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Analysis of interconnected oscillators by
dissipativity theory

Guy-Bart STAN and Rodolphe SEPULCHRE

Abstract— The paper employs dissipativity theory for global u passive Yy
analysis of limit cycles in particular dynamical systems of possibly — 00— system E)
high dimension. Oscillators are regarded as open systems that y
satisfy a particular dissipation inequality. It is shown that this

characterization has implications for global stability analysis of
limit cycle oscillations (i) in isolated oscillators, (ii) in intercon- /\T /
nections of oscillators, and (iii) for global synchrony analysis in
interconnections of identical oscillators. / ‘ —k

Index Terms— Global limit cycle analysis, Hopf and pitchfork

bifurcations, networks of oscillators, global synchronization. ] ) ] ] ) )
Fig. 1. A single-input single-output (SISO) passive systerfeedback with

a static nonlinearityp, (-) characterized by a parameterized negative slope
|. INTRODUCTION (—F) at the origin results in dissipativity with respect to thepply rate (1).
. . L . u (resp.y) denotes the external input (resp. output) of the SISO faekib
Oscillators are dynamical systems that exhibit stabletlimdystem.

cycle oscillations. Models of oscillators abound in bigtand
in physics (see [1], [2], [3] and references therein). Syaoi
and phase-locking phenomena in (possibly large) netwdirkstbe storage and active elements (included,ify)) that restore
interconnected oscillators are fundamental issues ofmdiczl  the storage constitutes the intuitive basis of the osuiltat
system theory and have a wide range of applications (seechanism. This qualitative description of oscillatorsswa
e.g. [4]). Nevertheless, because of their nonlinear natupgeviously advocated by Chua in [8]. From an energetic point
system theoretic questions about oscillators and netwofksof view, passivity w.r.t. the supply rate (1) defines a system
oscillators are difficult to address analytically. Follogithe that restores energy at low energy, thatds(y) — d(y) > 0
dissipativity approach introduced by Willems [5], the s when |y| is small, and that dissipates energy at high energy,
paper regards oscillators as open systems, that is, dyabmibat is,a;(y) — d(y) < 0 when|y| is large.
systems with inputu and outputy, with the objective of  The simplest way to obtain dissipativity with a supply
addressing system theoretic questions pertaining tocioer rate of the form (1) is to consider a SISO passive system
nections. ¥ in feedback with a parametric static nonlinearity(-) as
Dissipativity theory is based on a characterization of opéltustrated in Figure 1. The static nonlinearity,(-) is defined
systems by a dissipation inequality between the storage vaiy ¢ (y) = —ky + ¢(y) which yields the supply rate
ation and a supply rate. The storage reflects the energydstore
in the internal system components. The supply rate governs w(u,y) = uy + ky* — yo(y). 2
the exchange of energy with the external world. The resu
of this paper build upon a dissipation inequality with a dypp
rate of the form (if expressed in the single-input singlé¢poti
(SISO) framework)

Iﬁ\e parametek appearing in the definition af.(-) controls

the negative slope at the origin and provides a basic bifiarca
mechanism to create sustained oscillations in the feedback
system as we will see in Section Ill. The precise assumptions
w(u,y) = uy +ar(y) —d(y), ar(y) >0, d(y)>0. (1) ong(-) are postponed to Section Il but the reader may think
of ¢(-) as a cubic nonlinearity to fix the ideas.

Without the positive termax(y), the supply rate (1) is As an extension of the results previously presented in [9] fo

the supply rate Of. (strictly) pg_ssive sysFems, .WhiCh plays &S0 Lure feedback systems, the first part of this paper (sec-
fundamental role in the stability analysis of interconeelct tions III, IV and V) provides sufficient conditions for globa

equilibrium systems (see for instance [6] and [7]). The rOIgsymptotic convergence to a limit cycle in a generalized
of the activation termay(y) in (1) is to revert the sign of '

Lo . o MIMO version of the Lure feedback system represented in
dissipation when the output is small. The competition betwe

i | ts (included in the t 4 that dissinat Figure 1. As will be shown, a global limit cycle in such MIMO
passive elements (included in the teag-d(y)) that dissipate systems either results from a supercritical Hopf bifuaatior
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between two storage elements, regulated by a locally aotite W__ V)= Y W__ YVl & Y
globally dissipative element. The second scenario prevale - = -
generalization of Fitzhugh-Nagumo oscillators (see eL.d])[ O o(-)
Its energy interpretation fits the qualitative descriptdmany
oscillation mechanisms in biology, viewed as periodic shéis
Fig. 2. Equivalent representations of the Lure multi-input Itmu

between two qua_lsgsteady-state_s. . _output (MIMO) nonlinear system studied in this papeb,(Y) =
Such global limit cycle oscillators are named "passivg,, (y,),..., ¢, (yn)) is a MIMO repeated nonlinearity.

oscillators" since they are dissipative w.r.t. the supmyer

(). An advantage of the proposed dissipativity approach

is that it allows to study global limit cycle oscillations indefinition holds except that the inequality is non-stricc &
passive oscillators of arbitrary dimension. To illustraéités, consequence of these definitions, a real mattixs positive

a nontrivial (dimension 3) example of passive oscillator igsemi-) definite if and only if its symmetric part, denoted by
provided in Section VI. Another advantage of the presentetl, is positive (semi-) definite.

approach is that the limit cycle global convergence results

that hold for a single passive oscillator extend to networls |ure feedback systems

of interconnected oscillators. This is illustrated in $&TiVII We consider the Lure system shown in Figure 2 which

wher_e we provide Iimit cycle glo_bal convergence resuilts f(f‘«"epresents the MIMO nonlinear systemin feedback with a
passive mte.rC(.)nnectlons of passive oscillators. .. static nonlinearityd; (-). This figure is a MIMO generalization
Beyond limit cycle global convergence, synchronlzauoaf the SISO system represented in Figure 1

among interconnected oscillators is an important issue Nrhe (square MIMO) systeri is described by the state-
biological and physical phenomena. Section VIl provide§pace model

synchronization results for networks of oscillators thetisfy ]
an incremental form of the dissipation inequality (1). Btk :{ X f(X)+9(X)V, X eR", V e RV 3)
dissipation inequality (1) and its incremental form aregho | ¥ = A(X),Y e RN
to hold for a specific class of passive oscillators. In SectiQynere the vector fieldg(-), g(-), and the functiona(-) are
IX we discuss the required incremental dissipativity ctiods  g00th. We assume that the orightt = 0 is an equilibrium
from the point of view of graph theory and deduce generigoint of the free systemW{ = 0), ie. f(0) = 0, and
topological coupling condition for synchronization. Higa 5t h(0) = 0 and g(0) # 0. We also assume zero-state
Section X concludes and presents some future researcm‘)p&%tectability of the paif f, h), i.e. that every solutiotk (¢) of
To the best of the authors knowledge, the use of dige free systenX = £(X) that verifiesY (t) = h(X(t)) = 0
sipativity theory for the system analysis of intercon”dCteasymptotically converges to the zero solutiéh = 0 as
oscillators is new. Many earlier results in the literatuevdr ; °,

nevertheless _exploited. thg structure of Lure systems iq theéwe denote byE;x the positive feedback interconnection of
study of nonlinear oscillations. In [12] and [13], YakubaVi he systenE with the static gairkly, that is, (3) withV =
and Tomberg provide sufficient conditions for the existenggy- "/ \where V denotes the input oE,. We denote by
of sustained oscillations (not necessarily correspondn@ g, (s) the MIMO transfer function of the linearization &,
periodic orbit) and this theory has been followed by many; x _

developments summarized in [14]. In [15], Mees provides The static nonlinearityd (-) is a MIMO repeated nonlin-

a graphical criterion for Hopf bifurcation in Lure systemSggity ie.®. (V) — _ T where
Recently, the authors of [16] have developed novel numierica Y b() = Gk @), dr (un)
tools for the global analysis of limit cycles in piecewisedar Or(yi) = —kyi + ¢(y;), Vi=1,....N (4)

systems. The use of these numerical tools in our context 4 y; is the it" component of the output vector. To
(restricting to a linear element in the forward path and 19y ,hagize the fact that this MIMO nonlinearity is repeated
a piecewise linear static element in the feedback path) Is," jenote it by diafie(-)}. The nonlinearity () is a
discussed in [17] and [18]. smooth sector nonlinearity in the sect@ o). Without loss
of generality, we pose’(0) = 0 such that the local slope

