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Abstract—This paper proposes a design methodology to sta- The interconnected control system is high dimensional, both
bilize isolated relative equilibria in a model of all-to-all coupled, in the number of state variables and control variables. It is
identical, steered particles moving in the plane at unit speed. neoyertheless characterized by a high level of symmetry, which

Isolated relative equilibria either correspond to parallel motion . . S . .
of all particles with fixed relative spacing or to circular motion of is maximal when all the individual models are assumed identi-

all particles with fixed relative phases. The stabilizing feedbacks Cal- Symmetry properties make these models well suited to the
derive from Lyapunov functions that prove exponential stability reduction techniques of geometric control [14]. Symmetry and
and suggest almost global convergence properties. The results ofgeometry play a central role in the analysis of cyclic pursuit
the paper provide a low-order parametric family of stabilizable  girategies for kinematic unicycle models studied in [15].
collectives that offer a set of primitives for the design of higher- - . . .
level tasks at the group level. Motivated by the. issues above, we consider in the prgsent
paper the model of identical, all-to-all coupled, planar particles
introduced in [16]. The particles move at constant speed and
. INTRODUCTION are subject to steering controls that change their direction
HE collective control of multi-agent systems is a rapidlpf motion. In addition to a phase variable that models the
developing field, motivated by a number of engineeringrientation of the velocity vector, the state of each particle
applications that require the coordination of a group of inncludes its position in the plane. The synchrony of the
dividually controlled systems. Applications include formatiomollective motion is thus measured both by the relative phasing
control of unmanned aerial vehicles (UAVs) [1], [2] and spacend the relative spacing of particles.
craft [3], cooperative robotics [4]-[6], and sensor networks [7], In previous work [17], [18], we observed that the norm of
[8]. A specific application motivating the results of the presemihe average linear momentum of the group is a key control
paper is the use of autonomous underwater vehicles (AUVs)garameter: it is maximal in the case of parallel motions of
collect oceanographic measurements in formations or pattetins group and minimal in the case of circular motions around
that maximize the information intake, see e.g. [9], [10]. Thia fixed point. We exploited the analogy with phase models
can be achieved by matching the measurement density in space&oupled oscillators to design steering control laws that
and time to the characteristic scales of the oceanograpbkiabilize either parallel or circular motions. Expanding on
process of interest. Coordinated, periodic trajectories suchthis idea, the design methodology in the present paper is
the ones studied in this paper, provide a means to colleot construct potentials that reach their minimum at desired
measurements with the desired spatial and temporal separataaiective formations and to derive the corresponding gradient-
The design focus of collective stabilization problems is diike steering control laws as stabilizing feedbacks. We treat
achieving a certain level of synchrony among possibly mamgparately phase potentials that control the relative orientation
but individually controlled dynamical systems. The primargf particles and spacing potentials that control their relative
design issue is not how to control the individual dynamics, bgpacing. We show that the design can be made somewhat
rather how to interconnect them to achieve the desired levelgyistematic and versatile, resulting in a simple but general
synchrony. This motivates the use of simplified models for ttewntroller structure. The stabilizing feedbacks depend on a
individuals. For instance, synchrony in populations of coupladstricted number of parameters that control the shape and
oscillators has been studied primarily by means of phatee level of symmetry of parallel or circular formations. This
models; these models only retain the phase information lofv-order parametric family of stabilizable collectives offers
individual oscillators as the fundamental information pertaira set of primitives that can be used to solve path planning or
ing to synchrony measures of the ensemble [11]. Even thesgtimization tasks at the group level.
simplified models raise challenging issues for the analysis orThe results of the paper rest on two idealistic assumptions:
design of their interconnection. They have recently motivatedl-to-all communication and identical individuals. Neither of
a number of new developments in stability analysis [12], [13fhese assumptions is realistic in a practical environment, not in
