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Analysis of interconnected oscillators by
dissipativity theory

Guy-Bart STAN∗ and Rodolphe SEPULCHRE†

Abstract— The paper employs dissipativity theory for global
analysis of limit cycles in particular dynamical systems of possibly
high dimension. Oscillators are regarded as open systems that
satisfy a particular dissipation inequality. It is shown that this
characterization has implications for global stability analysis of
limit cycle oscillations (i) in isolated oscillators, (ii) in intercon-
nections of oscillators, and (iii) for global synchrony analysis in
interconnections of identical oscillators.

Index Terms— Global limit cycle analysis, Hopf and pitchfork
bifurcations, networks of oscillators, global synchronization.

I. I NTRODUCTION

Oscillators are dynamical systems that exhibit stable limit
cycle oscillations. Models of oscillators abound in biology and
in physics (see [1], [2], [3] and references therein). Synchrony
and phase-locking phenomena in (possibly large) networks of
interconnected oscillators are fundamental issues of dynamical
system theory and have a wide range of applications (see
e.g. [4]). Nevertheless, because of their nonlinear nature,
system theoretic questions about oscillators and networksof
oscillators are difficult to address analytically. Following the
dissipativity approach introduced by Willems [5], the present
paper regards oscillators as open systems, that is, dynamical
systems with inputu and outputy, with the objective of
addressing system theoretic questions pertaining to intercon-
nections.

Dissipativity theory is based on a characterization of open
systems by a dissipation inequality between the storage vari-
ation and a supply rate. The storage reflects the energy stored
in the internal system components. The supply rate governs
the exchange of energy with the external world. The results
of this paper build upon a dissipation inequality with a supply
rate of the form (if expressed in the single-input single-output
(SISO) framework)

w(u, y) = uy + ak(y) − d(y), ak(y) ≥ 0, d(y) ≥ 0. (1)

Without the positive termak(y), the supply rate (1) is
the supply rate of (strictly) passive systems, which plays a
fundamental role in the stability analysis of interconnected
equilibrium systems (see for instance [6] and [7]). The role
of the activation termak(y) in (1) is to revert the sign of
dissipation when the output is small. The competition between
passive elements (included in the termuy−d(y)) that dissipate
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Fig. 1. A single-input single-output (SISO) passive systemin feedback with
a static nonlinearityφk(·) characterized by a parameterized negative slope
(−k) at the origin results in dissipativity with respect to the supply rate (1).
u (resp.y) denotes the external input (resp. output) of the SISO feedback
system.

the storage and active elements (included inak(y)) that restore
the storage constitutes the intuitive basis of the oscillation
mechanism. This qualitative description of oscillators was
previously advocated by Chua in [8]. From an energetic point
of view, passivity w.r.t. the supply rate (1) defines a system
that restores energy at low energy, that is,ak(y) − d(y) > 0
when |y| is small, and that dissipates energy at high energy,
that is,ak(y) − d(y) < 0 when |y| is large.

The simplest way to obtain dissipativity with a supply
rate of the form (1) is to consider a SISO passive system
Σ in feedback with a parametric static nonlinearityφk(·) as
illustrated in Figure 1. The static nonlinearityφk(·) is defined
by φk(y) = −ky + φ(y) which yields the supply rate

w(u, y) = uy + ky2 − yφ(y). (2)

The parameterk appearing in the definition ofφk(·) controls
the negative slope at the origin and provides a basic bifurcation
mechanism to create sustained oscillations in the feedback
system as we will see in Section III. The precise assumptions
on φ(·) are postponed to Section II but the reader may think
of φ(·) as a cubic nonlinearity to fix the ideas.

As an extension of the results previously presented in [9] for
SISO Lure feedback systems, the first part of this paper (sec-
tions III, IV and V) provides sufficient conditions for global
asymptotic convergence to a limit cycle in a generalized,
MIMO version of the Lure feedback system represented in
Figure 1. As will be shown, a global limit cycle in such MIMO
systems either results from a supercritical Hopf bifurcation, or
from a supercritical pitchfork bifurcation that yields a globally
bistable system which is then easily turned into a relaxation
oscillation. The first scenario provides a generalization of the
Van der Pol oscillators (see e.g. [10]). Its energy interpretation
fits the qualitative description of a lossless exchange of energy
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between two storage elements, regulated by a locally activebut
globally dissipative element. The second scenario provides a
generalization of Fitzhugh-Nagumo oscillators (see e.g. [11]).
Its energy interpretation fits the qualitative descriptionof many
oscillation mechanisms in biology, viewed as periodic switches
between two quasi-steady-states.

Such global limit cycle oscillators are named "passive
oscillators" since they are dissipative w.r.t. the supply rate
(1). An advantage of the proposed dissipativity approach
is that it allows to study global limit cycle oscillations in
passive oscillators of arbitrary dimension. To illustratethis,
a nontrivial (dimension 3) example of passive oscillator is
provided in Section VI. Another advantage of the presented
approach is that the limit cycle global convergence results
that hold for a single passive oscillator extend to networks
of interconnected oscillators. This is illustrated in Section VII
where we provide limit cycle global convergence results for
passive interconnections of passive oscillators.

Beyond limit cycle global convergence, synchronization
among interconnected oscillators is an important issue in
biological and physical phenomena. Section VIII provides
synchronization results for networks of oscillators that satisfy
an incremental form of the dissipation inequality (1). Boththe
dissipation inequality (1) and its incremental form are shown
to hold for a specific class of passive oscillators. In Section
IX we discuss the required incremental dissipativity conditions
from the point of view of graph theory and deduce generic
topological coupling condition for synchronization. Finally,
Section X concludes and presents some future research topics.

To the best of the authors knowledge, the use of dis-
sipativity theory for the system analysis of interconnected
oscillators is new. Many earlier results in the literature have
nevertheless exploited the structure of Lure systems in the
study of nonlinear oscillations. In [12] and [13], Yakubovich
and Tomberg provide sufficient conditions for the existence
of sustained oscillations (not necessarily correspondingto a
periodic orbit) and this theory has been followed by many
developments summarized in [14]. In [15], Mees provides
a graphical criterion for Hopf bifurcation in Lure systems.
Recently, the authors of [16] have developed novel numerical
tools for the global analysis of limit cycles in piecewise linear
systems. The use of these numerical tools in our context
(restricting to a linear element in the forward path and to
a piecewise linear static element in the feedback path) is
discussed in [17] and [18].

II. PRELIMINARIES

A. Notations and terminology

Throughout the paper we use the following notations.IN
denotes theN × N identity matrix and1 the column vector
(1, . . . , 1)T ∈ R

N . The Euclidean norm inRn is denoted as
| · |, i.e. |x|2 = xTx whereT defines transposition.(i)mod(N)
denotes the modulo operation, i.e. integeri is taken moduloN .
The notationA ⊗ B denotes the Kronecker product between
the matricesA andB (see [19]). Finally, we say that areal
matrix A is positive definite if and only ifxTAx > 0 for all
x ∈ R

n\{0}. For real positive semi-definite matrices, the same
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Fig. 2. Equivalent representations of the Lure multi-input multi-
output (MIMO) nonlinear system studied in this paper.Φk(Y ) =
(φk(y1), . . . , φk(yN ))T is a MIMO repeated nonlinearity.

definition holds except that the inequality is non-strict. As a
consequence of these definitions, a real matrixA is positive
(semi-) definite if and only if its symmetric part, denoted by
As, is positive (semi-) definite.

B. Lure feedback systems

We consider the Lure system shown in Figure 2 which
represents the MIMO nonlinear systemΞ in feedback with a
static nonlinearityΦk(·). This figure is a MIMO generalization
of the SISO system represented in Figure 1.

The (square MIMO) systemΞ is described by the state-
space model

Ξ

{

Ẋ = f(X) + g(X)V, X ∈ R
n, V ∈ R

N

Y = h(X), Y ∈ R
N (3)

where the vector fieldsf(·), g(·), and the functionh(·) are
smooth. We assume that the originX = 0 is an equilibrium
point of the free system (V = 0), i.e. f(0) = 0, and
that h(0) = 0 and g(0) 6= 0. We also assume zero-state
detectability of the pair(f, h), i.e. that every solutionX(t) of
the free systemẊ = f(X) that verifiesY (t) = h(X(t)) ≡ 0
asymptotically converges to the zero solutionX = 0 as
t→ ∞.

We denote byΞk the positive feedback interconnection of
the systemΞ with the static gainkIN , that is, (3) withV =
kY + V̄ where V̄ denotes the input ofΞk. We denote by
Rk(s) the MIMO transfer function of the linearization ofΞk

at X = 0.
The static nonlinearityΦk(·) is a MIMO repeated nonlin-

earity, i.e.Φk(Y ) = (φk (y1) , . . . , φk (yN ))
T where

φk(yi) = −kyi + φ(yi), ∀i = 1, . . . , N (4)

and yi is the ith component of the output vectorY . To
emphasize the fact that this MIMO nonlinearity is repeated
we denote it by diag{φk(·)}. The nonlinearityφ(·) is a
smooth sector nonlinearity in the sector(0,∞). Without loss
of generality, we poseφ′(0) = 0 such that the local slope
of φk(·) is determined byk. The parameterk thus regulates
the level of “activation” of the nonlinearity nearX = 0. The
sector condition then imposesφ′′(0) = 0. In addition, we
assumeφ′′′(0) = κ > 0 and lim|s|→∞

φ(s)
s

= +∞. The last
condition is known as the “stiffening” nonlinearity condition.
It is imposed to facilitate theglobal analysis of the feedback
system (see [20]).