[l. PRELIMINARIES of ¢i(+) is determined byk. The parametek thus regulates
A. Notations and terminology the level of “activation” of the nonlinearity neaX = 0. The
sector condition then imposes’(0) = 0. In addition, we
assumep”’ (0) = x > 0 andlim,|_ ‘z’f) = +o00. The last
condition is known as the “stiffening” nonlinearity condi.
It is imposed to facilitate thglobal analysis of the feedback
system (see [20]).
Figure 2 illustrates two block-diagram representations of
e same feedback system with external ingatc RY: the
system= with the feedback interconnection

Throughout the paper we use the following notatiohs.
denotes theV x N identity matrix andl the column vector
(1,...,1)T € RN, The Euclidean norm iR" is denoted as
||, i.e.|z|> = 272 where” defines transpositiori)mod(N)
denotes the modulo operation, i.e. integertaken modulaV.
The notationA ® B denotes the Kronecker product betweeﬂ1
the matricesA and B (see [19]). Finally, we say that eal
matrix A is positive definite if and only if:” Az > 0 for all
x € R™"\{0}. For real positive semi-definite matrices, the same V==-0,Y)+W, (5)
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or the systent,; with the feedback interconnection D. Absolute stability and multipliers

The feedback system (3), (4), (5) with' = 0 is absolutely
stable when the system possesses a unique equilibrilim 0
which is globally asymptotically stable for any MIMO re-
C. Dissipativity and strong passivity peated nonlinearity(-) = diag{¢(-)} with ¢(-) in the sector

(0,+00). Because the static nonlinearit®(Y) is strictly

Dissipativity theory has emerged as a central tool for thg, + passive (see [10]), a well-known sufficient condition
stability analysis of feedback systems (see [21], [6] aiil [7 5pso)yte stability is thaEy, is strongly passive and zero-state

For the sake of completeness we recall here the definition gfie taple (see [10] and [7]). Indeed, under such condition
dissipativity as introduced by Jan Willems in [21] and to @¥hi the storage function cEy, S, (X) (where the indicet of the

the reader is referred for more details. The (State-Spys&®  q5rqq6 function is used to emphasize its dependence).on
E with input vectorV" and output vectod” is dissipative if . on satisfies the dissipation inequality

there exists a scalar storage functi§X') > 0 and a scalar . .
supply ratew(V,Y’) such that the dissipation inequality Sk < =Y O(Y).

<

= —B(Y) + W. 6)

T* As a consequence, we may uSg(X) as a global Lyapunov

S(X(Tr)) — S(X(0) < / w(V(t),Y(t))dt (7) function. Global asymptotic stability of the equilibriufd =

0 0 directly follows from the LaSalle invariance principle [7]

is satisfied for all7* > 0 and along any solutionX (t) of Obviously, sinceS;(X) depends ork, absolute stability of
(3). Passivity is dissipativity with the supply rate(V,Y) = the Lure feedback system (3), (4), (5) will also dependkon
VTY. Strict output passivity is dissipativity with the supplyStability analysis w.r.tk will be discussed in Section IIl.
rate w(V,Y) = VTY — d(Y), with d(Y) > 0 for Y # 0. The theory of multipliers (see [23], [24] and [25]) provides
Similarly, strict input passivity is dissipativity with éxsupply relaxed conditions for absolute stability. Assume th&t(s)
ratew(V,Y) = VIY — ¢(V), with (V) > 0 for V # 0. In andHx(s) are two SISO transfer functions with both poles and
the particu'ar case of linear detectable Systems’ p@swn zeros in the left half plane. Consider the SyStem reSUHIiOg‘]f
= is equivalent to positive realness of its associated MiM¢he unforced (no external input) feedback interconnectibn

transfer functionR(s) (see [10, Section 6.3]). Sk = Hi(s)INExHy '(s) Iy and @ = Ha(s)In®H; ' (s)In
If the storage functios'(X) is differentiable, the dissipation (Se€ [24] for a block diagram interpretation). #, (s) and
inequality (7) is equivalently written as Hs(s) are such thatb is strictly input passive, then strong
passivity and zero-state detectability®f imply the absolute
S(X (1)) <w(V(1),Y(t)). stability of the new feedback system. But stability of the

unforced ¥ = 0) feedback interconnection &, with ® is

Throughout the paper, we assume additional properties fjuivalent to stability of the unforced feedback interaertion

the storage functiory(.X): of Z; with ®, which suggests why the multiplied, (s) and

1) (smoothnessp(X) is continuously differentiableC) H2(s) may provide relaxed conditions for the absolute stability
in R™ and twice continuously differentiableZq) in a of the original unforced feedback interconnection=fwith
neighborhood of the origin. Oy, (see [24]).

2) (Lyapunov) S(X) is positive definite (i.e.S(0) = 0, For static nonlinearities?(-) = diag{¢(-)} respecting
S(X) > 0 VX # 0) and radially unbounded (i.e.the assumptions of Section II-B, the simplest example of
S(X) — o as|X| — o). multiplier is the Popov multiplier for whichH,(s) =

3) (locally quadratic) The Hessian ¢f(X) evaluated at (1+7vs), v > 0 and Hy(s) = 1 (see [26]). In this case,
zero, ie. a"‘aig) . is a symmetric positive definite "quiring strong passivity (and zero-state detectabibitythe

. o 1 X=0 system(1 + vs)InE; for absolute stability of the feedback

matrix P = P > 0. system (3), (4), (5) with¥ = 0 defines thePopov criterion
To emphasize these extra requirements on the storagedonctisee [27]).
we say that= is strongly passive whenever= is passive  For static nonlinearitie(-) = diag{¢(-)} respecting the
with a storage function that satisfies the three addition@$sumptions of Section II-B and such thdt) is furthermore
assumptions 1), 2) and 3). These assumptions are alwg}%géo?: ['an]reg?%%rﬁegrgﬁg Eggsinoihrgl#glmers was intro-
satisfied in the (detectable) linear case because lineaivpas
systems have quadratic storage functions [21]. More gﬂmeraM(jw) —1-Z(jw) = 1_/+°° 2(t)e 7 dt, /*”o I2(6)| dt < 1.
these assumptions are convenient to link the passivity tuf —o0 —oo

iy . . . 8)
the stability properties of the zero input system sis{eX) . . . (

. The additional assumptiot(¢) > 0 is also needed unlegs-
then serves as a (global) Lyapunov function. The Iocalllg odd. Zames and Fglboxs(hc))vVed that multipliers of 'fe)form
guadratic assumption further ensures that the lineaoizatf )

= is passive, with the quadratic approximation$fX) as a (8), which are not necessarily causal, can always be fattore

storage function. It also implies that the system has aivelat" the form V(s) — ()
degree one, i.e225X) 4(X) > 0, for all X in a neighborhood (5) = Hi(s) Ha(=s)
of the origin X = 0, and that it is weakly minimum phase,with H;(s), Hz(s), and their inverses being causal and stable

i.e. its zero dynamics are Lyapunov stable (see [22]). and with® being strictly input passive (see [23] for the SISO
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case and [24] for its MIMO generalization). As a consequendaifurcation scenarii that generically occur when the vadfie
strong passivity and zero-state detectability=pfis sufficient  is increased beyoné*.

for absolute stability of the feedback system (3), (4), (Bhw Example 1. Consider the unforced SISO feedback system
W = 0. Note that wherE,, is a linear system, passivity of (3), (4), (5) in the particular case whegeis a pure integrator