. _ engineering models nor in models of natural groups. The all-
This paper presents research results of the Belgian Programme on In- L
teruniversity Attraction Poles, initiated by the Belgian Federal Science PoIiE -all assumption is instrumental to the results of the paper but
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suppor_ted by the l\_latiopal Science Foundation Graduate Re_search Fellow: @per where we extend the present results to communication
the Princeton University Gordon Wu Graduate Fellowship, and the P%pologies where communication is limited. The assumption of
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of the closed-loop vector field, which is instrumental to theve analyze in the present paper do not require differentiated
proposed stability analysis. It is known that the individuatontrol action for the different particles (e.g. the presence of
dynamics may exhibit much more complicated behaviors awayleader for the group).
from this ideal situation. Many earlier studies neverthelessThe model (1) has been recently studied by Justh and Kr-
suggest that synchrony is robust and that an ensemble pisénaprasad [1]. These authors have emphasized the Lie group
nomenon resulting from a specific interconnection structuséructure that underlies the state space. The configuration space
will persist in spite of individual discrepancies. The analysisonsists of N copies of the grou E(2). When the control
of the celebrated Kuramoto model (see [19] for a recefl#w only depends on relative orientations and relative spacing,
review) exemplifies both the robustness of synchronizatio®., on the variableg,; = 6, — 6; and ry; = r, — 75,
at the ensemble level and its mathematical mysteries at thé = 1,..., N, the closed-loop vector field is invariant under
individual level in a population of non-identical, all-to-all cou-an action of the symmetry groupE(2) and the closed-
pled oscillators. In this sense, the ideally engineered mod@sp dynamics evolve on a reduced quotient manifold. This
considered in this paper may help in capturing gross dynami¢alV — 3)-dimensional manifold is called thehape space
properties of more realistic, multi-agent, simulation models @nd it corresponds to the space of all relative orientations
of biologists’ observations of animal groups. and relative positions. Equilibria of the reduced dynamics are
The rest of the paper is organized as follows: Section ¢hlled relative equilibria and can be only of two types [1]:
reviews the geometric properties of the considered model. Sperallel motions, characterized by a common orientation for
tion 1l introduces a basic phasing potential that controls ttedl the particles (with arbitrary relative spacing), atictular
group linear momentum. In Section IV we introduce a spacingotions, characterized by circular orbits of the particles around
potential that is minimum in circular formations. These resulss fixed point. Both types of motion have been observed in
provide the basic control laws to achieve either parallel simulations in a number of models that are kinematic or
circular formations, the only possible relative equilibria of thdynamic variants of the model (1), see for instance [20].
model. Due to symmetry, the dimension of the equilibrium A simplification of the model (1) occurs when the feedback
set is high and can be reduced with the help of symmetigws depend on relative orientations only. The control has then
breaking controls laws that derive from further potentials. W& much larger symmetry groupV( copies of the translation
show in Sections V, VI and VII how to stabilize isolatedgroup), and the reduced model becomes a pure phase model
relative equilibria of the model, both in circular formation® = u where the phase variabl@ belongs to theN-
(Sections V and VI) and in parallel formations (Section VIl)dimensional torusT™. This phase model still has af'-
Exponential stabilization of isolated circular relative equilibrisymmetry if the feedback only depends on phase differences.
is presented in Section VI. Section VIII illustrates how td°hase-oscillator models of this type have been widely studied
combine the results of the previous sections in a low-parameierthe neuroscience and physics literature. They represent a
catalog of stabilizable collectives. Conclusions are presentgithplification of more complex oscillator models in which the
in Section IX. uncoupled oscillator dynamics each have an attracting limit cy-
cle in a higher-dimensional state space. Under the assumption
of weak coupling, the reduction of higher-dimensional models
] . ] ) ) to phase models by asymptotic methods (singular perturbations
~ We consider a continuous-time model &t identical par- anq averaging) has been studied in e.g. Ermentrout and Kopell
ticles (of unit mass) moving in the plane at unit speed af]§1] and Hoppensteadt and Izhikevich [22].

