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Abstract: The paper addresses the stabilization of periodic orbits in a wedge
billiard with actuated edges. It is shown how the rich dynamical properties of the
open-loop dynamics, e.g. ergodicity properties and KAM curves, can be exploited
to design robust stabilizing feedbacks with large basins of attraction.
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1. INTRODUCTION

This paper is concerned with the stabilization of
periodic orbits in the “wedge billiard” (or “planar
juggler”) illustrated in Figure 1. A point mass
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Fig. 1. The wedge billiard

(ball) moves in the plane under the action of a
constant gravitational field. The ball undergoes
elastic collisions with two intersecting edges, an
idealization of the juggler’s two arms. In the ab-
sence of control, the two edges form a fixed angle
θ with the direction of gravity. Depending on the
angle θ, this conservative system exhibits a variety
of dynamical phenomena, including an abundance
of unstable periodic orbits. Rotational actuation
of the edges around their fixed intersection point
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is used to stabilize one particular orbit of the
uncontrolled system.

The wedge billiard stabilization problem is an
impact control problem reminiscent of those en-
countered in legged robotics. Hence, it is consid-
ered as an interesting benchmark for investigating
rhythmic tasks control such as human and ani-
mal locomotion. The difficulty when studying the
dynamics and control of such mechanisms arises
from the underactuated and intermittent nature
of the control.
The stabilization of juggling devices using ac-
tive control was initiated by Buehler, Koditschek
and coworkers (Buehler et al. (1994), Rizzi and
Koditschek (1992), Rizzi and Koditschek (1993),
Burridge et al. (1999)). The juggler model consid-
ered in Buehler et al. (1994) is in fact the wedge
billiard studied in the present paper for the par-
ticular angle θ = 90◦. Buehler planar juggler has
also been considered by Lynch and Black (2001)
and Zavala-Rio and Brogliato (1999).

The problem we address concerns the stabiliza-
tion of a ball around a periodic orbit, a prelimi-
nary step towards the stabilization of a juggling
pattern, i.e. several balls stabilized on the same
periodic orbit with a certain phase shift between
them. From a theoretical point of view, the sta-
bilization of periodic orbits through impact con-
trol is rephrased as the fixed point discrete-time



stabilization of the corresponding Poincaré map.
The stabilization of our planar juggler leads to the
stabilization of a dimension three discrete-time
nonlinear system which is nonlinear and non-affine
in the control.

The goal of the paper is to illustrate how to
exploit the open-loop dynamics in order to design
robust stabilizing feedbacks with large basins of
attraction.

The paper is organized as follows. In Section 2, we
derive a dynamical model of the controlled wedge
billiard. The open-loop properties of the wedge
billiard are summarized in Section 3. In Sections
4 and 5 we study the stabilization of period-one
orbits in the respective configurations θ < 45◦

and θ > 45◦. Simulations results are presented
in Section 6.

2. CONTROLLED WEDGE BILLIARD

This section summarizes the model presented in
Sepulchre and Gerard (2003).

Periodic orbits of the four-dimensional wedge bil-
liard dynamics will be studied via the three-
dimensional discrete (Poincaré) map relating the
state from one impact to the next one. The
discrete-state vector, noted x[k], will consist of
continuous-time variables x(t) evaluated at im-
pact time t[k]. Because the continuous-time vari-
ables can be discontinuous at impact times, we use
the notation x−(t[k]) for pre-impact values and
x+(t[k]) for post-impact values. As a convention,
the discrete-time state will denote post-impact
values, that is x[k] = x+(t[k]).
Let (er, en) an orthonormal frame attached to the
fixed point O with er aligned with the impacted
edge. Let r denote the position of the ball (unit
mass point) and v = vrer + vnen its velocity. The
total energy of the ball is

E =
1
2

(
v2

r + v2
n

)− < r, g > (1)

Following Lehtihet et al. (1986), we use the state
variables Vr = vr

cos θ , Vn = vn

sin θ and E, the discrete
state vector being

x[k] =
(
V +

r (t[k]) V +
n (t[k]) E+(t[k])

)T

In the absence of control, each edge forms an
angle θ with the vertical, i.e. the direction of the
constant gravitational field g. The discrete con-
trol vector u[k] consists of the angular deviation
µ(t[k]) of the impacted edge at impact time t[k]
and its angular velocity µ̇(t[k]). It is assumed
that the edge is not affected by the impacts, i.e.
µ̇−(t[k]) = µ̇+(t[k]).
The discrete wedge-billiard map is the composi-
tion of a (parabolic) flight map and an impact
rule.
The flight map integrates the continuous-time

equation of motion between two successive impact
times while the impact map expresses post-impact
variables as a (static) map of pre-impact variables
and control.