=, is equivalent to positive realness of its associated teansfvith associated transfer functioR(s) = % and ¢x(y) =

function Hl(s)INRk(s)Hgl(s)IN. —ky + 3%, The state representation of the feedback system
For later reference, we summarize in Theorem 1 sufficieist
conditions for absolute stability of the unforce®(= 0) g =ky—y>

MIMO Lure feedback system represented _in Figure 2_' I\ﬂ,hich is the normal form of aupercritical pitchfork bifurca-
Theorem 1, we assume that the feedback interconnectioryis.. y — 0 is asymptotically stable fok < k* — 0 while for

ultimately bounded which means that all solutions enter, i, ;. y — 0 is unstable and two stable equilibria appear.

finite time, a compact and invariant set = Q(k) (see Example 2: Consider the same unforced feedback system

Definition 5'_1 in [10]). _as in Example 1 but whei® is a linear system with associated
Theorem 1. Consider the feedback system (3), (4). (5) Withansfer function(s) = —*+. The dynamics of the feedback
W = 0 and k fixed to a particular value. If= and its s

! o _ system is then governed by
linearization are zero-state detectable and the feedlydek i d
connection ofZ and ®,(-) is ultimately bounded, then each J+y+——ky) =0

of the following conditions is sufficient for global asym(ito o dt ,
Stablllty of the equllbrlUmX — 0 of the feedback SyStem: which is a standard form of the Van der Pol oscillator. For

k < k* =0, the equilibriumy = 0 is globally asymptotically
stable. Atk = k*, a supercritical Hopf bifurcation occurs,
that is, two complex eigenvalues cross the imaginary axis. F
k > k*, y = 0 is unstable and all other solutions converge to
a unique asymptotically stable limit cycle.
In the two examples above, the bifurcation is supercritacal
the global convergence of the solutions to a neighborhood of
the equilibriumX = 0 is not destroyed in the vicinity of the
bifurcation. We interpret these two properties as resgifiom
. passivity of the transfer functio®,(s) at the bifurcation
strongly passive. . . . point.The following result generalizes these two bifuimat
The proof of Theorem 1 is given in [9] in the SISO case. Th?cenarii.
extension of this proof to the MIMO case is straightforward. ta5rem 2@ Consider the feedback system (3), (4), (5) with
Remark 1: A MIMO extension of Arcak’s results in [20] 13, — ( Assume thaE is strongly passive, that bofs and
shows that the unforced feedback system (3), (4), (5) ii§ |inearization are zero-state detectable, and that,tfer
ultimately bounded for any < oo if Z is linear, passive, zero- 5,65 off; considered in Case (1) and Case (2), the feedback
state detectable andi(-) is a MIMO repeated nonlinearity, jytarconnection of= and ®,(-) is ultimately bounded. Let
.e. () = diag{¢x(-)}, with ¢(-) satisfying the assumptions .. . ) pe the smallest value df at which the corresponding
of Seqtlon 11-B gnd monotone increasing. petans of thlﬁ/”MO transfer functionRy-(s) has a pole on the imaginary
extension are omitted here but can be found in [18]. axis. If =, is strongly passive and
Case (1): if Rg«(s) has a unique pole on the imaginary
[1l. BIFURCATIONS IN ABSOLUTELY STABLE FEEDBACK  axis, then the bifurcation is a supercritical pitchforkusiation
SYSTEMS such that, fork = k*, the system is globally bistable, i.e. the

In this section, we analyze the stability properties of thgduilibrium pointX’ = 0 is a saddle and its stable manifold
unforced ¥ = 0) feedback system (3), (4), (5) as the,ES(O) separates the state space in two open sets, each of which

parameterk increases from0. Throughout the rest of the Is the basin.of atfraction of a stable.equilibri_um point.
paper, the notatiot > £* is used to denote a value of the Case (2): ifR;- (s) has a unique pair of conjugated poles on

- - ; ; the imaginary axis, then the bifurcation is a supercrittdapf
arameter slightly greater than the critical bifurcation value | . ’ . .
P gy d bifurcation such that, fok = k*, the system is characterized

k*,i.e.k € (k*,k] for somek > k*. Since we assume that : " ~n )
Qx a unique limit cycle which is globally asymptotically bte

= is strongly passive and zero-state detectable, the fekdb " .
system (3), (4), (5) withV" = 0 is absolutely stable fok — 0. in R™\ E5(0) where E,(0) denotes the stable manifold of the
Lo unstable equilibriumX = 0.

However, it can be showed that a bifurcation necessarilyrscc ; R _

when k is increased from) because the linearization of this Proof: The proof is divided into a local argumgnt_ an_d
feedback system aXk = 0 possesses at least one eigenvaIL?e gIObé.ll argument. Both arguments rely on th? d|ss!pat|on
in the right half plane whek becomes large enough (see [lglggquahty O]; t.he unforced systeni{ = 0) at the bifurcation

for more details based on a simple root locus argument). L (fmt (k= k7): . T

k* (> 0) denote the smallest value &fat which asymptotic Sk < Y7 0(Y) ©)
stability of the linearized system & = 0 is lost. The two whereSy-(X) denotes the storage function &f-. The local
following examples illustrate in their simplest form theaw argument will show the existence of a supercritical Hopf

e ¢(-) is in the the sectof0,c0) and there existyy > 0
such that(1 + vs)IyZy is strongly passive;

« ¢(-) Is monotone increasing and in the sector o),
and there existsM(s) = H;(s)Ha(—s) with M(s)
in the form (8) andz(t) > 0, such thatz, =
Hl(s)INEngl(s)IN is strongly passive;

« ¢(-) is odd, monotone increasing and in the se¢toro),
and there existd//(s) = Hi(s)Hy(—s) with M(s) in
the form (8) such thaE, = H,(s)InZxH; (s)Iy is
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(respectively, pitchfork) bifurcation at = & — k* = 0. This
implies the existence of a constant> 0 and a neighborhood ;. 4 2 [ a1 — bsés o (1e/* 4
U c R™ of X = 0 such that for eactke € (0,¢], all = AL+ ( bsé1 + asze )+ (‘ﬂ )’ ¢

I
N
|

e °
(=R
N——

solutions with initial condition in/ either converge to the _ _ (13)
unstable equilibriumX = 0 or to a unique stable limit Which, in polar coordinates, yields

cyclg of radiusO (/e) (respectjvely, one of the two. §table po= as PP+ 0 (p"), 14
equilibria, each located at a distan€g(,/¢) of the origin). 6 = wt+0(p).

The global argument will show that there exists a constant o ) _
€2 > 0, é&2 < &, such that for each € (0, €], all solutions The restriction ofSg«(X) on the center manifold is a locally
eventually enter the above defined neighborhobih finite quadratic function of the fornsem(¢) = ¢7Q¢ + O <|§|3)
time (which means that the local argument eventually appligith @ = Q7 > 0, that satisfies
to each solution). N

We first prove the global argument. Ultimate boundedne _ (T T 3 4 5
of the feedback system implies that for eack (0, ], all Sem = €7 (Q4c + 47Q) &40 <|§| ) = _HZ;% +o ('Y‘ ) ’
solutions enter in finite time an invariant compact Set= - (15)
Q(¢). Global asymptotic stability ol = 0 ate = 0 implies Up to a scaling factor, the only symmetric, positive definite
practical semiglobal stability of the solutioki = 0 for small  solution Q of QA. + ATQ <0isQ = %I, which implies
€ > 0, that is, for any given neighborhodd, there always Scm(p) = 1p% + O (p?). For initial conditions in the center

exists ané; < & such that, for each € (0, &, all solutions manifold, the dissipation inequality (15) thus satisfies
with initial condition inQ2(e) enter/ in finite time (see [28] for

a definition of practical semiglobal stability and the nexzeg
conditions for it).