Figure 2 illustrates two block-diagram representations of
the same feedback system with external inputW ∈ R

N : the
systemΞ with the feedback interconnection

V = −Φk(Y ) +W, (5)
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or the systemΞk with the feedback interconnection

V̄ = −Φ(Y ) +W. (6)

C. Dissipativity and strong passivity

Dissipativity theory has emerged as a central tool for the
stability analysis of feedback systems (see [21], [6] and [7]).
For the sake of completeness we recall here the definition of
dissipativity as introduced by Jan Willems in [21] and to which
the reader is referred for more details. The (state-space) system
Ξ with input vectorV and output vectorY is dissipative if
there exists a scalar storage functionS(X) ≥ 0 and a scalar
supply ratew(V, Y ) such that the dissipation inequality

S (X (T ∗)) − S(X(0)) ≤
∫ T∗

0

w(V (t), Y (t)) dt (7)

is satisfied for allT ∗ ≥ 0 and along any solutionX(t) of
(3). Passivity is dissipativity with the supply ratew(V, Y ) =
V TY . Strict output passivity is dissipativity with the supply
rate w(V, Y ) = V TY − d(Y ), with d(Y ) > 0 for Y 6= 0.
Similarly, strict input passivity is dissipativity with the supply
ratew(V, Y ) = V TY − e(V ), with e(V ) > 0 for V 6= 0. In
the particular case of linear detectable systems, passivity of
Ξ is equivalent to positive realness of its associated MIMO
transfer functionR(s) (see [10, Section 6.3]).

If the storage functionS(X) is differentiable, the dissipation
inequality (7) is equivalently written as

Ṡ(X(t)) ≤ w(V (t), Y (t)).

Throughout the paper, we assume additional properties for
the storage functionS(X):

1) (smoothness)S(X) is continuously differentiable (C1)
in R

n and twice continuously differentiable (C2) in a
neighborhood of the origin.

2) (Lyapunov)S(X) is positive definite (i.e.S(0) = 0,
S(X) > 0 ∀X 6= 0) and radially unbounded (i.e.
S(X) → ∞ as |X| → ∞).

3) (locally quadratic) The Hessian ofS(X) evaluated at

zero, i.e. ∂2S(X)
∂X2

∣

∣

∣

X=0
, is a symmetric positive definite

matrix P = PT > 0.

To emphasize these extra requirements on the storage function,
we say thatΞ is strongly passive wheneverΞ is passive
with a storage function that satisfies the three additional
assumptions 1), 2) and 3). These assumptions are always
satisfied in the (detectable) linear case because linear passive
systems have quadratic storage functions [21]. More generally,
these assumptions are convenient to link the passivity ofΞ to
the stability properties of the zero input system sinceS(X)
then serves as a (global) Lyapunov function. The locally
quadratic assumption further ensures that the linearization of
Ξ is passive, with the quadratic approximation ofS(X) as a
storage function. It also implies that the system has a relative
degree one, i.e.∂h(X)

∂X
g(X) > 0, for all X in a neighborhood

of the originX = 0, and that it is weakly minimum phase,
i.e. its zero dynamics are Lyapunov stable (see [22]).

D. Absolute stability and multipliers

The feedback system (3), (4), (5) withW ≡ 0 is absolutely
stable when the system possesses a unique equilibriumX = 0
which is globally asymptotically stable for any MIMO re-
peated nonlinearityΦ(·) = diag{φ(·)} with φ(·) in the sector
(0,+∞). Because the static nonlinearityΦ(Y ) is strictly
input passive (see [10]), a well-known sufficient conditionfor
absolute stability is thatΞk is strongly passive and zero-state
detectable (see [10] and [7]). Indeed, under such condition,
the storage function ofΞk, Sk(X) (where the indicek of the
storage function is used to emphasize its dependence onk),
then satisfies the dissipation inequality

Ṡk ≤ −Y T Φ(Y ).

As a consequence, we may useSk(X) as a global Lyapunov
function. Global asymptotic stability of the equilibriumX =
0 directly follows from the LaSalle invariance principle [7].
Obviously, sinceSk(X) depends onk, absolute stability of
the Lure feedback system (3), (4), (5) will also depend onk.
Stability analysis w.r.t.k will be discussed in Section III.

The theory of multipliers (see [23], [24] and [25]) provides
relaxed conditions for absolute stability. Assume thatH1(s)
andH2(s) are two SISO transfer functions with both poles and
zeros in the left half plane. Consider the system resulting from
the unforced (no external input) feedback interconnectionof
Ξ̃k = H1(s)INΞkH

−1
2 (s)IN and Φ̃ = H2(s)INΦH−1

1 (s)IN
(see [24] for a block diagram interpretation). IfH1(s) and
H2(s) are such that̃Φ is strictly input passive, then strong
passivity and zero-state detectability ofΞ̃k imply the absolute
stability of the new feedback system. But stability of the
unforced (W = 0) feedback interconnection ofΞk with Φ is
equivalent to stability of the unforced feedback interconnection
of Ξ̃k with Φ̃, which suggests why the multipliersH1(s) and
H2(s) may provide relaxed conditions for the absolute stability
of the original unforced feedback interconnection ofΞ with
Φk (see [24]).

For static nonlinearitiesΦ(·) = diag{φ(·)} respecting
the assumptions of Section II-B, the simplest example of
multiplier is the Popov multiplier for whichH1(s) =
(1 + γs) , γ > 0 and H2(s) = 1 (see [26]). In this case,
requiring strong passivity (and zero-state detectability) of the
system(1 + γs)INΞk for absolute stability of the feedback
system (3), (4), (5) withW ≡ 0 defines thePopov criterion
(see [27]).

For static nonlinearitiesΦ(·) = diag{φ(·)} respecting the
assumptions of Section II-B and such thatφ(·) is furthermore
monotone increasing, a broad class of multipliers was intro-
duced in [23] by Zames and Falb in the form

M(jω) = 1−Z(jω) = 1−

Z +∞

−∞

z(t)e−jωt
dt,

Z +∞

−∞

|z(t)| dt < 1.

(8)
The additional assumptionz(t) ≥ 0 is also needed unlessφ(·)
is odd. Zames and Falb showed that multipliers of the form
(8), which are not necessarily causal, can always be factored
in the form

M(s) = H1(s)H2(−s)
with H1(s), H2(s), and their inverses being causal and stable
and withΦ̃ being strictly input passive (see [23] for the SISO
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case and [24] for its MIMO generalization). As a consequence,
strong passivity and zero-state detectability ofΞ̃k is sufficient
for absolute stability of the feedback system (3), (4), (5) with
W ≡ 0. Note that whenΞk is a linear system, passivity of
Ξ̃k is equivalent to positive realness of its associated transfer
functionH1(s)INRk(s)H−1

2 (s)IN .
For later reference, we summarize in Theorem 1 sufficient

conditions for absolute stability of the unforced (W ≡ 0)
MIMO Lure feedback system represented in Figure 2. In
Theorem 1, we assume that the feedback interconnection is
ultimately bounded which means that all solutions enter, in
finite time, a compact and invariant setΩ = Ω(k) (see
Definition 5.1 in [10]).

Theorem 1: Consider the feedback system (3), (4), (5) with
W ≡ 0 and k fixed to a particular value. IfΞ and its
linearization are zero-state detectable and the feedback inter-
connection ofΞ and Φk(·) is ultimately bounded, then each
of the following conditions is sufficient for global asymptotic
stability of the equilibriumX = 0 of the feedback system:

• φ(·) is in the the sector(0,∞) and there existsγ > 0
such that(1 + γs)INΞk is strongly passive;

• φ(·) is monotone increasing and in the sector(0,∞),
and there existsM(s) = H1(s)H2(−s) with M(s)
in the form (8) and z(t) ≥ 0, such that Ξ̃k =
H1(s)INΞkH

−1
2 (s)IN is strongly passive;

• φ(·) is odd, monotone increasing and in the sector(0,∞),
and there existsM(s) = H1(s)H2(−s) with M(s) in
the form (8) such that̃Ξk = H1(s)INΞkH

−1
2 (s)IN is

strongly passive.
The proof of Theorem 1 is given in [9] in the SISO case. The

extension of this proof to the MIMO case is straightforward.
Remark 1: A MIMO extension of Arcak’s results in [20]

shows that the unforced feedback system (3), (4), (5) is
ultimately bounded for anyk <∞ if Ξ is linear, passive, zero-
state detectable andΦk(·) is a MIMO repeated nonlinearity,
i.e. Φk(·) = diag{φk(·)}, with φ(·) satisfying the assumptions
of Section II-B and monotone increasing. Details of this
extension are omitted here but can be found in [18].