Il. A MODEL OF STEERED PARTICLES IN THE PLANE

subject to steering control [1]: The results in this paper build upon an extensive literature
= it on phase models of coupled oscillators [11], [19], [23], [24].
6, = wu, k=1... . N (1) We will stress the close connection between collective motions

in groups of oscillators and collective motions in groups of
In complex notation, the vectar, = z, + iy, € C ~ R? moving particles.

denotes the position of particle and the angled, < S! Euler discretization of the continuous-time model (1) yields
denotes the orientation of its (unit) velocity vectof* = the discrete-time equations
cos ) + isinf;. The scalaru is the steering control for )
. , re(t+1) —rp(t) = e

particle k. The model (1) reflects second-order dynamics of (2)
particles with forcing only in the direction normal to velocity Ot +1) —Ok(t) = u(t), k=1,....N.
(steering control), i.eqy = 9'k(im) with 7, a unit vector. The direction of motion of particlé is updated at each time

We use a bold variable without index to denote the costep according to some feedback conttql. We consider
responding N-vector, e.g.0 = (f,...,05)T and u = continuous-time models in this paper, but we mention a few
(u1,...,un)T. In the absence of steering contrél, (= 0), relevant references that study their discrete-time counterpart.

each particle moves at unit speed in a fixed direction and ®ouzin et al. [25] have studied such a model where the
motion is decoupled from the other particles. We study tHeedback control is determined from a set of simple rules:
design of various feedback control laws that result in coupledpulsion from close neighbors, attraction to distant neigh-
dynamics and closed-loop convergence to different types ladrs, and preference for a common orientation. Their model
organizedor collective motion. We assume identical controlincludes stochastic effects but also exhibits collective motions
for each particle. In that sense, the collective motions thaminiscent of either parallel motion or circular motion around
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a fixed center of mass. Interestingly, these authors have shawl every other equilibrium is unstable. &f > 0, then only
coexistence of these two types of motion in certain parametbe balanced set when® = 0 is asymptotically stable and
ranges and hysteretic transition from one to the other. évery other equilibrium is unstable.

discrete stochastic phase model has been studied by Vicsek Proof: The gradient dynamic§ = —KgradU,; forces

et al. [26]. convergence of all solutions to the set of critical pointd/ef
characterized by thév algebraic equations

[1l. PHASE STABILIZATION < pg,ie® >=0, 1<k<N. (6)

We start our analysis with a basic but key observation f
the results of this paper: the (average) linear momenkuof
a group of particles satisfying (1) is the centroid of the pha;
particlespy, that is

Yritical points wherepy = 0 are global minima of/;. As a
consequence, the balanced set is asymptotically staliei
P and unstable ifK < 0. From (6), critical points where
po = |pgle’” # 0 are characterized byin(6;, — ¥) = 0, that
.1 X 1 X 4 is, N — M phases synchronized @ mod 27 and M phases
R= > = N Y e Lpg=1pgle™.  (3) synchronized a(¥ + 7) mod 27, with 0 < M < NoAt
k=1 k=1 those points|pg| = 1 — 2 > L. The valueM = 0 defines
The parametefpy| is a measure of synchrony of the phasa synchronized state and corresponds to a global maximum
variablesd [11], [19]. It is maximal when all phases are synof U;. As a consequence, the set of synchronized states is
chronized (identical). It is minimal when the phases balance asymptotically stable i<’ < 0 and unstable ik’ > 0.
result in a vanishing centroid. The set of synchronized states igEvery other valuel < M < & corresponds to a saddle
an isolated point modulo the action of the symmetry grétip and is therefore unstable both féf > 0 and K < 0. This is
It defines a manifold of dimension one. The set of balancégcause the second derivative
states, which we call thigalanced setis defined as al € T 0*U; 1 0, 1
for which p, = 0. For N odd, the equatiorpy = 0 has 002 T N <pe, e >= + —cos(¥ — Or)lpe|  (7)
full rank everywh_ere and the set of balanced states def'r{Sﬁes negative values #, — ¥ and positive values if, —
a manifold O.f codlmen§|on twp. Fav even, the b_alanced set +7. As a consequence, a small variatih, at those critical
IS not' a manifold of codimension tyvo. The equatlon loses ralbints decreases the value f if 9, = ¥ and increases the
at points where there are two anti-synchronized, equally-5|z\%11ue of Uy if 6, = U + 1. -

cIuster:s, i'ﬁ" eac? clustelr consists%%lfsyrr]\chr(r)]nized }ohﬁses The consequence of Theorem 1 is that parallel formations
aln the Ip ase of one cluster equals the phase of the Otgleer stabilized by all-to-all sinusoidal coupling of the phases
cluster p us. L differences, i.e. the control law (5) with® < 0. With K >

In the particle model (1), synchromzagon of the phases €QJ" the same control law stabilizes the center of mass of the
re_zspo_nds to a parallel formatl_on. all particles move in the SarB'Elrticles: to a fixed point. The fact that the remaining equilibria
dlrectl(_)n. In cgntrast, balanc!ng of the phases correspondsaf}% saddles suggests that the conclusions of Theorem 1 are
collective ”.‘°“°” around a f|>.<ed center .Of mass. C.°'f‘”9'. Amost global, that is, almost all solutions either converge to
the group I.|near moment_um is thus achieved by MINIMIZINgq synchronized staté( < 0) or to the balanced sek{ > 0).
or maximizing the potential We note that the conclusions of Theorem 1 can be equiva-
lently stated in a rotating frame, that is, for the phase model