Next we turn to the local argument. At the bifurcation, i.e. . . o )
atk = k*, the system possesses a center manifold (see [zgm_egratmg on both sides over an arbitrarily chosen time
Detectability of the linearization oE implies observability interval T > 0 yields
of the linearized center manifold dynamics. From (9) and the ,7* . s N . s
definition of ®(-) (see also (4)), we can write, locally arouno%/0 (p(1))"dt + O (p°) < _”/0 Zl(yf(t)) dt+ 0O ([YT)

X =0, =

N
Sem=asp* + 0 (p°) < =k > yj + 0O (|Y|5) :
=1

which, from the observability of the linearized center nfialoi
; ad 4 5 dynamics, forcess < 0. This implies that the bifurcation is a
Sk < ﬂﬁzyj +0 (‘Y‘ ) , ®>0 (10) supercritical Hopf bifurcation, that is, far=> 0, all solutions
in U either converge to the unstable equilibrivkh= 0 or to
Case (1) (one dim. center manifold): R;-(s) has a a unique stable limit cycle of radiud (1/¢). This concludes
unique pole on the imaginary axis, the center manifold the proof. |
one-dimensional. The normal form of the center manifold We briefly comment on the technical assumptions of Theo-
dynamics writes (see [29]) rem 2: the detectability assumption is a natural assumption
. 3 A in a context where (internal) stability is deduced from an
§=azl” +0 (5 )’ eR. (11) (external) passivity property; as in Theorem 1, the ultenat

The restriction ofSg-(X) on the center manifold is a locally boundedness assumption allowsgtobal conclusions; finally,

quadratic function of the formsem(¢) — %Plgg ) (53) the restr_iction _to one or two eigenvalues on the _imagina'ry ax
(with P, > 0 from the strong passivity assumption &f..) at the bifurcation exclu_des degenerate plfurcatlpns.
that satisfies the dissipation inequality Th_e centr_al assump'gon_of Theorem 2 1S tBat is strongly
passive. This assumption is rather restrictive. As themater
Som = Py eé < — 4 ( 5) . k increasesZ; loses passivity ak = k¥ ,..;,. and it loses
Som = F1&e K;y] oM (12) stability atk = £*. One necessarily hglsgasm,e < k*, but
. . the passivity assumption df- requiresk; ;. = k*. This
In the center manifold, each output component wriges=  assumption can be weakened through the use of multipliers as
cié+0 (|£]?). Observability of the linearized center manifoldshown in the following result.
dynamics implies that; # 0 for at least one value of € Theorem 3: The statements of Theorem 2 hold if the strong
{1,...,N}. This forcesas < 0 in (11). The bifurcation is passivity assumption of,- is replaced by one of the three
thus a supercritical pitchfork, i.e. far> 0, all solutions inl{  relaxed conditions of Theorem 1 expressed: at k*.
converge to the unstable equilibrium poikit= 0 or to one of Proof: The global argument of the proof of Theorem
the two asymptotically stable equilibria located at a dis&a 2 is unchanged because it relies on absolute stability of the
+0O (ye) of X =0. system where = k£ — k* = 0. As a consequence of Theorem
Case (2) (two dim. center manifold): IR« (s) has two 1, conditions of Theorem 3 still guarantee absolute stgbili
conjugated poles at = +jw, the center manifold is two- whene = 0. For the local argument, in the case of Popov
dimensional. The normal form of the center manifold dynanmultipliers, the dissipation inequality (9) is recovereiihathe
ics is (see [29]) new storageS,- = Si- + 72?;1 Iy @(s)ds. In the case

j=1



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AUTOMATIC CONTRO 6

of Zames-Falb multipliers, lefS;- be the storage function VB (¢) since the solutionV®) (¢£(t)) coincided with the

associated wittEy-. Since, by assumptiorE,- is strongly unique steady-state output of the opera(ercb(?’)) 2 when

passive,S,. satisfies the dissipation inequality this operator is applied to the (periodic) mﬁﬂf“(&( ), 1) =

CeAemte(0) (see [31, Chapter 8]).
Case (1) (one dim. center manifold): Wheg= £(0)) <
R, the constant input’ (") = C¢ (of the nonlinear dynamic

0perator(—<i><3>)) gives rise to the constant outpiit®) (&) =

S < VTV (16)

with ¥ = H, (s)InY andV = —Hy(s)Ixy®(Y) = —® (Y)

A minimal realization of the operato(r—<1>) is of the form 3¢%. Strict input passivity (see [24]) of the operaté)ui@)

~ ~ . . "’T _ . . . . .
(7&)) { i =AA1w1 + BV, Y =Cu + DV gggﬁe?atc 8 = —v < 0. The dissipation inequality thus
= 2W2 —+ BQCI)(Y), V = 702’[1}2 — Dz(b((i/%) . T
S 7 (3) y (1) 5) — et 5

with (A;, B;,C;, D;), (i = 1,2), being minimal realization S < (V ({)) Y (£)+O<|£| ) =% +O(‘£| )
of the linear operatorg; ' and H., respectively. From the which forces the existence of a supercritical pitchforkubif
assumptions of Zames and Falb (see [23]) the Iinear opsrateoation, as in the proof of Theorem 2.
H, and H, are invertible andH,, H;', H, and H; ' are  Case (2) (two dim. center manifold): Wheii= £(0)) €
causal and bounded (i.e. have finite galns) This |mpl|es tH&%, the periodic input” ) (¢, 1) = Ce<'¢ (of the nonlinear
the associated transfer functiois (s) and Hs(s) have all dynamic operatOI(— <3))) gives rise to the periodic output
their poles and zeros in the open left half plane and thyss) (,t). Strict passivity and homogeneity of the operator
that the f||tel’§[1( )IN, H ( )IN, HQ( )IN andH ( Q (I)(g ) |mp||eS (See [24])
do not change the dlmen5|on of the center manlfold Thu
similarly to the proof of Theorem 2, the center manifold N N
dynamics, expressed in normal form, take the expression (11 (V(g)(fvt)> V(g 1)y dt < —y[gl* + O (I¢°), T" =
when Ry« (s) has a unique pole at= 0, and the expression
(13) whenRy-(s) has two conjugated poles at= +jw.

In order to analyze the dissipation inequality (16) on the
center manifold, we approximate the_expre55|on§/ofw2, S (X(T™)) — S (X(0) < —v |§\ + 0O (|§| ) )
Y, and w; as functions of¢ up to suitable order. We use _ )
the notationa(™ (¢) to denote the series expansion ff), As in the proof of Theorem 2, this forcesg < 0 in the center
in terms of¢, up to ordern. If a(¢) is a vector function manifold dynamics (14) (see [18]), which proves the exiséen
the notation means a component-wise series expansion uPk@ supercritical Hopf bifurcation. This concludes the qfro

ordern for each component af(¢). Using this notation, we ) =
consider:V = 7®)(¢) + O (|€|4), wy = hé‘”(ﬁﬂ-(’) (|§\4) The next two sections show that the results presented in

R ~ ) ) Theorem 2 are the basis for two different global feedback
Y =0C+0 (|£| ) andw; = hi§ + O (IE\ ) From (17) oscillation mechanisms.
and the assumption’’(0) = x > 0, we have

2
w

W|th ~ > 0. For initial conditions in the center manifold,
integration of (16) over the period@* leads, locally, to

IV. HOPF BIFURCATIONS AND GLOBAL OSCILLATIONS
5 s 5 5
VO (€) = ~Cohs (€)= Dok (C€)*, C = Cihi+D:1C, k>0 As mentioned in Example 2, the simplest illustration of

(18) the Hopf bifurcation mechanism described in Theorem 2 is
where the notation(C¢)® means a component-wise expoprovided by the Liénard system

nential operation on the vectdiC’&). The function h( )(5)

is solution of the partial differential equation that exgses Jy+y+ %d)k(y) =0, yeR (20)
invariance of the center manifold up to terms of ord)e<|§|4) L . . .
(see [30]) where ¢ () satisfies the assumptions made in Section II-

B. It admits the feedback representation shown in Figure 3
PYNC (©) when H(s) = <. In this caseZ corresponds to the feedback
(—Cg 2 — D23/~c(C§)2 C’) A€ = interconnection of two integrators and its associatedsfen
08 function is R(s) = %7 It is well known that the Liénard
—CyAshSD(€) — CoByrk (CE)® — Dy3k (C€)? CA.mé  (19) System (20) has a gIobaIIy asymptotically stable equilitori
at the origin fork < 0 and a globally asymptotically stable

) .
with the boundary conditions&f’) 0) = 0, 622 (0) = 0. limit cycle for &k > 0 (see [10]). The result fok > 0 follows

In equation (19),A.,, = 0 when the center manifold is 15 s pecause the partial differential equation (19) siatl by
one dimensional, andl.,,, = A. (see (13)) when the centers ¥ (¢(1)) is the same as thateady-state partial differential equation satisfied
manifold is two dimensional. Once the soluubﬁ () of (19) by h'Y (£(t)) when the input of the nonlinear dynamic opera(opé(:%))
is found, the expression df (3) (€) is obtained through (18). is v(1)(¢(0), ¢) = Cedemte(0) (see [31, Chapter 8]).