III. B IFURCATIONS IN ABSOLUTELY STABLE FEEDBACK

SYSTEMS

In this section, we analyze the stability properties of the
unforced (W ≡ 0) feedback system (3), (4), (5) as the
parameterk increases from0. Throughout the rest of the
paper, the notationk & k∗ is used to denote a value of the
parameterk slightly greater than the critical bifurcation value
k∗, i.e. k ∈

(

k∗, k̄
]

for somek̄ > k∗. Since we assume that
Ξ is strongly passive and zero-state detectable, the feedback
system (3), (4), (5) withW ≡ 0 is absolutely stable fork = 0.
However, it can be showed that a bifurcation necessarily occurs
when k is increased from0 because the linearization of this
feedback system atX = 0 possesses at least one eigenvalue
in the right half plane whenk becomes large enough (see [18]
for more details based on a simple root locus argument). Let
k∗ (≥ 0) denote the smallest value ofk at which asymptotic
stability of the linearized system atX = 0 is lost. The two
following examples illustrate in their simplest form the two

bifurcation scenarii that generically occur when the valueof
k is increased beyondk∗.

Example 1: Consider the unforced SISO feedback system
(3), (4), (5) in the particular case whereΞ is a pure integrator
with associated transfer functionR(s) = 1

s
and φk(y) =

−ky + y3. The state representation of the feedback system
is

ẏ = ky − y3

which is the normal form of asupercritical pitchfork bifurca-
tion: y = 0 is asymptotically stable fork ≤ k∗ = 0 while for
k > k∗, y = 0 is unstable and two stable equilibria appear.

Example 2: Consider the same unforced feedback system
as in Example 1 but whereΞ is a linear system with associated
transfer functionR(s) = s

s2+1 . The dynamics of the feedback
system is then governed by

ÿ + y +
d

dt
(y3 − ky) = 0

which is a standard form of the Van der Pol oscillator. For
k ≤ k∗ = 0, the equilibriumy = 0 is globally asymptotically
stable. At k = k∗, a supercritical Hopf bifurcation occurs,
that is, two complex eigenvalues cross the imaginary axis. For
k > k∗, y = 0 is unstable and all other solutions converge to
a unique asymptotically stable limit cycle.
In the two examples above, the bifurcation is supercriticaland
the global convergence of the solutions to a neighborhood of
the equilibriumX = 0 is not destroyed in the vicinity of the
bifurcation. We interpret these two properties as resulting from
passivity of the transfer functionRk∗(s) at the bifurcation
point.The following result generalizes these two bifurcation
scenarii.

Theorem 2: Consider the feedback system (3), (4), (5) with
W ≡ 0. Assume thatΞ is strongly passive, that bothΞ and
its linearization are zero-state detectable, and that, forthe
values ofk considered in Case (1) and Case (2), the feedback
interconnection ofΞ and Φk(·) is ultimately bounded. Let
k∗ ≥ 0 be the smallest value ofk at which the corresponding
MIMO transfer functionRk∗(s) has a pole on the imaginary
axis. If Ξk∗ is strongly passive and

Case (1): ifRk∗(s) has a unique pole on the imaginary
axis, then the bifurcation is a supercritical pitchfork bifurcation
such that, fork & k∗, the system is globally bistable, i.e. the
equilibrium pointX = 0 is a saddle and its stable manifold
Es(0) separates the state space in two open sets, each of which
is the basin of attraction of a stable equilibrium point.

Case (2): ifRk∗(s) has a unique pair of conjugated poles on
the imaginary axis, then the bifurcation is a supercriticalHopf
bifurcation such that, fork & k∗, the system is characterized
by a unique limit cycle which is globally asymptotically stable
in R

n\Es(0) whereEs(0) denotes the stable manifold of the
unstable equilibriumX = 0.

Proof: The proof is divided into a local argument and
a global argument. Both arguments rely on the dissipation
inequality of the unforced system (W ≡ 0) at the bifurcation
point (k = k∗):

Ṡk∗ ≤ −Y T Φ(Y ) (9)

whereSk∗(X) denotes the storage function ofΞk∗ . The local
argument will show the existence of a supercritical Hopf
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(respectively, pitchfork) bifurcation atǫ = k − k∗ = 0. This
implies the existence of a constantǭ1 > 0 and a neighborhood
U ⊂ R

n of X = 0 such that for eachǫ ∈ (0, ǭ1], all
solutions with initial condition inU either converge to the
unstable equilibriumX = 0 or to a unique stable limit
cycle of radiusO (

√
ǫ) (respectively, one of the two stable

equilibria, each located at a distanceO (
√
ǫ) of the origin).

The global argument will show that there exists a constant
ǭ2 > 0, ǭ2 ≤ ǭ1, such that for eachǫ ∈ (0, ǭ2], all solutions
eventually enter the above defined neighborhoodU in finite
time (which means that the local argument eventually applies
to each solution).

We first prove the global argument. Ultimate boundedness
of the feedback system implies that for eachǫ ∈ (0, ǭ3], all
solutions enter in finite time an invariant compact setΩ =
Ω(ǫ). Global asymptotic stability ofX = 0 at ǫ = 0 implies
practical semiglobal stability of the solutionX = 0 for small
ǫ > 0, that is, for any given neighborhoodU , there always
exists anǭ2 ≤ ǭ3 such that, for eachǫ ∈ (0, ǭ2], all solutions
with initial condition inΩ(ǫ) enterU in finite time (see [28] for
a definition of practical semiglobal stability and the necessary
conditions for it).

Next we turn to the local argument. At the bifurcation, i.e.
at k = k∗, the system possesses a center manifold (see [29]).
Detectability of the linearization ofΞ implies observability
of the linearized center manifold dynamics. From (9) and the
definition of Φ(·) (see also (4)), we can write, locally around
X = 0,

Ṡk∗ ≤ −κ
N
∑

j=1

y4
j + O

(

|Y |5
)

, κ > 0. (10)

Case (1) (one dim. center manifold): IfRk∗(s) has a
unique pole on the imaginary axis, the center manifold is
one-dimensional. The normal form of the center manifold
dynamics writes (see [29])

ξ̇ = a3ξ
3 + O

(

ξ4
)

, ξ ∈ R. (11)

The restriction ofSk∗(X) on the center manifold is a locally
quadratic function of the formScm(ξ) = 1

2P1ξ
2 + O

(

ξ3
)

(with P1 > 0 from the strong passivity assumption ofΞk∗ )
that satisfies the dissipation inequality

Ṡcm = P1ξξ̇ ≤ −κ
∑

j

y4
j + O

(

|Y |5
)

. (12)

In the center manifold, each output component writesyi =

ciξ+O
(

|ξ|2
)

. Observability of the linearized center manifold
dynamics implies thatci 6= 0 for at least one value ofi ∈
{1, . . . , N}. This forcesa3 < 0 in (11). The bifurcation is
thus a supercritical pitchfork, i.e. forǫ & 0, all solutions inU
converge to the unstable equilibrium pointX = 0 or to one of
the two asymptotically stable equilibria located at a distance
±O (

√
ǫ) of X = 0.

Case (2) (two dim. center manifold): IfRk∗(s) has two
conjugated poles ats = ±jω, the center manifold is two-
dimensional. The normal form of the center manifold dynam-
ics is (see [29])

ξ̇ = Acξ+|ξ|2
(

a3ξ1 − b3ξ2
b3ξ1 + a3ξ2

)

+O
(

|ξ|4
)

, Ac =
(

0 ω
−ω 0

)

,

(13)
which, in polar coordinates, yields

ρ̇ = a3ρ
3 + O

(

ρ4
)

,

θ̇ = ω + O
(

ρ2
)

.
(14)

The restriction ofSk∗(X) on the center manifold is a locally

quadratic function of the formScm(ξ) = ξTQξ + O
(

|ξ|3
)

with Q = QT > 0, that satisfies

Ṡcm = ξT
(

QAc +AT
c Q
)

ξ+O
(

|ξ|3
)

≤ −κ
N
∑

j=1

y4
j +O

(

|Y |5
)

.

(15)
Up to a scaling factor, the only symmetric, positive definite
solutionQ of QAc + AT

c Q ≤ 0 is Q = 1
2I, which implies

Scm(ρ) = 1
2ρ

2 + O
(

ρ3
)

. For initial conditions in the center
manifold, the dissipation inequality (15) thus satisfies

Ṡcm = a3ρ
4 + O

(

ρ5
)

≤ −κ
N
∑

j=1

y4
j + O

(

|Y |5
)

.

Integration on both sides over an arbitrarily chosen time
interval T ∗ > 0 yields

a3

Z T∗

0

(ρ(t))4 dt +O
`

ρ
5´

≤ −κ

Z T∗

0

N
X

j=1

(yj(t))
4
dt +O

`

|Y |5
´

which, from the observability of the linearized center manifold
dynamics, forcesa3 < 0. This implies that the bifurcation is a
supercritical Hopf bifurcation, that is, forǫ & 0, all solutions
in U either converge to the unstable equilibriumX = 0 or to
a unique stable limit cycle of radiusO (

√
ǫ). This concludes

the proof.
We briefly comment on the technical assumptions of Theo-

rem 2: the detectability assumption is a natural assumption
in a context where (internal) stability is deduced from an
(external) passivity property; as in Theorem 1, the ultimate
boundedness assumption allows forglobal conclusions; finally,
the restriction to one or two eigenvalues on the imaginary axis
at the bifurcation excludes degenerate bifurcations.