0 =wyl — KgradU;, wy € R. (8)
The convergence analysis is unchanged because of the prop-

01(6) = 5 Il @

which suggests the gradient contwol= —KgradUy, i.e.
N

U, 0 K . erty < grad U;,1 >= 0, which is a consequence of the
Uk = _KTQk = —K <pp,ie™ >= N Zsm Oir- () invariance of/; under the action of the symmetry grosp.
=1 Forwy = 0, the steady state of the phase model (8) gives rise
The inner product< -,- > is defined by< z;,z2 >= to straight orbits in the particle model (1): synchronization then

Re{z1z5} for z;,2, € C. For vectors, we use the analogousneans parallel motion in a fixed direction, with arbitrary but
boldface notation< zy,z2 > = Re{ZTz2} for z1,z2 € CV. constant relative spacing, which is a relative equilibrium of the
This all-to-all sinusoidal coupling (5) is the most frequentlynodel. In contrast, balancing means straight orbits towards or
studied coupling in the literature of coupled oscillators [11hway from a fixed center of mass, which does not correspond
[19], [24]. Its gradient nature enables the following globab a relative equilibrium of the model.

convergence analysis. Forwy # 0, the steady state of the phase model (8) gives rise

Theorem 1:The potentiall; = %|p9|2 reaches its unique to circular orbits of radiugy = |wo|~* in the particle model

minimum whenp, = 0 (balancing) and its uniqgue maximum(1). In general, particles orbit different circles. Synchronization
when all phases are identical (synchronization). All othémposes parallel orientation of all velocity vectors whereas
critical points ofU; are isolated in the shape manifdd’ /S' balancing imposes a fixed center of mass. A collective motion

and are saddle points 6f;. with fixed center of mass corresponds to a relative equilibrium
The phase modé = u with the gradient control (5) forces of the model only if all particles orbit the same circle.
convergence of all solutions to the critical setlgf. If K < 0, The four different types of collective motion associated with

then only the set of synchronized states is asymptotically stakie phase model (8) are illustrated in Figure 1.
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Noting that
1 . .
Pis = s, — NlTs =% — jwory — (R —iwoR),
we obtain
100 < Pks,ieiak > =—-< wo(rk - R)7€i9k > =< R, ietr >
. oU-
_ ~ L0k 1
=—-< , > —— 16
WoTk, € 36, (16)

where we denote by, = r; — R the relative position of
particle k£ from the group center of mask = % Z,]f:l Tk
Using (16), we rewrite the control law (14) as

-40  -20 0 20 40 -40 -20 0 20 40

(c) x (d) x ukzﬁ%+wo(l+n<m,m >), k>0, w#0. (17)
s e e patn o2 LYapUnOV analysis provides the folowing global convergence
time-derivative,r,, are illustrated by a circle with an arrow. The center ofesult.
mass of the groupfz, and its time-derivativeRz, are illustrated by a crossed  Theorem 2:Consider the particle model (1) with the spac-
(cclr)cljow;hoa;\ngr;?w%(g;)ugd)fwé) i”g I;fmf;f’;b%,w&m’y ?af‘?sd fr;at?\'/e ing control (17). All solutions converge to a relative equilib-
equilibrium of the particle model (1). rium defined by a circular formation of radiyg = |wo|™*

with direction determined by the sign af, # 0.
Proof: The Lyapunov functiorS(r, 8) defined in (11) is
IV. STABILIZATION OF CIRCULAR FORMATIONS positive definite and proper in the reduced shape space, that

In contrast to thephasecontrol designed in the previousis, when all pointgr, 8) that differ only by a rigid translation
section, we now proposespacingcontrol that achieves global r + 1y and a rigid rotatiorf + 16, are identified. From (15),
convergence to a circular relative equilibrium of the particl§ is nonincreasing along the solutions and, by the LaSalle
model (1). Invariance principle, solutions for the reduced system on shape

We start our analysis with the observation that under tispace converge to the largest invariant Sewhere
constant control, = wy # 0, each particle travels at constant,