We do not even need to solve the partial differential equatio 2the operator{ —&(®)) corresponds the operat(€r_<i>> defined in (17)
(29) for h(g) (£) to obtain the corresponding expression fowith @(-) replaced by its cubic approximation.
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70 5 H(s) v 70 v 5 E Y
1 o (")
Q) z br

Fig. 3. Forcing the Hopf bifurcation with an integrator iretfeedback loop

and H(s) passive. The casl(s) — % corresponds to Liénard systems. Fig. 4. Converting the pitchfork bifurcation scenario inéorelaxation

oscillator by adding a slow adaptation mechanisns¢ 0). The cases = %
corresponds to the Fitzhugh-Nagumo oscillator.

from Theorem 2 becausg is the feedback interconnection
of two SISO, linear, passive systems (two simple integgitotith the Fitzhugh-Nagumo model (see [32, Section 7)5]
and because it has two poles on the imaginary axis when
k = 0. Since the (negative) feedback interconnection of two . 3
passive systems is still a passive system, Theorem 2 extends vo= ky-y -z (1)
this low-order Liénard system result to an arbitrary higties TZ = —z+bry (22)
(strongly) passive systerH (s) in feedback with an integrator
provided that, at the critical value® at which the equilibrium
X = 0 loses stability, the corresponding syst&m is passive
and zero-state detectable.

The Hopf bifurcation in the feedback system of Figure 3 has
the following energy interpretation: passivity at the bifation is a globally bistable system over the range of parameter
point allows for a lossless exchange of energy between two —%k §7 37@\/52 Outside of this range, the inner-

storage elements(s) and 1). The static nonlinearityp (-) ' '
regulates the dissipation in the feedback system, restor#@op is absolutely stable and has a unique globally asymp-

energy when it is too low and dissipating it when it is too higHotically stable equilibrium. Treating as a parameter, one
In the popular Van der Pol oscillator, the two storage elemerihus obtains the bifurcation diagram shown in Figure 5-¢a) f
are a capacitor and an inductor, whereas the dissipation,ig ( _2p, /k 25 [k

. . 4 37\ 3:3%\/3 )
regulated by means of (for instance) a tunnel-diode circuit A , ,
modeled as a static negative resistance whose input-outpul "€ outer-loop in Figure 4 or equivalently tiaglaptation

which admits the block diagram representation shown in
Figure 4 withE = 1 and ¢x(y) = v* — ky. For k > 0,
the inner-loop

y=ky—y’—=z (23)

function isgy () = 4> — ky. Theorem 2 extends this feedbaciynamics .
mechanism for oscillations to higher-dimensional systems TZ=—z+bry (24)
It should also be observed that, putting an integrator {hmpined with the feedbackr = —z, converts the above

feedback with an arbitraryi(s) (as in Figure 3) forces the yegcribed bistable system into a relaxation oscillatiorhia

Hopf bifurcation scenario because of the resultin%(e)reeseThc phase planéy, ») as shown in Figure 5-(b). The corresponding

a zero ats = 0 in the transfer function?,.(s) = =375 = |imit cycle is guaranteed to be globally asymptoticallybita
SH%S))H(S): for the positive feedback interconnection of provided that the time constantis large enough (see [10]).

R(s) with the static gaink, the root locus is such that parts Sinceb plays no particular role in this relaxation oscillation
of the real axis located at theght of an odd number of mechanism, we will assume without loss of generality that
singularities (poles or zeros) belong to the root locus. fes tb = 7~ in (24), leading to
transfer function of a strongly passive systeRys) has a )

relative degree equal to one and all its poles and zeros dpelon TZ=—z+Y.
to the closed left half-plane. As a consequence, the pesitiv

part of the real axis necessarily belongs to the root locas an 1,4 global bistahility of the inner loop combined with the

one branch (at least) of the root locus must entert_he_righ_t hay o adaptation of the outer loop thus provides a feedback
plane. The presence of a zerosat 0 then necessarily implies e chanism for global oscillations. The resulting osdiais a
thqt (at least) tWo non-zero elgenvalues cross the IMaginay axation oscillation characterized by a rapid switch between
axis at some critical valug* which corresponds to the Hopf,, quasi-steady-states (i.e. states that would correspon
bifurcation scenario. Standard Hopf bifurcation is genghat ¢i,pje equilibria in the absence of adaptation [10]). Such

is, it always happens except in the degenerate case Whees Mjjjation mechanisms are frequent in biology (see e2j)[3
than two eigenvalues cross the imaginary axis simultadgoug, e Fitzhugh-Nagumo model, a simplification of Hodgkin-

Huxley model for voltage oscillations in the neuron cell

(25)

V. PITCHFORK BIFURCATION, BISTABILITY, AND GLOBAL 3The particular equations (21), (22) are obtained from thzhigh-Nagumo
RELAXATION OSCILLATIONS model in [32] with the change of coordinates= v — % z=w—
f (“T“) — I, the definitiont = 1, and a well-chosen value of the input

The pitchfork bifurcation scenario of Theorem 2 is the basigrrent1,, i.e. I, = ga—ng — f(*£*). The corresponding value df is

for a second global oscillation mechanism best exemplifiéitknk = % (a? —a+1) > 0.
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Unigue, unstable 2z = bry

y , k>0, equilibrium point 0bta|n
ze(*%k £ 3r/E zi z=ky — 33 , .
\\ ( v o= eyi—/{’yf—aiz—ﬁ—(?(\(yi,zﬂ ),Iﬂ?/>0, a; >0,
y

stable

Y \ 2 = 0(—z4wy),
Relaxation Oscillation (6 == 07
(a) Without adaptation (b) With adaptation 5 = 0) 27
Globally bistable system Relaxation oscillation . . . (27) .
Treatingd = 7~ as a state variable makes the adaptation
Fig. 5. The hysteresis associated to a bistable system. equation part of the center-unstable manifold dynamics, lo

cally defined aroundy;, z,¢,6) = (0,0,0,0) (see [29]). The

equilibrium (y;, z) = (0,0) of (27) is stable fore < 6 > 0
membrane, the switch is between the (high) equilibrium p3—nd unstable fok > J > 0. Standard singular perturbat|on_
tential associated to potassium ions and the (low) equilibr arguments,_ see e.g. [10, Pp. 445-448], prove that_t_he_resems
potential associated to sodium ions. The “recovery” vdeiab a constant > 0 and a nelghborhood?_of the equilibrium
models the voltage dependent opening (closing) of the HthiLgX’ z) = (0,0) of (27) such that for any fixed ande such that

ion channels and the corresponding closing (opening) of tHe< & < e <& all solutions with initial condition inV\ {0}

potassium ion channels (see [11]). converge tq a unique limit cycle.. Bgcguse of the time-scale
. . ) . .. separation induced by < § < ¢, this limit cycle corresponds
Theorem 2 provides a high-dimensional generalization &4 relaxation oscillation
the global bistability in the inner loop of Figure 4. In order The global part of the proof is similar to that of Theorem
to convert the global bistability result of Theorem 2 into 3. fors > 0 ande — 0. the equilibrium (X, z) = (0,0) is

mechanism for global oscillations, we add the scalar adiapta .

