property is exploited in the next theorem to extend the result
of Section III.

Theorem 4.1: Consider the feedback interconnexion
ΠMIMO of Figure 3 where the notation have been defined
in Theorem 3.1. Denote by MMIMO the linearization of
ΠMIMO at the origin. Then,

1) There exists a critical value k∗p ≥ 0 of the parameter k′p
such that all the eigenvalues of MMIMO have non positive
real parts for k′p ≤ k∗p and that two nonzero complex
conjugate eigenvalues of multiplicity N − q each cross the
imaginary axis at k′p = k∗p .

2) If no more than two eigenvalues of MMIMO (perhaps
of high multiplicity) are on the imaginary axis at k′p = k∗p ,
then the system ΠMIMO undergoes an equivariant HOPF

bifurcation at k′p = k∗p . If H is OFP(k∗p) this bifurcation
is supercritical and gives rise to a locally stable limit cycle
for k′p & k∗p .

Proof:
The proof consists in two parts. First we generalize the

root locus argument of Theorem 3.1. Then we prove that an
equivariant HOPF bifurcation exists at k′p = k∗p and that this
bifurcation is supercritical.

Part 1)
The LAPLACE transform of the input-output equation for

the MIMO linearized system is



Y (s) = Q(s)IN×N

(
Ext(s) + k′pY (s) − Γ′Y (s)

)
(2)

where Q(s) is the transfer function of the linearized system
of one oscillator as defined in Figure 2.

The poles of the MIMO closed-loop transfer function are
the complex values of s such that

rank

[
1 − k′pQ(s)

Q(s)
IN×N + Γ′

]

< N

Because Γ′ ≥ 0 is a normal matrix of rank q, there exists
a unitary matrix U such that Γ′ = UTΛU where Λ =
diag(0, . . . , 0

︸ ︷︷ ︸

N−q

, λN−q+1, . . . , λN ) with 0 < <(λN−q+1) ≤

· · · ≤ <(λN ).
We thus have to search for the complex values of s ren-

dering the diagonal matrix
[

1−k′pQ(s)

Q(s) IN×N + Λ
]

singular.
This matrix is singular for the complex values of s solutions

of one of the equations
1−(k′p−λi)Q(s)

Q(s) = 0, i = 1, . . . , N .
Thus its complex solutions are µj |k′p:=k′p−λi

4 where µj are
the poles of R(s) (the transfer function associated with one
isolated oscillator).

Considering these complex values of s for i = 1, . . . , N
we know from part 1) of Theorem 3.1 that

(1) they all have non positive real parts for k′p ≤ k∗p;
(2) at least 2 eigenvalues each of multiplicity N −q lie on

the imaginary axis for k′p = k∗p .
Part 2)
If only 2 conjugate eigenvalues of multiplicity N − q lie

on the imaginary axis for k′p = k∗p , ΠMIMO undergoes an
equivariant HOPF bifurcation [4]. The multiplicity of the two
complex conjugate eigenvalues crossing the imaginary axis
at k′p = k∗p depends on the rank of Γ′.

A center manifold argument similar to the one used in
Theorem 3.1 proves that the bifurcation is supercritical [12].

Remark 4.2: Since we only assume that the intercon-
nexion matrix Γ is normal, Theorem 4.1 holds true for
various kinds of linear couplings including symmetric, anti-
symmetric and orthogonal interconnexion matrices.

V. AN ILLUSTRATIVE EXAMPLE

A. A SISO oscillator

Consider Figure 1 defining the feedback nonlinear system
Π where P (s) = 1

s+1 and φ(σ) = y2. Obviously, this
transfer function has relative degree one and is OFP(1) since
it corresponds to the negative feedback interconnection of a
simple integrator with a proportional gain equal to 1.

It is easy to show that the transfer function of the linearized
system R(s) = s

s2+(1−kp)s+1 loses stability at kp = k∗p = 1.

The poles of R(s) are
(kp−1)±

√
(kp−1)2−4

2 .

4µj |k′p:=k′p−λi
means that we replace each occurence of k′

p by k′

p −

λi, i = 1, . . . , N in the expression of the j poles µj of R(s).
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c
−K

c

2

3

1

Fig. 4. Totally symmetric interconnection structure when 3 oscillators are
interconnected.

From Theorem 3.1, we conclude that the feedback system
Π undergoes a supercritical HOPF bifurcation at kp = 1
giving rise to a locally stable limit cycle for kp & k∗p .

B. Interconnection of oscillators

Consider a network composed of N identical oscillators
constructed in Section V-A and connected to each other.
Several kinds of interconnection structures are possible. As
an illustrative example, we consider a very simple inter-
connection scheme : the totally symmetric interconnection
structure.

In the totally symmetric interconnection structure, the
oscillators in the network are all-to-all bilaterally coupled
and the interconnection weights are identical. Let Kc be the
value of this unique interconnection weight. Thus for a totally
symmetric interconnection structure we have

Γ =









0 Kc · · · Kc

Kc 0
. . .

...
...

. . .
. . . Kc

Kc · · · Kc 0









with Kc > 0.
For N = 3, the totally symmetric interconnection struc-

ture is represented on Figure 4 where each circled number
represents a SISO oscillator.

The eigenvalues of Γ′ = Γ + k0IN×N are λ1 = k0 −Kc

with multiplicity (N − 1) and λ2 = k0 + (N − 1)Kc with
multiplicity 1. The value of k0 such that Γ′ is positive semi-
definite is k0 = Kc. The rank of Γ′ is then obviously equal
to 1.

From the eigenvalues of Γ′ we deduce the poles of the
MIMO closed-loop transfer function. For each eigenvalue
λi of Γ′ we have to consider µj |k′p:=k′p−λi

, i = 1, . . . , N
where µj are the poles of R(s). The poles of the closed-

loop transfer function are thus
(k′p−1)±

√
(k′p−1)2−4

2 with

multiplicity N − 1 and
(k′p−NKc−1)±

√
(k′p−NKc−1)2−4

2 with
multiplicity 1.
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Fig. 5. State-space projected on the phase plane of one of the three
oscillators (a) for k′

p = 0.9, (b) for k′

p = 1.1. Time evolution of the
three outputs (c) for k′

p = 0.9, (d) for k′

p = 1.1.

From Theorem 4.1 we conclude that the MIMO system
representing the network undergoes a supercritical equiv-
ariant HOPF bifurcation at k′p = 1. This is illustrated by
the simulation results presented on Figure 5 where we have
plotted the projection of the state-space on the phase plane
of one of the three oscillators and the time evolution of the
outputs of the oscillators for Kc = 1.

VI. CONCLUSION

This paper introduces generalizations of VAN DER POL

and RAYLEIGH oscillators, which were regarded as feedback
interconnections of two systems with particular input-output
structure. This framework appears suitable to prove the
existence of stable limit cycles both in higher-dimensional
systems and in networks of coupled identical systems which
retain the same input-output structure. As a first step, we
characterized the existence of a supercritical HOPF bifurca-
tion in these interconnexions.

We illustrated the existence and local stability of a limit
cycle on a network of oscillators when a totally symmetric
interconnexion structure is used. Simulations were carried
out for a network of 3 such oscillators.
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