The central assumption of Theorem 2 is thatΞk∗ is strongly
passive. This assumption is rather restrictive. As the parameter
k increases,Ξk loses passivity atk = k∗passive and it loses
stability at k = k∗. One necessarily hask∗passive ≤ k∗, but
the passivity assumption onΞk∗ requiresk∗passive = k∗. This
assumption can be weakened through the use of multipliers as
shown in the following result.

Theorem 3: The statements of Theorem 2 hold if the strong
passivity assumption onΞk∗ is replaced by one of the three
relaxed conditions of Theorem 1 expressed atk = k∗.

Proof: The global argument of the proof of Theorem
2 is unchanged because it relies on absolute stability of the
system whenǫ = k − k∗ = 0. As a consequence of Theorem
1, conditions of Theorem 3 still guarantee absolute stability
when ǫ = 0. For the local argument, in the case of Popov
multipliers, the dissipation inequality (9) is recovered with the
new storageSk∗ = Sk∗ + γ

∑N
i=1

∫ yi

0
φ(s) ds. In the case
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of Zames-Falb multipliers, let̃Sk∗ be the storage function
associated withΞk∗ . Since, by assumption,̃Ξk∗ is strongly
passive,S̃k∗ satisfies the dissipation inequality

˙̃
Sk∗ ≤ Ṽ T Ỹ (16)

with Ỹ = H1(s)INY and Ṽ = −H2(s)INΦ(Y ) = −Φ̃
(

Ỹ
)

.

A minimal realization of the operator
(

−Φ̃
)

is of the form

(

−Φ̃
)

{

ẇ1 = A1w1 +B1Ỹ , Y = C1w1 +D1Ỹ

ẇ2 = A2w2 +B2Φ(Y ), Ṽ = −C2w2 −D2Φ(Y )
(17)

with (Ai, Bi, Ci,Di), (i = 1, 2), being minimal realization
of the linear operatorsH−1

1 andH2, respectively. From the
assumptions of Zames and Falb (see [23]), the linear operators
H1 and H2 are invertible andH1, H−1

1 , H2 and H−1
2 are

causal and bounded (i.e. have finite gains). This implies that
the associated transfer functionsH1(s) and H2(s) have all
their poles and zeros in the open left half plane and thus
that the filtersH1(s)IN , H−1

1 (s)IN , H2(s)IN andH−1
2 (s)IN

do not change the dimension of the center manifold. Thus,
similarly to the proof of Theorem 2, the center manifold
dynamics, expressed in normal form, take the expression (11)
whenRk∗(s) has a unique pole ats = 0, and the expression
(13) whenRk∗(s) has two conjugated poles ats = ±jω.

In order to analyze the dissipation inequality (16) on the
center manifold, we approximate the expressions ofṼ , w2,
Ỹ , and w1 as functions ofξ up to suitable order. We use
the notationa(n)(ξ) to denote the series expansion ofa(ξ),
in terms of ξ, up to ordern. If an(ξ) is a vector function
the notation means a component-wise series expansion up to
ordern for each component ofa(ξ). Using this notation, we

consider:Ṽ = Ṽ (3)(ξ) +O
(

|ξ|4
)

, w2 = h
(3)
2 (ξ) +O

(

|ξ|4
)

,

Ỹ = C̃ξ + O
(

|ξ|2
)

, andw1 = h1ξ + O
(

|ξ|2
)

. From (17)

and the assumptionφ′′′(0) = κ > 0, we have

Ṽ (3)(ξ) = −C2h
(3)
2 (ξ)−D2κ (Cξ)

3
, C = C1h1+D1C̃, κ > 0

(18)
where the notation(Cξ)3 means a component-wise expo-
nential operation on the vector(Cξ). The functionh(3)

2 (ξ)
is solution of the partial differential equation that expresses
invariance of the center manifold up to terms of orderO

(

|ξ|4
)

(see [30]):
(

−C2
∂h

(3)
2 (ξ)

∂ξ
−D23κ (Cξ)

2
C

)

Acmξ =

−C2A2h
(3)
2 (ξ) − C2B2κ (Cξ)

3 −D23κ (Cξ)
2
CAcmξ (19)

with the boundary conditionsh(3)
2 (0) = 0, ∂h

(3)
2

∂ξ
(0) = 0.

In equation (19),Acm = 0 when the center manifold is
one dimensional, andAcm = Ac (see (13)) when the center
manifold is two dimensional. Once the solutionh(3)

2 (ξ) of (19)
is found, the expression of̃V (3)(ξ) is obtained through (18).
We do not even need to solve the partial differential equation
(19) for h(3)

2 (ξ) to obtain the corresponding expression for

Ṽ (3)(ξ) since the solutionṼ (3) (ξ(t)) coincides1 with the

unique steady-state output of the operator
(

−Φ̃(3)
)

, 2 when

this operator is applied to the (periodic) inputỸ (1)(ξ(0), t) =
C̃eAcmtξ(0) (see [31, Chapter 8]).

Case (1) (one dim. center manifold): Whenξ(= ξ(0)) ∈
R, the constant input̃Y (1) = C̃ξ (of the nonlinear dynamic
operator

(

−Φ̃(3)
)

) gives rise to the constant outputṼ (3)(ξ) =

βξ3. Strict input passivity (see [24]) of the operator
(

−Φ̃(3)
)

implies thatC̃Tβ = −γ < 0. The dissipation inequality thus
becomes

˙̃
Sk∗ ≤

(

Ṽ (3)(ξ)
)T

Ỹ (1)(ξ) + O
(

|ξ|5
)

= −γξ4 + O
(

|ξ|5
)

which forces the existence of a supercritical pitchfork bifur-
cation, as in the proof of Theorem 2.

Case (2) (two dim. center manifold): Whenξ(= ξ(0)) ∈
R

2, the periodic inputỸ (1)(ξ, t) = C̃eActξ (of the nonlinear

dynamic operator
(

−Φ̃(3)
)

) gives rise to the periodic output

Ṽ (3)(ξ, t). Strict passivity and homogeneity of the operator
(

−Φ̃(3)
)

implies (see [24])

Z T∗

0

“

Ṽ
(3)(ξ, t)

”T

Ỹ
(1)(ξ, t) dt < −γ |ξ|4 + O

`

|ξ|5
´

, T
∗ =

2π

ω

with γ > 0. For initial conditions in the center manifold,
integration of (16) over the periodT ∗ leads, locally, to

S̃k∗ (X(T ∗)) − S̃k∗ (X(0)) < −γ |ξ|4 + O
(

|ξ|5
)

.

As in the proof of Theorem 2, this forcesa3 < 0 in the center
manifold dynamics (14) (see [18]), which proves the existence
of a supercritical Hopf bifurcation. This concludes the proof.

The next two sections show that the results presented in
Theorem 2 are the basis for two different global feedback
oscillation mechanisms.

IV. H OPF BIFURCATIONS AND GLOBAL OSCILLATIONS

As mentioned in Example 2, the simplest illustration of
the Hopf bifurcation mechanism described in Theorem 2 is
provided by the Liénard system

ÿ + y +
d

dt
φk(y) = 0, y ∈ R (20)

where φk(·) satisfies the assumptions made in Section II-
B. It admits the feedback representation shown in Figure 3
whenH(s) = 1

s
. In this case,Ξ corresponds to the feedback

interconnection of two integrators and its associated transfer
function isR(s) = s

s2+1 . It is well known that the Liénard
system (20) has a globally asymptotically stable equilibrium
at the origin fork ≤ 0 and a globally asymptotically stable
limit cycle for k > 0 (see [10]). The result fork & 0 follows

1This is because the partial differential equation (19) satisfied by
h
(3)
2 (ξ(t)) is the same as thesteady-state partial differential equation satisfied

by h
(3)
2 (ξ(t)) when the input of the nonlinear dynamic operator

“

−Φ̃(3)
”

is Ỹ (1)(ξ(0), t) = C̃eAcmtξ(0) (see [31, Chapter 8]).
2The operator

“

−Φ̃(3)
”

corresponds the operator
“

−Φ̃
”

defined in (17)

with Φ(·) replaced by its cubic approximation.
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1
s

y

−−

φk(·)

H(s)

Fig. 3. Forcing the Hopf bifurcation with an integrator in the feedback loop
andH(s) passive. The caseH(s) = 1

s
corresponds to Liénard systems.

from Theorem 2 becauseΞ is the feedback interconnection
of two SISO, linear, passive systems (two simple integrators)
and because it has two poles on the imaginary axis when
k = 0. Since the (negative) feedback interconnection of two
passive systems is still a passive system, Theorem 2 extends
this low-order Liénard system result to an arbitrary high-order
(strongly) passive systemH(s) in feedback with an integrator
provided that, at the critical valuek∗ at which the equilibrium
X = 0 loses stability, the corresponding systemΞk∗ is passive
and zero-state detectable.