dynamics (25) to the system described in Figure 2. Th lobally asymptotically stable because the augmente@gtor
) : o 192 enpich AT :

is summarized in Theorem 4 where, represents thei*h gncﬂonsk* = 05+ + 52° satisfies the dissipation inequality

: : Spe = 08 + 22 = —0YTO(Y) — dyiz + 6z (=2 + i) <
component of the external input vectdr (see Figure 2). _’“5 (YT<I>(kY) n ZQ) which is a(na)logogs to (9).(Usingyul)timate

Theorem 4: Under the assumptions of Theorem 2, SUPPO§Ry ndedness of the augmented system, the same arguments as
that the unforced feedback system (3), (4), (5) undergoeqnabroof of Theorem 2 may be used. -
supercritical pitchfork bifurcation ak = k*. Consider the Remark 2: If the forward systenE is linear, strongly pas-
input w; = —z, w; = 0 for j 7 i with z satisfying the e anq detectable and the repeated nonlineaity satisfies
dynamicsTz = —z +y; andi selected such that the linear,. 4ssumptions of Section II-B and is monotone increasing,

center manifold dynamics is observable from Assume y,on itimate boundedness follows from Remark 1 since the
that the augmented system is ultimately bounded. Then th%rc?aptation dynamics: — —z + y, is passive

exists a positive consta@tsuch that for any particular value
of k in (k*,k* 4+ €), all solutions with initial conditions in
R\ E,(0) converge to a unique asymptotically stable limit
cycle if 7> (k — k:*)_l. We define gpassive oscillator as a system that admits the
Proof: As in the proof of Theorem 2, the reasoning i¢eedback representation (3), (4) and (5) with the assumgtio
divided into a local and a global argument. We start with tHef Section II-B and satisfies the two following conditions:
local argument. Let = (k — k*). By assumption, the unforced 1) the feedback system satisfies the dissipation inequality
feedback system (3), (4), (5) possesses a one dimensional

V1. PASSIVE OSCILLATORS

8 * T T T
center manifold at = 0. As shown in the proof of Theorem Sk < (k N kmssi“e) VIV —YTey)+ WY (28)
2, at the bifurcation point, i.e. at = k*, detectability where S (X) represents the storage function of the
of the feedback system linearized arouAd = 0 implies feedback system ankf/, ... > 0 is the critical value
observability of the linearized center manifold dynamicsni of k above which it loses passivity.
at least one output component, eyg. As a consequence of  2) when unforcedf’ = 0), the feedback system possesses
the observability of the linearized center manifold dynesni a global limit cycle, i.e. a stable limit cycle which

from y;, this output component qualifies as a local coordinate  attracts all solutions except those belonging to the stable
in the center manifold and the corresponding center-utestab manifold of the origin.

manifold dynamics can be written The first condition necessarily holds if we assume that the

forward block= is strongly passive. In Theorems 2, 3, and 4,

N we provided sufficient conditions for the second condition t
i = ey — K'YP + > agw; + 0 () (26) be satisfied as well.
j=1 In order to illustrate this definition, we consider a noritriv

example of a SISO passive oscillator of order 3. Helgesp.
where v’ > 0. Observability ofy; and strong passivity of y) denotes the scalar external input (resp. output) of th@©SIS
= implies «; > 0. Augmenting the one-dimensional centerpassive oscillator.
unstable dynamics (26) with the adaptation dynamiés= Example 3. Consider the feedback system in Figure 3 with
—z +y; and the outer loopy; = —z, w; = 0 for j # i, we the monotone nonlinearity(y) = y* and the second-order
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transfer function characterization also plays an important role in the stuidy o
s+ w2 oscillations in networks of interconnected passive osigiis.
H(s)= 55— " ConsiderN SISO passive oscillators. We assume that the
52 + 2Cwps + w2 o . - .
critical valuek is the same for all the oscillators. The

passive

which is passive if2(7 > w, > 0. Calculations detailed in state-space model of oscillatoe {1,..., N} is given by
[18] show that the feedback system is passiveifer k..,
with w w { T = f(:z:,)+g(x1)ﬂ7, l’iGRp, u; € R (33)
passive = min (1, (20 = 1) ) (29) yi = hiz) yeR
T T . . )
gnd that a bifurcation occurs at= k*, with &* being given With the feedback interconnection
y U = —br (yi) + wi (34)
. VT T 2027 F w3 (wn — 40) 72 F 4wl (1 = Coom) 7 + 4C208 o S _
b= 2w2 T and satisfies the dissipation inequality

(T +wh) + 20wy
+ 2w2T ’

(30) Sk’,i < (k - k;asawe)y? - yl(b(yl) + UiYs-

In general, a passive system in positive feedback with &stalhe N systemsX; define a MIMO system} with input
gain loses passivity before losing stability, i, ;.. < k*. U = (iy,...,ay)" and outpul” = (y1,...,yn)" . Likewise,

This means that, except for particular parameters values the N oscillators define a MIMO system with inpuf =

which k3, .. = k¥, Theorem 2 does not apply. However, aguy, ... ,uy)" and outpu’. This MIMO system satisfies the
shown in [18], for parameters values satisfying dissipation inequality
28 (¢ — Iy <t < 2¢ (31) G < (k= Kissine) YTV =YTO(Y) + YU (35)
T T T

Theorem 3 can be used because the Zames-Falb multipliewhere S, = Zf;l Sk,i-
W2 . In the MIMO feedback representation of the network given
M(s)=1—Z(s), Z(s)= 7 2Qwn + R (32) in Figure 6, the coupling is regarded as an additional feeklba

w2

s+ =2 defined by
results in the passive transfer function U=-FY)+W (36)
Ry (s)M(s) = _ 5 where F'(-) represents the (non-linear) input-output coupling
k* “Te2 e between the oscillators antl’ is the new external input
: o |
with 0 = T +w2(1—F). The transfer function of the interconnected network?(-) is assumed to be &

e - . -
Ry-(s)M(s) has exactly two imaginary poles on the imag]funcnor_l in RY satisfying F'(0) = 0. As illustrated in Figure
: . . . . ‘6, the interconnected network equivalently admits the Lure
inary axis. We are thus in the Hopf bifurcation scenarig . .

. . representation that we have used in Theorems 2, 3, and 4. In
described in Theorem 3.

Applying Theorem 3 for parameter values satisfying (31$his representation, the syste®is regarded as: with the
a SISO passive oscillator is thus obtained wiep £*, i.e. eedback interconnectiolf = —F(Y’) + V.. If the network

o A input-output couplingF'(-) is passive, that is, if
1) the feedback system satisfies the dissipation inequality
Sk < (k= Kpassive) > — y* +uy YTF(Y) >0,vY e RY 37)

2) when unforced (no external input is applied to th N . .
) w u ( X nput 1S appl %en the MIMO systenZ in Figure 6 is also (strongly) passive
b

N eing the feedback interconnection of two (MIMO) passive
k2 k*. .
Th . ilat 4 in th | ¢ th s%/stems). Theorems 2, 3, and 4 can then be used to predict
€ passive oscliiafors used In he examples of the ng b onset of global limit cycles in the interconnected syste
sections correspond to those introduced in Example 3 W|thRemark 3: We note that the strong passivity and zero-state

the_ p2artL|chIar tpr)]arameters V?lu% IZ 1’. ¢ 2:9 12%’ %r(])d detectability assumptions of Theorem 2 and Theorem 3 hold
7 = =~ JSIng hese parameters values in (29) and (30), W&t the network if they hold for each individual oscillator.
obtain k* = k* = 1. These particular parameter values

passive ) Regarding the bifurcation valug and the dimension of the
thus allow to directly apply Case (2) of Theorem 2 (W'thouéenter manifold of the network at this bifurcation value, we

further requiring multipliers). Other numerical examphesich have the following result for the case of networks of ideaitic

require the use of multipliers are provided in [18] oscillators with linear and symmetric input-output counpli
Proposition 1: Consider a network ofV identical passive

VII. INTERCONNECTIONS OF PASSIVE OSCILLATORS  qgcillators (33)-(34) with linear symmetric input-outpeau-
As we have seen in the proofs of Theorems 2, 3, andgling U = —TI'Y, wherel' = TI'?. Let ky € R be the

the external characterization of — possibly high-dimenaio smallest shift such that’ = I'"" = T' + kqly > 0 and

— passive oscillators by the dissipation inequality (9)ypla rank(I') = N — 1. If each isolated passive oscillator has

role both in the supercritical character of the bifurcataord a center manifold of dimension two &t = k., then the

in the preservation of global convergence properties begyonetwork possesses a center manifold of the same dimension

the bifurcation valuek*. We now show that this externalat the bifurcation valu&* = k*_ . — k.

osc

feedback system), it possesses a global limit cycle f
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Fig. 6. MIMO representation of a network of SISO passive lzors. Each
block ¥; is (strongly) passive®(Y) = (¢ (y1),-.., ¢k (yn))T is a
MIMO repeated nonlinearity. The repeated nonlinear elenenty (y) =
—ky + ¢(y) where ¢(-) is a static nonlinear function that satisfies the
assumptions of Section II-B7(Y") characterizes the network interconnection.