We first review the derivation of the uncontrolled
billiard map (Lehtihet et al. (1986)). The flight
map is then entirely determined by the wedge
geometry, that is by the parameter α = tan θ. The
flight map takes the analytical form F1

V −
n (t[k + 1]) =−Vn[k]

V −
r (t[k + 1]) = Vr[k]− 2|Vn[k]|

(E−(t[k + 1]) = E[k])

when the impacts k and k + 1 occur on the same
edge, and the analytical form F2

V −n (t[k + 1])2=4E[k] +
2(1− α2)

(1 + α2)2
(|Vn[k]|−Vr[k])2−V 2

n [k]

V −r (t[k + 1]) = |Vn[k]| − Vr[k]− |V −n (t[k + 1])| (2)

(E−(t[k + 1]) = E[k])

when the impacts k and k + 1 occur on two
different edges. The map F1 is applied as long as
the condition

2E[k]−V 2
n [k] sin2 θ− (Vr[k]−2|Vn[k]|)2 cos2 θ ≥ 0

is fulfilled. Otherwise, the map F2 is applied. This
condition restricts the ball to impact above the
intersection of the edges.
The impact rule I adopted in this paper simply
assumes that the tangential velocity is conserved
and that the normal velocity is reversed :

V +
r (t[k]) = V −

r (t[k]), V +
n (t[k]) = −V −

n (t[k]) (3)

Collisions are thus perfectly elastic (leaving the
energy conserved in the absence of control). The
uncontrolled wedge billiard map is the composi-
tion of the flight maps F1,F2 and of the impact
rule I.

We now examine how control of the edges modifies
the flight map and the impact rule. The angular
momentum control µ̇[k] has no effect on the wedge
geometry. As a consequence, it leaves the flight
map unchanged and only modifies the impact rule
as

V +
n (t[k]) = −V −

n (t[k]) +
2
α

R(t[k])µ̇(t[k]) (4)

with R(t[k]) = r(t[k])
cos θ obtained from the energy

equation (1).

In contrast, the angular position control µ(t[k])
does not affect the impact rule but modifies the
flight map. To avoid the complication of comput-
ing a new flight map, we introduce a simplification
that leaves the flight map unchanged and captures
the effect of the angular position control in a mod-
ified impact map. This simplification rests on the
small control assumption |µ| << θ and neglects



the displacement of the impact point due to the
angular deviation µ[k]. As illustrated on Figure
5, this simplification amounts to assume that the
impacts still occur on the uncontrolled wedge but
that the angular control µ[k] rotates the normal
and tangential directions of the impacted edge by
an angle µ[k].
With this simplification, the flight maps F1,F2

¸ µ̇

θ

µ
À

≈ ¸ µ̇ θ

µ
À

Fig. 2. The controlled wedge billiard (left) and a
simplified model when µ is small (right)

remain the flight maps of the uncontrolled billiard
whereas the impact rule I becomes

M(µ)
(

V +
r (t[k])

V +
n (t[k])

)
=

(
1 0
0 −1

)
M(µ)

(
V −

r (t[k])
V −

n (t[k])

)
+

(
0

2
αR(t[k])

)
µ̇(t[k]) (5)

with M(µ) denoting the matrix

M(µ) =
(

cosµ α sin µ

− sin µ
α cos µ

)

Note that (5) reduces to (4) when µ = 0.
Our simplified model neglects the displacement of
the impact point due to the angular deviation µ
but retains its “deflecting” effect on the velocity
variables. Composing the flight maps F1,F2 and
the impact rule (5), one obtains the discrete
controlled billiard map

(
Vr[k + 1]
Vn[k + 1]

)
= J(µ)

(
Vr[k]− 2|Vn[k]|

−Vn[k]

)