The Hopf bifurcation in the feedback system of Figure 3 has
the following energy interpretation: passivity at the bifurcation
point allows for a lossless exchange of energy between two
storage elements (H(s) and 1

s
). The static nonlinearityφk(·)

regulates the dissipation in the feedback system, restoring
energy when it is too low and dissipating it when it is too high.
In the popular Van der Pol oscillator, the two storage elements
are a capacitor and an inductor, whereas the dissipation is
regulated by means of (for instance) a tunnel-diode circuit,
modeled as a static negative resistance whose input-output
function isφk(y) = y3−ky. Theorem 2 extends this feedback
mechanism for oscillations to higher-dimensional systems.

It should also be observed that, putting an integrator in
feedback with an arbitraryH(s) (as in Figure 3) forces the
Hopf bifurcation scenario because of the resulting presence of
a zero ats = 0 in the transfer functionRk(s) = R(s)

1−kR(s) =
sH(s)

s+(1−ks)H(s) : for the positive feedback interconnection of
R(s) with the static gaink, the root locus is such that parts
of the real axis located at theright of an odd number of
singularities (poles or zeros) belong to the root locus. As the
transfer function of a strongly passive system,R(s) has a
relative degree equal to one and all its poles and zeros belong
to the closed left half-plane. As a consequence, the positive
part of the real axis necessarily belongs to the root locus and
one branch (at least) of the root locus must enter the right half-
plane. The presence of a zero ats = 0 then necessarily implies
that (at least) two non-zero eigenvalues cross the imaginary
axis at some critical valuek∗ which corresponds to the Hopf
bifurcation scenario. Standard Hopf bifurcation is generic, that
is, it always happens except in the degenerate case where more
than two eigenvalues cross the imaginary axis simultaneously.

V. PITCHFORK BIFURCATION, BISTABILITY , AND GLOBAL

RELAXATION OSCILLATIONS

The pitchfork bifurcation scenario of Theorem 2 is the basis
for a second global oscillation mechanism best exemplified

φk(·)

Ξ
−

y

−

bτ
τs+1

z

w

Fig. 4. Converting the pitchfork bifurcation scenario intoa relaxation
oscillator by adding a slow adaptation mechanism (τ ≫ 0). The caseΞ = 1

s
corresponds to the Fitzhugh-Nagumo oscillator.

with the Fitzhugh-Nagumo model (see [32, Section 7.5]3).

ẏ = ky − y3 − z (21)

τ ż = −z + bτy (22)

which admits the block diagram representation shown in
Figure 4 with Ξ = 1

s
and φk(y) = y3 − ky. For k > 0,

the inner-loop
ẏ = ky − y3 − z (23)

is a globally bistable system over the range of parameter

z ∈
(

− 2
3k

√

k
3 ,

2
3k

√

k
3

)

. Outside of this range, the inner-

loop is absolutely stable and has a unique globally asymp-
totically stable equilibrium. Treatingz as a parameter, one
thus obtains the bifurcation diagram shown in Figure 5-(a) for

z ∈
(

− 2
3k

√

k
3 ,

2
3k

√

k
3

)

.

The outer-loop in Figure 4 or equivalently theadaptation
dynamics

τ ż = −z + bτy (24)

combined with the feedbackw = −z, converts the above
described bistable system into a relaxation oscillation inthe
phase plane(y, z) as shown in Figure 5-(b). The corresponding
limit cycle is guaranteed to be globally asymptotically stable
provided that the time constantτ is large enough (see [10]).

Sinceb plays no particular role in this relaxation oscillation
mechanism, we will assume without loss of generality that
b = τ−1 in (24), leading to

τ ż = −z + y. (25)

The global bistability of the inner loop combined with the
slow adaptation of the outer loop thus provides a feedback
mechanism for global oscillations. The resulting oscillation is a
relaxation oscillation characterized by a rapid switch between
two quasi-steady-states (i.e. states that would correspond to
stable equilibria in the absence of adaptation [10]). Such
oscillation mechanisms are frequent in biology (see e.g. [32]).
In the Fitzhugh-Nagumo model, a simplification of Hodgkin-
Huxley model for voltage oscillations in the neuron cell

3The particular equations (21), (22) are obtained from the Fitzhugh-Nagumo
model in [32] with the change of coordinatesy = v − a+1

3
, z = w −

f
`

a+1
3

´

− Ia, the definitionτ = 1
γ

, and a well-chosen value of the input

currentIa, i.e. Ia = b
γ

a+1
3

− f
`

a+1
3

´

. The corresponding value ofk is

thenk = 1
3

`

a2 − a + 1
´

> 0.
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unstable

stable stable

y

z ∈

„

−
2
3

k

q

k
3

, 2
3

k

q

k
3

«

ky − y3
− z, k > 0,

Unique, unstable
equilibrium point

y

Relaxation Oscillation

z
z = ky − y3

z = bτy

(a) Without adaptation (b) With adaptation
Globally bistable system Relaxation oscillation

Fig. 5. The hysteresis associated to a bistable system.

membrane, the switch is between the (high) equilibrium po-
tential associated to potassium ions and the (low) equilibrium
potential associated to sodium ions. The “recovery” variable z
models the voltage dependent opening (closing) of the sodium
ion channels and the corresponding closing (opening) of the
potassium ion channels (see [11]).

Theorem 2 provides a high-dimensional generalization of
the global bistability in the inner loop of Figure 4. In order
to convert the global bistability result of Theorem 2 into a
mechanism for global oscillations, we add the scalar adaptation
dynamics (25) to the system described in Figure 2. This
is summarized in Theorem 4 wherewj represents thejth

component of the external input vectorW (see Figure 2).
Theorem 4: Under the assumptions of Theorem 2, suppose

that the unforced feedback system (3), (4), (5) undergoes a
supercritical pitchfork bifurcation atk = k∗. Consider the
input wi = −z, wj = 0 for j 6= i with z satisfying the
dynamicsτ ż = −z + yi and i selected such that the linear
center manifold dynamics is observable fromyi. Assume
that the augmented system is ultimately bounded. Then there
exists a positive constant̄ǫ such that for any particular value
of k in (k∗, k∗ + ǭ), all solutions with initial conditions in
R

n+1\Es(0) converge to a unique asymptotically stable limit
cycle if τ ≫ (k − k∗)

−1.
Proof: As in the proof of Theorem 2, the reasoning is

divided into a local and a global argument. We start with the
local argument. Letǫ = (k − k∗). By assumption, the unforced
feedback system (3), (4), (5) possesses a one dimensional
center manifold atǫ = 0. As shown in the proof of Theorem
2, at the bifurcation point, i.e. atk = k∗, detectability
of the feedback system linearized aroundX = 0 implies
observability of the linearized center manifold dynamics from
at least one output component, e.g.yi. As a consequence of
the observability of the linearized center manifold dynamics
from yi, this output component qualifies as a local coordinate
in the center manifold and the corresponding center-unstable
manifold dynamics can be written

ẏi = ǫyi − κ′y3
i +

N
∑

j=1

αjwj + O
(

y4
i

)

(26)

where κ′ > 0. Observability ofyi and strong passivity of
Ξ implies αi > 0. Augmenting the one-dimensional center-
unstable dynamics (26) with the adaptation dynamicsτ ż =
−z + yi and the outer loopwi = −z, wj = 0 for j 6= i, we

obtain

ẏi = ǫyi − κ′y3
i − αiz + O

(

|(yi, z)|4
)

, κ′ > 0, αi > 0,

ż = δ (−z + yi) ,
(ǫ̇ = 0,

δ̇ = 0)
(27)

Treating δ = τ−1 as a state variable makes the adaptation
equation part of the center-unstable manifold dynamics, lo-
cally defined around(yi, z, ǫ, δ) = (0, 0, 0, 0) (see [29]). The
equilibrium (yi, z) = (0, 0) of (27) is stable forǫ < δ > 0
and unstable forǫ > δ > 0. Standard singular perturbation
arguments, see e.g. [10, pp. 445-448], prove that there exists
a constant̄ǫ > 0 and a neighborhoodV of the equilibrium
(X, z) = (0, 0) of (27) such that for any fixedδ andǫ such that
0 < δ ≪ ǫ < ǭ, all solutions with initial condition inV\{0}
converge to a unique limit cycle. Because of the time-scale
separation induced by0 < δ ≪ ǫ, this limit cycle corresponds
to a relaxation oscillation.

The global part of the proof is similar to that of Theorem
2: for δ > 0 and ǫ = 0, the equilibrium(X, z) = (0, 0) is
globally asymptotically stable because the augmented storage
functionSk∗ = δSk∗ + 1

2z
2 satisfies the dissipation inequality

Ṡk∗ = δṠk∗ + żz = −δY T Φ(Y ) − δyiz + δz (−z + yi) ≤
−δ
(

Y T Φ(Y ) + z2
)

which is analogous to (9). Using ultimate
boundedness of the augmented system, the same arguments as
in proof of Theorem 2 may be used.