Proof: Consider the Jacobian linearization ©f around
the origin. Because all oscillators of the network are i@t
they all share the same linearization. I(éts) be the transfer
function associated to this shared linearized dynamicg Th ™
effect of the coupling appears in the linearization of the N I
network dynamics through the additional terfh This is (a) (b)
clearly seen in the expression of the poles of the transfeg. 7. Simulation results for a network of 2 identical passiscillators. The
function Ry (s) associated with the Jacobian linearization d?fC'Cesrrf:Spfiizgtttge Oéggﬁt%fscngil)urn?; t(:lzef]o;:gfrl])og?;l;ﬁfe‘dacs\llﬁhmfghe
the network dynamics around the origin. These poles may ﬁ#owing p'[;rameterg'valuesn =125 =2 k= 0.3.pThe critical
calculated as the complex valuessothat lead to a rank drop bifurcation value for an isolated oscillator i, = 1 and the corresponding
for the MIMO transfer function bifurcation value for the network i8* = 0. The trajectories generated in the

state space of each oscillator are represented on the sewand different
1—kG(s) 1—(k+ko)G(s) color is used for each oscillator. The third row represehéstime evolution
Iy +T =
G(s) G(s)

In+T. (38)  of the outputs of the oscillators.

Becausel” = I > 0, there exists an orthogonal matrix 0
such thafl” = LALT with A = diag{\;},i =1,..., N where T; =
\; denotes theé'” eigenvalue of the matriX’. SinceI" has —L 0 Lo

¢ ) network is unchanged by the shifi§ = I' + ky/y and

rank N — 1, one can consider, without loss of generality, th%, — % + k. In both cases, choosing, — 1, the shifted

0 -1

andl'y = respectively. The

At =0andX; > 0,4 € {2,...,N}. This implies that the . ) 11
smallest value of for which the matrix matricesy = { andl'y = | | | ) are
1— (k+ ko)G(s) T’ positive semidefinite with rank. By Proposition 1 and the
L( o) In +A) L results presented in Example 3, the dimension of the center

manifold is2 and the assumptions of Theorem 2 are satisfied.
loses rank is the one that leadslte- (k + ko)G(s) = 0. By The critical bifurcation value for the network ks’ = £, —1.
assumption, this occurs far = k. — ko. Moreover, from From Theorem 2, we conclude that the network possesses a
the preceding analysis it can be seen that the dimensionghdbally attractive limit cycle fork > k*. This is illustrated in
the center manifold ak = £* is equal to the dimension of Figure 7 where simulation results fér= 0.3 are presented.
the center manifold of one of the isolated, passive osoiltat As can be seen on Figure 7, the coupling definedIhy
composing the network. This concludes the proof. B |eads to a synchrone oscillation while the coupling defined
Based on Proposition 1 and on Theorems 2 and 3, we danI'; leads to an anti-phase oscillation. We will return to the
directly extend the global limit cycle analysis of a singlsynchronization question in Section VIII.
passive oscillator to a network of such identical passive Example 5: As an illustration of Theorem 2 for a network
oscillators. In the two examples that follow, we illustralés consisting of a large number of identical SISO passive os-
result on some networks composed of an increasing numiloétators, we consider &y symmetry (all-to-all) network of
of identical passive oscillators. Each oscillator compgsi passive oscillators. The dynamics of an isolated SISO ypassi
those networks examples is taken from Example 3 with thwscillator is the one presented in example 3. The linSar,
following parameters values,, = 1, ¢ = 1.25, 7 = 2.  symmetry coupling corresponds to the interconnection imatr
For these parameters values, using (29) and (30), we obtain= [v; ;], i,j = 1,...,N with v,;, = (N — 1)K, Vi €
kyse = kpassive = 1, Which permits a direct application of {1,...,N} and~; ; = —K, Vi # j. In this matrixT’, K is
Theorem 2. a positive constant representing the coupling strengttef t
Example 4: Consider the positive (resp. negative) feedbacky symmetry network. The eigenvalues Bfare N K with
coupling of 2 identical passive oscillators whose dynama multiplicity N — 1 and 0. As a consequence, the rank of
ics are given in example 3. The resulting interconnectidn is N — 1. By Proposition 1 and the results presented in
is illustrated in Figure 7. The interconnection matrices aExample 3, the dimension of the center manifold is 2 and the
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is satisfied for allT* > 0 and along any pair of trajec-
tories (x(t), zp(t)). Incremental dissipativity (39) with the
incremental supply rate (Au, Ay) = (Au)” Ay is called
incremental passivity.

Passivity implies incremental passivity for linear syssem
that is, if the quadratic storag8(z) = 2Pz > 0 sat-
isfies the dissipation inequality < u”y then the incre-
mental storageSa(Az) = (Az)" PAz > 0 satisfies the

(a) (b) incremental dissipation inequalitpa < (Au)” Ay. Pas-
Fig. 8. Simulation results for a network of 5 identical passascillators Sivity also implies incremental passivity for monotone in-
Cr?u%en% Jvfi\rzouggs;g ;}értgrr\;eggl-uEach fslci"?tf ii t265ken fiogﬁ iximgleaic\j'\'iﬂbreasing, static nonlinearity: if(-) is monotone increasing,
tKe: 1. Thechr)itical bifurcationexlue for an isoilatédToscilléierk;scy — then (s1 = s2) (& (s1) — & (s2)) = ASAQ_ﬁ(S) 2 Asp(As) >
and the corresponding bifurcation value for the networkfs= 1. 0, VAs = s; — s, for some static nonlinearity(-).
SISO passive oscillators made of the unforced feedback
interconnection of a linear passive systémwith a mono-
assumptions of Theorem 2 are satisfied. The critical bitisna tone increasing nonlinearity(-) are thus also incrementally
value for the network isk* = k... From Theorem 2, we passive. In the following sections we restrict ourselvektte
conclude that the network possesses a globally attradtiie | feedback systems made of the feedback interconnection of a
cycle fork 2 k*. This is illustrated by the simulation resultsinear passive system with a nonlinearity) that is monotone
presented in Figure 8 fat =2, N =5, and K = 1. increasing.