+
2
α

(−R[k + 1]α sin µ
R[k + 1] cos µ

)
µ̇[k + 1] (6)

for impacts k and k+1 on the same edge, and the
discrete controlled billiard map B
(

Vr[k + 1]
Vn[k + 1]

)
= J(µ)

( |Vn[k]| − Vr[k]− f1[k]
f1[k]sign(Vn[k])

)

+
2
α

(−R[k + 1]α sin µ
R[k + 1] cos µ

)
µ̇[k + 1] (7)

for impacts k and k + 1 on different edges, with

J(µ)= M(−µ)
(

1 0
0 −1

)
M(µ)=

(
cos 2µ α sin 2µ
sin 2µ

α − cos 2µ

)

and

f1[k]=

√
4E[k]+2

1− α2

(1 + α2)2
(|Vn[k]|−Vr[k])2−V 2

n [k]

The energy update is

E[k+1] = E[k]+
1
2

α2

1 + α2

(
Vn[k + 1]2 − V −

n [k + 1]2
)

+
1
2

1
1 + α2

(
Vr[k + 1]2 − V −

r [k + 1]2
)

The analytical model (6)-(7) is exact when µ = 0
and is a good approximation of the controlled bil-
liard under the small control assumption |µ| ¿ θ.

This simplified model is suitable for the analysis
and design of stabilizing control laws of various
periodic orbits of the uncontrolled billiard.

3. OPEN-LOOP DYNAMICS

Beyond the present robotic application, billiards
have been studied for the rich dynamical proper-
ties they display and their plentiful applications
in physics (e.g. statistical mechanics, gas theory).

(a) : θ = 30◦ (b) : θ = 40◦

(c) : θ = 50◦

Fig. 3. Phase planes (Vr, |Vn|) for three wedge
angle values.

The uncontrolled wedge billiard model we con-
sider in this paper leads to stabilization problems
of various complexity depending on the value of
the angle θ. The variety of dynamical phenom-
ena the wedge billiard displays as a function of
the angle θ has been first studied by Lehtihet
et al. (1986) (see also subsequent studies by Sz-
eredi and Goodings (1993), Milner et al. (2001)).
The value of the wedge angle determines in-
tegrable, KAM (Kolmogorov-Arnold-Mauser, see
Ott (1993) for an introduction) and chaotic re-
gions in the phase space. Figure 3 depicts three
phase planes (Vr, |Vn|) which illustrate the cases
θ < 45◦ and θ > 45◦.

For θ < 45◦, the phase plane exhibits stable
and chaotic behavior associated with periodic
points. As predicted by the KAM theory, stable
fixed points are surrounded by encircling KAM
curves forming near integrable regions called is-
land chains. Between these regions is a simply
connected domain of global chaos corresponding
to collisions at the wedge vertex (Figure 3, (b)).
An exception occurs at θ = 30◦ (Figure 3, (a))
where a structure of confined chaos (pointed by
the arrows in (a)) is observed instead of global
chaos. This local chaos originates from KAM be-
havior rather than collisions at the vertex.

For θ > 45◦, all the periodic fixed points turn out
to be unstable. The motion is completely chaotic,



that is all the phase plane is explored by the
system state (Figure 3, (c)).

The configuration where θ > 45◦ is a typi-
cal example of chaotic billiard. In the last three
decades, investigations of chaotic billiards became
a popular research area in statistical mechanics.
Wojtkowski (1998) proved that the uncontrolled
elastic wedge billiard is hyperbolic. By hyperbolic
behavior we mean the property of exponential di-
vergence of nearby orbits. This property is closely
tight to the ergodicity property according to which
any trajectory will eventually come arbitrarily
close to any periodic orbits of any desired period.

Period-one orbits

In the sequel, we focus on the stabilization of
period-one orbits. Period-one orbits of the uncon-
trolled wedge billiard are fixed points of the map
B (equation (7)) with µ = µ̇ = 0.
Fixed points are of the form

(
V̄r, |V̄n|

)
= (0,

1 + α2

α

√
2Ē

α2 + 3
)

They characterize a one-parameter family of pe-
riodic orbits, parametrized by their total energy
Ē. These orbits exist for all wedge angle values.
They are represented by the + symbol in the
phase planes of Figure 3. An illustration of the
trace of a period-one orbit is given in Figure 4.
Considering the eigenvalues λi, i = 1, 2 of the

2Ē
g

√
1+α2

3+α2

Fig. 4. Period-one orbit of the wedge billiard.

linearized mapping of B around the period-one
fixed points, we find that the fixed points are
elliptic (λ1 = 1

λ2
= e±iu) when θ < 45◦ and

hyperbolic unstable (0 < λ1 < 1 < λ2) when
θ > 45◦.