Remark 2: If the forward systemΞ is linear, strongly pas-
sive and detectable and the repeated nonlinearityφ(·) satisfies
the assumptions of Section II-B and is monotone increasing,
then ultimate boundedness follows from Remark 1 since the
adaptation dynamicsτ ż = −z + yi is passive.

VI. PASSIVE OSCILLATORS

We define apassive oscillator as a system that admits the
feedback representation (3), (4) and (5) with the assumptions
of Section II-B and satisfies the two following conditions:

1) the feedback system satisfies the dissipation inequality

Ṡk ≤
(

k − k∗passive

)

Y TY − Y T Φ(Y ) +WTY (28)

where Sk(X) represents the storage function of the
feedback system andk∗passive ≥ 0 is the critical value
of k above which it loses passivity.

2) when unforced (W = 0), the feedback system possesses
a global limit cycle, i.e. a stable limit cycle which
attracts all solutions except those belonging to the stable
manifold of the origin.

The first condition necessarily holds if we assume that the
forward blockΞ is strongly passive. In Theorems 2, 3, and 4,
we provided sufficient conditions for the second condition to
be satisfied as well.

In order to illustrate this definition, we consider a nontrivial
example of a SISO passive oscillator of order 3. Hereu (resp.
y) denotes the scalar external input (resp. output) of the SISO
passive oscillator.

Example 3: Consider the feedback system in Figure 3 with
the monotone nonlinearityφ(y) = y3 and the second-order
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transfer function

H(s) =
τs+ ω2

n

s2 + 2ζωns+ ω2
n

which is passive if2ζτ ≥ ωn > 0. Calculations detailed in
[18] show that the feedback system is passive fork ≤ k∗passive

with
k∗passive = min

(

1,
(

2ζ − ωn

τ

) ωn

τ

)

(29)

and that a bifurcation occurs atk = k∗, with k∗ being given
by

k
∗

= −

p

τ4 + 2ω2
nτ3 + ω3

n (ωn − 4ζ) τ2 + 4ω4
n (1 − ζωn) τ + 4ζ2ω6

n

2ω2
nτ

+
τ

`

τ + ω2
n

´

+ 2ζω3
n

2ω2
nτ

. (30)

In general, a passive system in positive feedback with a static
gaink loses passivity before losing stability, i.e.k∗passive < k∗.
This means that, except for particular parameters values for
which k∗passive = k∗, Theorem 2 does not apply. However, as
shown in [18], for parameters values satisfying

2
ωn

τ
(ζ − ωn

τ
) < k∗ < 2ζ

ωn

τ
. (31)

Theorem 3 can be used because the Zames-Falb multiplier

M(s) = 1 − Z(s), Z(s) =
ω2

n

τ
− 2ζωn + k∗τ

s+
ω2

n

τ

(32)

results in the passive transfer function

Rk∗(s)M(s) = τ
s

s2 + Ω2

with Ω =
√

τ + ω2
n (1 − k∗). The transfer function

Rk∗(s)M(s) has exactly two imaginary poles on the imag-
inary axis. We are thus in the Hopf bifurcation scenario
described in Theorem 3.

Applying Theorem 3 for parameter values satisfying (31),
a SISO passive oscillator is thus obtained whenk & k∗, i.e.

1) the feedback system satisfies the dissipation inequality
Ṡk ≤

(

k − k∗passive

)

y2 − y4 + uy

2) when unforced (no external input is applied to the
feedback system), it possesses a global limit cycle for
k & k∗.

The passive oscillators used in the examples of the next
sections correspond to those introduced in Example 3 with
the particular parameters valuesωn = 1, ζ = 1.25, and
τ = 2. Using these parameters values in (29) and (30), we
obtain k∗passive = k∗ = 1. These particular parameter values
thus allow to directly apply Case (2) of Theorem 2 (without
further requiring multipliers). Other numerical exampleswhich
require the use of multipliers are provided in [18].

VII. I NTERCONNECTIONS OF PASSIVE OSCILLATORS

As we have seen in the proofs of Theorems 2, 3, and 4,
the external characterization of – possibly high-dimensional
– passive oscillators by the dissipation inequality (9) plays a
role both in the supercritical character of the bifurcationand
in the preservation of global convergence properties beyond
the bifurcation valuek∗. We now show that this external

characterization also plays an important role in the study of
oscillations in networks of interconnected passive oscillators.

ConsiderN SISO passive oscillators. We assume that the
critical valuek∗passive is the same for all the oscillators. The
state-space model of oscillatori ∈ {1, . . . , N} is given by

Σi

{

ẋi = f (xi) + g (xi) ũi, xi ∈ R
p, ũi ∈ R

yi = h (xi) , y ∈ R
(33)

with the feedback interconnection

ũi = −φk (yi) + ui (34)

and satisfies the dissipation inequality

Ṡk,i ≤ (k − k∗passive)y
2
i − yiφ(yi) + uiyi.

The N systemsΣi define a MIMO systemΣ with input
Ũ = (ũ1, . . . , ũN )

T and outputY = (y1, . . . , yN )
T . Likewise,

the N oscillators define a MIMO system with inputU =
(u1, . . . , uN )

T and outputY . This MIMO system satisfies the
dissipation inequality

Ṡk ≤
(

k − k∗passive

)

Y TY − Y T Φ(Y ) + Y TU (35)

whereSk =
∑N

i=1 Sk,i.
In the MIMO feedback representation of the network given

in Figure 6, the coupling is regarded as an additional feedback
defined by

U = −F (Y ) +W (36)

whereF (·) represents the (non-linear) input-output coupling
between the oscillators andW is the new external input
of the interconnected network.F (·) is assumed to be aC1

function in R
N satisfyingF (0) = 0. As illustrated in Figure

6, the interconnected network equivalently admits the Lure
representation that we have used in Theorems 2, 3, and 4. In
this representation, the systemΞ is regarded asΣ with the
feedback interconnectioñU = −F (Y ) + V . If the network
input-output couplingF (·) is passive, that is, if

Y TF (Y ) ≥ 0, ∀Y ∈ R
N (37)

then the MIMO systemΞ in Figure 6 is also (strongly) passive
(being the feedback interconnection of two (MIMO) passive
systems). Theorems 2, 3, and 4 can then be used to predict
the onset of global limit cycles in the interconnected system.

Remark 3: We note that the strong passivity and zero-state
detectability assumptions of Theorem 2 and Theorem 3 hold
for the network if they hold for each individual oscillator.

Regarding the bifurcation valuek∗ and the dimension of the
center manifold of the network at this bifurcation value, we
have the following result for the case of networks of identical
oscillators with linear and symmetric input-output coupling.

Proposition 1: Consider a network ofN identical passive
oscillators (33)-(34) with linear symmetric input-outputcou-
pling U = −ΓY , where Γ = ΓT . Let k0 ∈ R be the
smallest shift such thatΓ′ = Γ′T = Γ + k0IN ≥ 0 and
rank(Γ′) = N − 1. If each isolated passive oscillator has
a center manifold of dimension two atk = k∗osc, then the
network possesses a center manifold of the same dimension
at the bifurcation valuek∗ = k∗osc − k0.
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Φk(Y )

Ξ
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φk(yN )

ũ1

ũN
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yN

Ũ

Φk(Y )

Fig. 6. MIMO representation of a network of SISO passive oscillators. Each
block Σi is (strongly) passive.Φk(Y ) = (φk (y1) , . . . , φk (yN ))T is a
MIMO repeated nonlinearity. The repeated nonlinear elementis φk(y) =
−ky + φ(y) where φ(·) is a static nonlinear function that satisfies the
assumptions of Section II-B.F (Y ) characterizes the network interconnection.

Proof: Consider the Jacobian linearization ofΣi around
the origin. Because all oscillators of the network are identical,
they all share the same linearization. LetG(s) be the transfer
function associated to this shared linearized dynamics. The
effect of the coupling appears in the linearization of the
network dynamics through the additional termΓ. This is
clearly seen in the expression of the poles of the transfer
function Rk(s) associated with the Jacobian linearization of
the network dynamics around the origin. These poles may be
calculated as the complex values ofs that lead to a rank drop
for the MIMO transfer function

1 − kG(s)

G(s)
IN + Γ =

1 − (k + k0)G(s)

G(s)
IN + Γ′. (38)

BecauseΓ′ = Γ′T ≥ 0, there exists an orthogonal matrixL
such thatΓ′ = LΛLT with Λ = diag{λi}, i = 1, . . . , N where
λi denotes theith eigenvalue of the matrixΓ′. SinceΓ′ has
rankN − 1, one can consider, without loss of generality, that
λ1 = 0 and λi > 0, i ∈ {2, . . . , N}. This implies that the
smallest value ofk for which the matrix

L

(

1 − (k + k0)G(s)

G(s)
IN + Λ

)

LT

loses rank is the one that leads to1 − (k + k0)G(s) = 0. By
assumption, this occurs fork∗ = k∗osc − k0. Moreover, from
the preceding analysis it can be seen that the dimension of
the center manifold atk = k∗ is equal to the dimension of
the center manifold of one of the isolated, passive oscillators
composing the network. This concludes the proof.