The same results hold foDy symmetry networks, i.e.
bidirectional rings of oscillators. In the case Bfy symmetry
networks, the matrix’ has the fornT" = [, ;],4,7 =1,...,N
@liltg {Wff ., ]%;[}(,’az(éfy;)jmidi)ﬂérthevé’t(ﬁ;)énggg? This ma1trix Consider a network ofV identical, SISO, incrementally

is cyclic and its eigenvalues can be calculated analyyi¢atte Passive oscillators. We assume that the only nonlineanity i
e.g. [33]):\; (1) = 2K (1 — cos (2%)) >0, j=1,...,N. gach oscn!agqr is due to the nonllnear_functtgsh) a_ppeqrmg
The rank of is once again equal 0 — 1 and the results of IN the definition of (). The dynamics for oscillatof &
Theorem 2 may be directly applied. {1,..., N} thus write

(TES Cx;

B. Synchronization in networks of incrementally passive os-
cillators

(40)
VIII. | NCREMENTAL DISSIPATIVITY AND

SYNCHRONIZATION where u; € R represents the external input of oscillator

Beyond the question of existence and (global) stability ef < R its output, andr; € RP? its state vector.
sustained oscillations in a network of interconnected ipass We assume linear input-output coupling between the SISO
oscillators, an important issue concerns their relativellas-  incrementally passive oscillators:
ing behavior. The question of global synchronization among
the oscillators is particularly relevant. Synchronizatis a U=-1Y7. (41)
stability property for thedifference between distinct solutions. e denote by, (T',) the second smallest eigenvalue Ioy,
Stability properties for the difference between soluti@fs i I', denoting the symmetric part df, i.e. Iy = %

a closed system are characterized by notionsnafemental  Thegrem 5 summaries the global synchronization conditions
stability (see [34], [35], [36]). For open systems, the COM&zquired in a network of identical, incrementally passive

sponding notion isncremental dissipativity. oscillators.
Theorem 5. Consider the linear interconnection (41) &f
A. Incremental dissipativity identical, incrementally passive oscillators (40). Assuthat

(A, C) is observableg(-) is monotone increasing and each
isolated oscillator«; = 0) possesses a globally asymptotically
stable limit cycle inR?\ E,(0) whereE;(0) denotes the stable
manifold of the origin. If the interconnection matrix is a

and ,(t) be two solutions ofY, with the corresponding real, positive semidefinite matrix of rank — 1 such that
I't =T71 =0 then for\, (T') > k — & > 0 (strong

input-output pairgu, (t), y.(t)), and(u(t), ys(t)). We further
consider the incremental variablés: = x, -y, Au = uq — coupling), the network has a limit ¢ glaessi;\)/%ich attracts all
up, andAy = y, —yp. The system is incrementally dissipative ping), Y

if there exists an incremental storage funct®®(Ax) and an soluthn_s except those b_elonglng (o the stable mamfol_d of
: _ the origin, and all the oscillators of the network exponaiti
incremental supply rate(Aw, Ay) such that

synchronize.

§ ™ Proof: Defining II = Iy — +117, and denoting by
Sa (Az(T7)) — Sa(Az(0)) < /0 w(Au(t), Ay(t)) dt 11, theit" row of II, the increment vectofl;Y measures the
(39) difference between the output of oscillaian the network and

Consider an input-affine SISO systéfmrepresented by a
state-space model of the form (3). We denote«fy), y(¢)
and z(t), its input, output, and state respectively. Legf(t)
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the average outpug; SN i Let Si(x) = sal Px; with

P = PT > 0 be the storage function of oscillatarand
T \T

X = (xl,...,xN)

the uncoupled dynamics which correspond to the dynamics of
an isolated oscillator, repeatéd times. This implies that all

e RPN be the state vector associate@olutions, except those belonging to the stable manifolthef

to the network dynamics. For the interconnected system wggin of the network, exponentially synchronize and cogee

consider the storage

Sa = 5 (Mo 1,)X)" (Iy © P) ((T® L,)X)

where &’ denotes the Kronecker product.
Sa satisfies the dissipation inequality
S < (k—Fk

passive

YIIY)TTIY —(ITY) T TI® (V) 4 (TTY) T TIU.

(42)
Because Il is a projector, i.e.II> = TII, we have
(MY)T1e(Y) = YTTI®(Y). Moreover,Y TTI®(Y) is non-

towards a unique limit cycle. [ ]

Remark 4: The result still holds if the observability as-
sumption on the painA4,C) is relaxed to a detectability
assumption.

Remark 5: The global exponential stability result of
(II'® I,) X = 0 may also be viewed as an incremental input-
to-state stability{-1SS) property of the network witGa being
the corresponding-ISS Lyapunov function (see [34]).

Remark 6: Theorem 5 is closely linked to recent synchro-
nization results presented in [39] by Slotine and Wang and

negative becausd® is a positive operator (see Theorem 3.1 [40] by Pogromsky. This may easily be noticed from

in [37]). The dissipation inequality (42) thus implies
Sa < (k=K ime ) AIY)TIIY + (1ITY)TTIU.

passive
Becausd/ = —TI'Y, IIT" = I'TI, andz’Tz = 27T, 2, Vz € RV
we obtain

Sa < (k—k*

T T
paaém;e)(HY) Iy — (HY) FéHY (43)

The assumptions o' imply that I'y has rankN — 1 and
satisfiesI';1 = 0, so that

(TIY)TT,IIY > X\, (T,) (TIY) 711,

which allows to rewrite (43) as

SA < (k - k;assive - )‘2 (FS)) |1_va|2 . (44)
The strong coupling assumption implies
Y= A2 (FS) - (k - k;assi'ue) > 0. (45)

Integrating (44) ovefty,to + T*] whereT™ > 0 is arbitrarily
chosen, we obtain

to+T* .
/ Sadr

to

IA

to-‘rT*
[ P

to

—ay | ® L)X (to)[*, a > 0 (46)

IN

for all (II ® I,)X (to), to > 0. The last inequality comes
from the observability of the paifA4, C'). Global exponential
convergence ofIl ® I,)X to zero is then deduced from

classical exponential stability theorems (see, for exan|Bg,

the normal form of passive systems. The normal form for
oscillator: of the network is (see [7])

(1)~ (3 D)+ (&) oo
- ;w(o X )((Z>_<Z>>(48)

0 CB
whereCB is positive definite from the passivity assumption.
Assume, as it is done by Slotine and Pogromsky, that< 0
for i # j, and thaty; = 20, |y;|. This implies that the
0 of
0 CB
symmetric part of the Jacobian of the uncoupled dynamics,
divided according to the coupling structure, is given by

J< Qs He+f) ) 49)

He+HT g+CBk—CBEE
It is then easily seen that the sufficient conditions given by
Slotine in [39, Remark 3 of Theorem 2] are satisfied, i.e.
1) Qs is contracting since it is Hurwitz from the passivity
and detectability assumptions
2) Amax(g + CBk — CBY2)) < g+ CBk < oo from
the monotone increasingl assumption
3) mar (Sle+ ) = [F] < o0
Exploiting the special structure of passive oscillatorse-T
orem 5 additionally proves that the network solutions are

couplings —v;; are positive semidefinite. The

Theorem 1.5.2]). It implies that all solutions of the netiworPounded and that the network possesses a unique limit cycle

exponentially converge to the invariant subspace
N

that is, they exponentially synchronize. Sinf@ = 0, the

which attracts (almost) all trajectories.

IX. GRAPH INTERPRETATION OF THE INTERCONNECTION
ASSUMPTIONS

In this section, we give an interpretation of the intercarnne

dynamics of the network decouple in the invariant subspaten assumptions of Proposition 1 and Theorem 5 in terms of
(47), that is each oscillator behaves as if it was isolated, idirected graphs.
as if its dynamics were (40) with; = 0. As a consequence Consider a directed graply with associated weighted

all bounded solutions converge to thelimit sets of the

adjacency matrixA = [w;,], 4,7 = 1,...,N (see [41]).

decoupled system. On the other hand, ultimate boundednéssume that the graph is simple, i#; ; > 0 andw; ; = 0,
of the solutions follows from a MIMO generalization of thevi, j. The corresponding weighted Laplacian mafrixvrites
result in [20] (as discussed in Remark 1). We conclude thBt= [v;;], ¢, = 1,...,N with ~;; = Zﬁh w; j, Vi €

all solutions of the network converge to thelimit sets of

{1,...,N} and~; ; = —w;;, Vi # j. The Interconnection
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rule U = —T'Y then corresponds to the linear consensus

protocolu; = — Z;V:l w; ; (yi —y,) (see [42]).

Proposition 1 and Theorem 5 require> 0. This assump-
tion holds if the graph is balanced, i.e. f1 = AT1 (see
[41]). This latter property implie§'1 = I'"'1(= 0), which is
a required assumption of Theorem 5.

Proposition 1 and Theorem 5 requireto have rankN —
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