4. LYAPUNOV-BASED CONTROL (θ < 45◦)

As depicted in Figure 3 (a) and (b), when the
system is uncontrolled, the period-one fixed point
is surrounded by a continuum of closed KAM
curves forming an island chain. These curves are
invariant, that is when the system initial state is
on a curve, it keeps evolving on it according to the
uncontrolled dynamics of the wedge billiard. This
enforces the (Lyapunov) stability of the period-
one fixed point.

The aforementioned KAM curves define the level
set of a Lyapunov function.

Based on this observation and the hypothesis of
stabilizability of the system at the equilibrium

point, we define a feedback control scheme based
on the discrete analog of damping control (also
known as as Jurdjevic-Quinn control, see Jurdje-
vic and Quinn (1978)). Damping control assimi-
lates the Lyapunov function to a ”system energy”
and control is used to dissipate this energy, with
the objective of rendering the equilibrium point
asymptotically stable.

The closed KAM curves under consideration are
obtained using numerical simulations. To set up
the Lyapunov-based control design, we need an
analytical parametrization of these curves. We
approximate them with the level surfaces of an
analytical Lyapunov function which is defined
w.r.t. the linearized system around the period-one
fixed point (see Appendix for details). Alternative
methods (e.g. curve fitting) can be exploited to
design analytical parametrizations of curves nu-
merically defined.

The function expresses as follows :

V(Vr, Vn, E) = γV 2
r +(1−γ)(|Vn|−|V̄n|)2+(E−Ē)2

where 0 < γ = 1−α2

(1+α2)2 < 1.

Figure 5 compares the closed KAM curves of the
uncontrolled wedge billiard with the correspond-
ing level surfaces of function V for two wedge angle
values. In agreement with the small perturbation
theory, the approximation quality increases as
the system state evolves close to the equilibrium
point.

KAM curves
Level surfaces

θ = 30◦

KAM curves
Level surfaces

θ = 40◦

Fig. 5. Comparison of KAM curves (points) and
level surfaces of V for θ = 30◦, 40◦. Initial
conditions are represented by squares (2).

The equilibrium characterized by V̄r = 0, |V̄n| =
1+α2

α

√
2Ē

α2+3 , E = Ē 3 is made asymptotically
stable using discrete-time damping control (Lee

3 When angular position is used for control, the controlled
elastic wedge is conservative, the energy being conserved
both during flight and through impacts. Hence equality
E = Ē is assumed.



and Arapostathis (1988)). The resulting control
law writes :

u[k + 2] = −εBT
i PA (x[k]− x̄) (8)

where ε > 0 is a small control parameter and
i = 1, 2 according to angular position (u =
µ) or angular momentum (u = µ̇) actuation.
(A,P, Bi, i = 1, 2 are defined in the Appendix).
If the angular position is chosen for actuation
(u = µ), the control law (8) can be saturated at an
arbitrarily small constant magnitude to validate
the small angle assumption.

Figure 6 illustrates the evolution of function V,
for different wedge angle values, using damping
control law (8) (with i = 2). Observe that V is
not strictly monotonically decreasing, though sta-
bilization of the period-one fixed point is effective.
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θ = 30°

θ = 40°
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Fig. 6. Evolution of V
V(0) using angular momentum

damping control. Wedge angles are equal to
θ = 10◦, 30◦, 40◦. The common initial
condition is represented by the × symbol on
the θ = 40◦ phase plane of Figure 5.

5. TRAPPING CONTROL (θ > 45◦)

Considering any unstable periodic orbit of the
wedge billiard with θ > 45◦, the ergodicity prop-
erty ensures that any trajectory will eventually
come arbitrarily close to the orbit. This offers
the opportunity for controlling chaos : when the
chaotic orbit approaches the unstable periodic
orbit of interest it can be attracted to and main-
tained on the orbit by applying small perturba-
tions to the system. Controlling chaos was sug-
gested by Ott et al. (1990), giving rise to the OGY
method. Since the stabilization issue is based on a
linear analysis of the system near a periodic orbit,
standard results from linear control theory can be
taken over directly.