Based on Proposition 1 and on Theorems 2 and 3, we can
directly extend the global limit cycle analysis of a single
passive oscillator to a network of such identical passive
oscillators. In the two examples that follow, we illustratethis
result on some networks composed of an increasing number
of identical passive oscillators. Each oscillator composing
those networks examples is taken from Example 3 with the
following parameters valuesωn = 1, ζ = 1.25, τ = 2.
For these parameters values, using (29) and (30), we obtain
k∗osc = k∗passive = 1, which permits a direct application of
Theorem 2.

Example 4: Consider the positive (resp. negative) feedback
coupling of 2 identical passive oscillators whose dynam-
ics are given in example 3. The resulting interconnection
is illustrated in Figure 7. The interconnection matrices are
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Fig. 7. Simulation results for a network of 2 identical passive oscillators. The
circles represent the oscillators. Column (a) corresponds to Γ1 and column
(b) corresponds toΓ2. Each oscillator is taken from Example 3 with the
following parameters valuesωn = 1, ζ = 1.25, τ = 2, k = 0.3. The critical
bifurcation value for an isolated oscillator isk∗

osc = 1 and the corresponding
bifurcation value for the network isk∗ = 0. The trajectories generated in the
state space of each oscillator are represented on the secondrow. A different
color is used for each oscillator. The third row represents the time evolution
of the outputs of the oscillators.

Γ1 =

(

0 −1
−1 0

)

and Γ2 =

(

0 1
1 0

)

respectively. The

network is unchanged by the shiftsΓ′ = Γ + k0IN and
k′ = k + k0. In both cases, choosingk0 = 1, the shifted

matrices Γ′
1 =

(

1 −1
−1 1

)

and Γ′
2 =

(

1 1
1 1

)

are

positive semidefinite with rank1. By Proposition 1 and the
results presented in Example 3, the dimension of the center
manifold is2 and the assumptions of Theorem 2 are satisfied.
The critical bifurcation value for the network isk∗ = k∗osc−1.
From Theorem 2, we conclude that the network possesses a
globally attractive limit cycle fork & k∗. This is illustrated in
Figure 7 where simulation results fork = 0.3 are presented.
As can be seen on Figure 7, the coupling defined byΓ1

leads to a synchrone oscillation while the coupling defined
by Γ2 leads to an anti-phase oscillation. We will return to the
synchronization question in Section VIII.

Example 5: As an illustration of Theorem 2 for a network
consisting of a large number of identical SISO passive os-
cillators, we consider aSN symmetry (all-to-all) network of
passive oscillators. The dynamics of an isolated SISO passive
oscillator is the one presented in example 3. The linear,SN

symmetry coupling corresponds to the interconnection matrix
Γ = [γi,j ], i, j = 1, . . . , N with γi,i = (N − 1)K, ∀i ∈
{1, . . . , N} and γi,j = −K, ∀i 6= j. In this matrix Γ, K is
a positive constant representing the coupling strength of the
SN symmetry network. The eigenvalues ofΓ areNK with
a multiplicity N − 1 and 0. As a consequence, the rank of
Γ is N − 1. By Proposition 1 and the results presented in
Example 3, the dimension of the center manifold is 2 and the
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Fig. 8. Simulation results for a network of 5 identical passive oscillators
coupled throughS5 symmetry. Each oscillator is taken from Example 3 with
the following parameters valuesωn = 1, ζ = 1.25, τ = 2, k = 2, and
K = 1. The critical bifurcation value for an isolated oscillatoris k∗

osc = 1
and the corresponding bifurcation value for the network isk∗ = 1.

assumptions of Theorem 2 are satisfied. The critical bifurcation
value for the network isk∗ = k∗osc. From Theorem 2, we
conclude that the network possesses a globally attractive limit
cycle for k & k∗. This is illustrated by the simulation results
presented in Figure 8 fork = 2, N = 5, andK = 1.

The same results hold forDN symmetry networks, i.e.
bidirectional rings of oscillators. In the case ofDN symmetry
networks, the matrixΓ has the formΓ = [γi,j ], i, j = 1, . . . , N
with γi,i = 2K, γ(i+1)mod(N),i = γi,(i+1)mod(N) = −K,
∀i ∈ {1, . . . , N}, andγi,j = 0, for the other cases. This matrix
is cyclic and its eigenvalues can be calculated analytically (see
e.g. [33]):λj(Γ) = 2K

(

1 − cos
(

2πj
N

))

≥ 0, j = 1, . . . , N .
The rank ofΓ is once again equal toN − 1 and the results of
Theorem 2 may be directly applied.

VIII. I NCREMENTAL DISSIPATIVITY AND

SYNCHRONIZATION

Beyond the question of existence and (global) stability of
sustained oscillations in a network of interconnected passive
oscillators, an important issue concerns their relative oscillat-
ing behavior. The question of global synchronization among
the oscillators is particularly relevant. Synchronization is a
stability property for thedifference between distinct solutions.
Stability properties for the difference between solutionsof
a closed system are characterized by notions ofincremental
stability (see [34], [35], [36]). For open systems, the corre-
sponding notion isincremental dissipativity.

A. Incremental dissipativity

Consider an input-affine SISO systemΥ represented by a
state-space model of the form (3). We denote byu(t), y(t)
and x(t), its input, output, and state respectively. Letxa(t)
and xb(t) be two solutions ofΥ, with the corresponding
input-output pairs(ua(t), ya(t)), and(ub(t), yb(t)). We further
consider the incremental variables∆x = xa −xb, ∆u = ua −
ub, and∆y = ya−yb. The system is incrementally dissipative
if there exists an incremental storage functionS∆(∆x) and an
incremental supply ratēw(∆u,∆y) such that

S∆ (∆x (T ∗)) − S∆(∆x(0)) ≤
∫ T∗

0

w̄(∆u(t),∆y(t)) dt

(39)

is satisfied for allT ∗ > 0 and along any pair of trajec-
tories (xa(t), xb(t)). Incremental dissipativity (39) with the
incremental supply ratēw (∆u,∆y) = (∆u)

T
∆y is called

incremental passivity.
Passivity implies incremental passivity for linear systems,

that is, if the quadratic storageS(x) = xTPx ≥ 0 sat-
isfies the dissipation inequalitẏS ≤ uT y then the incre-
mental storageS∆(∆x) = (∆x)

T
P∆x ≥ 0 satisfies the

incremental dissipation inequalitẏS∆ ≤ (∆u)
T

∆y. Pas-
sivity also implies incremental passivity for monotone in-
creasing, static nonlinearity: ifφ(·) is monotone increasing,
then (s1 − s2) (φ (s1) − φ (s2)) = ∆s∆φ(s) ≥ ∆sψ(∆s) ≥
0, ∀∆s = s1 − s2, for some static nonlinearityψ(·).

SISO passive oscillators made of the unforced feedback
interconnection of a linear passive systemΥ with a mono-
tone increasing nonlinearityφ(·) are thus also incrementally
passive. In the following sections we restrict ourselves toLure
feedback systems made of the feedback interconnection of a
linear passive system with a nonlinearityφ(·) that is monotone
increasing.

B. Synchronization in networks of incrementally passive os-
cillators

Consider a network ofN identical, SISO, incrementally
passive oscillators. We assume that the only nonlinearity in
each oscillator is due to the nonlinear functionφ(·) appearing
in the definition ofφk(·). The dynamics for oscillatori ∈
{1, . . . , N} thus write

{

ẋi = Axi −Bφk (yi) +Bui

yi = Cxi
(40)

where ui ∈ R represents the external input of oscillatori,
yi ∈ R its output, andxi ∈ R

p its state vector.
We assume linear input-output coupling between the SISO

incrementally passive oscillators:

U = −ΓY. (41)

We denote byλ2 (Γs) the second smallest eigenvalue ofΓs,
with Γs denoting the symmetric part ofΓ, i.e. Γs = Γ+ΓT

2 .
Theorem 5 summaries the global synchronization conditions
required in a network of identical, incrementally passive
oscillators.

Theorem 5: Consider the linear interconnection (41) ofN
identical, incrementally passive oscillators (40). Assume that
(A,C) is observable,φ(·) is monotone increasing and each
isolated oscillator (ui ≡ 0) possesses a globally asymptotically
stable limit cycle inRp\Es(0) whereEs(0) denotes the stable
manifold of the origin. If the interconnection matrixΓ is a
real, positive semidefinite matrix of rankN − 1 such that
Γ1 = ΓT

1 = 0 then forλ2 (Γs) > k − k∗passive > 0 (strong
coupling), the network has a limit cycle which attracts all
solutions except those belonging to the stable manifold of
the origin, and all the oscillators of the network exponentially
synchronize.