Borrowing the (physicist) idea of controlling
chaos, we first exploit the ergodicity property of
the uncontrolled conservative wedge billiard. Sec-
ond we design a state feedback controller using a
pole placement method. The controller drives the
angular position of one edge

µ[k + 2] = −k1(Vr[k]− V̄r)− k2(Vn[k]− V̄n) (9)

keeping the energy E of the controlled elastic
wedge conserved. The closed-loop system is kept
conservative.

The linear feedback law (9) achieves local asymp-
totic stability of the equilibrium characterized by
V̄r = 0, |V̄n| = 1+α2

α

√
2E

α2+3 .
Third, the basin of attraction of the linear con-
troller is estimated.

The control methodology summarizes as follows.
The wedge billiard is left uncontrolled until the
trapping region of the linear controller is reached
by the chaotic orbit. Applying the control law
(9) asymptotically stabilizes the periodic orbit. A
valid trapping region is obtained from the level
sets of a quadratic Lyapunov function. To validate
the small angle assumption, a maximum size for
the trapping region is imposed. This saturates the
magnitude of the angle deviation |µ|.

6. SIMULATION RESULTS

The control laws of Sections 3 and 4 are now
briefly illustrated by simulation results.

In the case θ < 45◦, we choose to stabilize the
period-one orbit characterized by the energy level
Ē = 5.5J using angular momentum control µ̇ of
the left edge. The wedge angle is equal to θ = 30◦

and the initial conditions are chosen as |Vn[0]| =
−3.11m/s, Vr[0] = −|Vn[0]|m/s, E[0] = 1.2Ē,
which roughly corresponds to an initial drop of
the ball. Figure 7 illustrates the trace of the ball
trajectories.
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Fig. 7. Trace of the trajectories

The case θ > 45◦ (here θ = 70◦) is illustrated
by the (Vr, |Vn|) phaseplane depicted on Figure
8. The system is initially left uncontrolled. Once
the system state enters the basin of attraction
(approximated by an ellipse) of the linear state
feedback controller, the control law achieves sta-
bilization of the equilibrium point.
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7. CONCLUSION

This paper has presented stabilization results for
periodic orbits of the controlled wedge billiard,
a model we view as an interesting benchmark for
impact control stabilization problems. Two config-
urations differing in the value range of the wedge
angle have been addressed using two different
control strategies. One exploits the ergodicity of
the open-loop dynamics, the other uses the KAM
curves surrounding the fixed point as candidate
level set for a Lyapunov function. Both methods
lead to simple and robust feedback laws with large
basins of attraction.
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APPENDIX

Linearized system

Considering the Jacobian linearization around the
period-one fixed point

(V̄r, |V̄n|, Ē) = (0,
1 + α2

α

√
2Ē

α2 + 3
, Ē)

of the controlled Poincaré map B2 on the actuated
wedge, we obtain :

δx[k+2] = Aδx[k]+B1µ[k+2]+B2µ̇[k+2] (10)

where

δx[k]=

(
Vr[k]−V̄r

|Vn[k]|−|V̄n|
E[k]−Ē

)
, A=

(
(8γ2−8γ+1) 4(1−γ)(2γ−1) 0

4γ(1−2γ) (8γ2−8γ + 1) 0
0 0 1

)

B1 =

( −2αV̄n

0
0

)
, B2 =




0
2R̄
α

sign(V̄n)
2αR̄
1+α2 V̄n




α = tan θ, γ = 1−α2

(1+α2)2 , R̄ = 1
2g

(
2(1 + α2)Ē − α2V̄ 2

n

)

The pair (A,B1) is controllable except when γ = 0
(square wedge billiard and θ = 90◦) and γ = 1/2
(θ ≈ 25.91◦).
The pair (A,B2) is controllable except when γ = 1
(⇔ θ = 0) and γ = 1/2 (θ ≈ 25.91◦).

Lyapunov Function

The quantity V(δx) = δxT Pδx with P =

(
γ 0 0
0 (1− γ) 0
0 0 1

)
is

a Lyapunov function for the system (10) because
P is a solution of the Lyapunov equation

AT PA = P