Proof: Defining Π = IN − 1
N

11
T , and denoting by

Πi the ith row of Π, the increment vectorΠiY measures the
difference between the output of oscillatori in the network and
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the average output1
N

∑N
i=1 yi. Let Si(x) = 1

2x
T
i Pxi with

P = PT > 0 be the storage function of oscillatori and
X =

(

xT
1 , . . . , x

T
N

)T ∈ R
pN be the state vector associated

to the network dynamics. For the interconnected system we
consider the storage

S∆ =
1

2
((Π ⊗ Ip)X)

T
(IN ⊗ P ) ((Π ⊗ Ip)X)

where ’⊗’ denotes the Kronecker product.
S∆ satisfies the dissipation inequality

Ṡ∆ ≤ (k−k∗passive)(ΠY )T ΠY −(ΠY )T ΠΦ(Y )+(ΠY )T ΠU.
(42)

Because Π is a projector, i.e. Π2 = Π, we have
(ΠY )T ΠΦ(Y ) = Y T ΠΦ(Y ). Moreover,Y T ΠΦ(Y ) is non-
negative becauseΠΦ is a positive operator (see Theorem 3.10
in [37]). The dissipation inequality (42) thus implies

Ṡ∆ ≤ (k − k∗passive)(ΠY )T ΠY + (ΠY )T ΠU.

BecauseU = −ΓY , ΠΓ = ΓΠ, andzT Γz = zT Γsz, ∀z ∈ R
N

we obtain

Ṡ∆ ≤ (k − k∗passive)(ΠY )T ΠY − (ΠY )T ΓsΠY. (43)

The assumptions onΓ imply that Γs has rankN − 1 and
satisfiesΓs1 = 0, so that

(ΠY )T ΓsΠY ≥ λ2 (Γs) (ΠY )T ΠY,

which allows to rewrite (43) as

Ṡ∆ ≤ (k − k∗passive − λ2 (Γs)) |ΠY |2 . (44)

The strong coupling assumption implies

γ = λ2 (Γs) − (k − k∗passive) > 0. (45)

Integrating (44) over[t0, t0 + T ∗] whereT ∗ > 0 is arbitrarily
chosen, we obtain

∫ t0+T∗

t0

Ṡ∆dτ ≤ −γ
∫ t0+T∗

t0

|ΠY (τ)|2 dτ

≤ −αγ |(Π ⊗ Ip)X (t0)|2 , α > 0 (46)

for all (Π ⊗ Ip)X (t0), t0 ≥ 0. The last inequality comes
from the observability of the pair(A,C). Global exponential
convergence of(Π ⊗ Ip)X to zero is then deduced from
classical exponential stability theorems (see, for example, [38,
Theorem 1.5.2]). It implies that all solutions of the network
exponentially converge to the invariant subspace

{

X ∈ R
pN : x1 = · · · = xN =

∑N
i=1 xi

N

}

(47)

that is, they exponentially synchronize. SinceΓ1 = 0, the
dynamics of the network decouple in the invariant subspace
(47), that is each oscillator behaves as if it was isolated, i.e.
as if its dynamics were (40) withui = 0. As a consequence
all bounded solutions converge to theω-limit sets of the
decoupled system. On the other hand, ultimate boundedness
of the solutions follows from a MIMO generalization of the
result in [20] (as discussed in Remark 1). We conclude that
all solutions of the network converge to theω-limit sets of

the uncoupled dynamics which correspond to the dynamics of
an isolated oscillator, repeatedN times. This implies that all
solutions, except those belonging to the stable manifold ofthe
origin of the network, exponentially synchronize and converge
towards a unique limit cycle.

Remark 4: The result still holds if the observability as-
sumption on the pair(A,C) is relaxed to a detectability
assumption.

Remark 5: The global exponential stability result of
(Π ⊗ Ip)X = 0 may also be viewed as an incremental input-
to-state stability (δ-ISS) property of the network withS∆ being
the correspondingδ-ISS Lyapunov function (see [34]).

Remark 6: Theorem 5 is closely linked to recent synchro-
nization results presented in [39] by Slotine and Wang and
in [40] by Pogromsky. This may easily be noticed from
the normal form of passive systems. The normal form for
oscillator i of the network is (see [7])
(

żi

ẏi

)

=

(

Q e

fT g

)(

zi

yi

)

+

(

0

CB

)

(kyi − φ (yi))

−
N
∑

j=1

γij

(

0 0
T

0 CB

)((

zj

yj

)

−
(

zi

yi

))

(48)

whereCB is positive definite from the passivity assumption.
Assume, as it is done by Slotine and Pogromsky, thatγij ≤ 0

for i 6= j, and thatγii =
∑N

j=1 |γij |. This implies that the

couplings−γij

(

0 0
T

0 CB

)

are positive semidefinite. The

symmetric part of the Jacobian of the uncoupled dynamics,
divided according to the coupling structure, is given by

Jis =

(

Qs
1
2 (e+ f)

1
2 (e+ f)T g + CBk − CB

dφ(yi)
dyi

)

. (49)

It is then easily seen that the sufficient conditions given by
Slotine in [39, Remark 3 of Theorem 2] are satisfied, i.e.

1) Qs is contracting since it is Hurwitz from the passivity
and detectability assumptions

2) λmax(g + CBk − CB
dφ(yi)

dyi
) < g + CBk < ∞ from

the monotone increasing assumption

3) σmax

(

1
2 (e+ f)

)

=
∣

∣

∣

e+f
2

∣

∣

∣

2

<∞
Exploiting the special structure of passive oscillators, The-

orem 5 additionally proves that the network solutions are
bounded and that the network possesses a unique limit cycle
which attracts (almost) all trajectories.

IX. GRAPH INTERPRETATION OF THE INTERCONNECTION

ASSUMPTIONS

In this section, we give an interpretation of the interconnec-
tion assumptions of Proposition 1 and Theorem 5 in terms of
directed graphs.

Consider a directed graphG with associated weighted
adjacency matrixA = [wi,j ] , i, j = 1, . . . , N (see [41]).
Assume that the graph is simple, i.e.wi,j ≥ 0 andwi,i = 0,
∀i, j. The corresponding weighted Laplacian matrixΓ writes
Γ = [γi,j ], i, j = 1, . . . , N with γi,i =

∑N
j 6=i wi,j , ∀i ∈

{1, . . . , N} and γi,j = −wi,j , ∀i 6= j. The interconnection
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rule U = −ΓY then corresponds to the linear consensus
protocolui = −∑N

j=1 wi,j (yi − yj) (see [42]).
Proposition 1 and Theorem 5 requireΓ ≥ 0. This assump-

tion holds if the graph is balanced, i.e. ifA1 = AT
1 (see

[41]). This latter property impliesΓ1 = ΓT
1(= 0), which is

a required assumption of Theorem 5.
Proposition 1 and Theorem 5 requireΓ to have rankN −

1. This assumption holds provided that the graph is strongly
connected (see [42]).

Finally, Proposition 1 requiresΓ to be symmetric, which is
equivalent to assuming that the graph is undirected. In contrast,
this assumption is not necessary for the synchronization result
of Theorem 5.

Example 6: As an illustration of Theorem 5 for a non
symmetric interconnection matrix, we consider aZN symme-
try network, i.e. a unidirectional ring of passive oscillators.
The corresponding adjacency matrices writesA = [wi,j ] ,
i, j = 1, . . . , N with wi,(i+1)mod(N) = K, ∀i ∈ {1, . . . , N}
andwi,j = 0 in the other cases. The corresponding Laplacian
matrix is Γ = [γi,j ], i, j = 1, . . . , N with wi,i = K and
wi,(i+1)mod(N) = −K, ∀i ∈ {1, . . . , N}, and wi,j = 0
in the other cases. Because the graph is strongly connected
and balanced, all assumptions of Theorem 5 hold and we
can conclude to global, exponential synchronization towards
a unique limit cycle for the network defined byU = −ΓY .

X. CONCLUSIONS

In this paper we used dissipativity theory for the global
analysis of limit cycles in a particular class of Lure dynamical
systems calledpassive oscillators. The results of the paper are
not restricted to low-dimensional passive oscillators andare
well-suited to the analysis of their input-output interconnec-
tions.

In particular, we have characterized two basic bifurcation
scenarii in absolutely stable feedback systems. These bifurca-
tion scenarii correspond to two global oscillation mechanisms
generalizing the Van der Pol and Fitzhugh-Nagumo oscillators.
The key assumption of the results is that the system is
(strongly) passiveat the bifurcation point (Theorem 2), an
assumption that can be weakened by means of multiplier
theory (Theorem 3). The consequence of that assumption is
a specific dissipation inequality which is of interest for the
global limit cycle analysis of the (isolated) feedback system
as well as for the synchrony analysis of its interconnection
with identical systems. In the analysis of interconnected oscil-
lators, the assumptions on the interconnection have a natural
interpretation in passivity theory as well as in graph theory.

Several important issues remain to be addressed in future
work. In particular, a generalization of our theorems to the
degenerate case when, at the critical bifurcation value, more
than two eigenvalues simultaneously cross the imaginary axis
would find applications e.g. in Hamiltonian systems (see [18]).
The robustness of the proposed analysis to interconnections
of non identical oscillators is another important issue that
deserves further research. Finally, the authors envision the ap-
plication of the proposed approach to the analysis of possibly
high-dimensional models of biochemical oscillators such as
those found in [2].
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