0
unit speed on a circle of radiyg = |wo|~!. The center of the k< Pys,ie™ >=0 (18)
circle traversed by particle is ¢;, = ry, +iwg 'e’’*. Multiplied  for = 1,... N. In this set,f, = wo and s, is constant
by the constant factoriwo, ¢, becomes for all k = 1,...N. This means that (18) can hold only if
s = —iwock = €% — iwory . ) Ps = 0. As a results = 1sg for some fixedsy € C, i.e., all

_ _ S _ particles orbit the same circle of radips.
A circular relative equilibrium is obtained when all the centers n

coincide this corresponds to the algebraic condition

1
Ps=0, P=1Iy— —117T. (10) V. PHASE SYMME;I;L??IIZT\ENG IN CIRCULAR

This suggests to _choose a stabilizing control that minimizes|,o spacing control law of Section IV stabilizes particle
the Lyapunov function motions to a unique set in the physical plane modulo the

_ 1 2 symmetry group of rigid displacements. In contrast, the phase
S(r,0)==| Ps|*. (11) . ) ) X

2 arrangement of the particles is arbitrary. To reduce the dimen-

Noting that sion of the equilibrium set, we combine the spacing potential
S = i€ (ug — wp), (12) S(r,0) defined in (11) with a phase potenti&l(@) which

is minimum at the desired phase configuration. We require
thatU(9) preserves th&' symmetry of rigid rotation, that is,

. N ‘ < grad U,1 >= 0.

§ =< Ps,P$>= " < Ps,ie’™ > (uy —wo)  (13)  Theorem 3:Consider the particle model (1) and a smooth

the time-derivative ofS along the solutions of (1) is

k=1 phase potential/ () that satisfies< grad U,1 >= 0. The
where P,, denotes thé-th row of the matrix? and where we control law
have used the fact th# is a projector, i.eP? = P. Choosing AU — KU,
the control law up = wo(l+ K < Tr, g >) — a9, WO #0 (19)

up =wo — K < Pis,ie’™ >, k>0 (14)  enforces convergence of all solutions to the set of relative

results in equilibria defined by circular formations where all particles

N move around the same circle of radiggand direction given

$ = _”Z < Pys,ie'® 2 < 0. (15) by the sign ofw, with a phase arrangement in the critical set

1 of U. Every (local) minimum ofU defines an asymptotically
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stable set of relative equilibria. Every relative equilibrium

whereU does not reach a minimum is unstable. 10
Proof: We use the composite Lyapunov function 5
V(r,0) = kS(r,0)+U(0) (20) ,
which is lower bounded sincé > 0 and U takes values in a 10 X \®
compact set. The time-derivative &f along the solutions of 15 \ {
1) is 20
N U Ry “10 ) 10 20
V= (k< Pis,ic® > (w, —wo) + o-u)  (21) @
= 00, s
which, using the property: gradU, 1wy >= 0, becomes b
N
. , ou °
V= Z(K < Pgs,ie > 4+ —)(up — wy).- (22) , / -
140
k=1 o \ )
Because the control (19) is s T\\
O—>
. i ou 20
U =wo — Kk < Ps,i1e’t > ——— (23)
a0y, Ry ET 0 10 20
. o (b) .
the Lyapunov functiorl/ satisfiesV = — fo:l(uk —wp)? < -
0 along the closed-loop solutions. By the LaSalle Invariance ©
principle, solutions for the reduced system on shape space .
converge to the largest invariant setwhere
. oUu y
< Pys,ie >= —— 24 N
K %S, 1€ 26, (24) B
for k=1,...,N. In the setA, the dynamics reduce ), = e
wo, Which implies thatU is constant. Therefore the right-hand =
side of (24) vanishes in the sét, which implies Ps = 0 B T 0 0 2
sinces = 0. We conclude that solutions converge to a circular ©
relative equilibrium and that the asymptotic phase arrangement 2.  Circular formations achieved with the control (19) with = 12,
is in the critical set ofU. wo = k = 0.1, andU = KU;. (a) Convergence to a balanced circular

Consider the sef of circular relative equilibria of radius formation ()¢ > 0); (b) Convergence to a circular formation with no constraint
on the asymptotic phase arrangemehf (= 0); (c) Convergence to a

po With a phase configuration in the critical setléf Because synchronized circular formation{ < 0).

V(r,0) =U(0) in E, local minima ofU correspond to local

minima of the Lyapunov function. Any connected subseFof

on whichU reaches a strict minimum is therefore asymptoFigure 2 illustrate the convergence result for the chdice-
ically stable. Note that becaude is a set of equilibrial/ is K U/;. For K = 0, the control law (19) achieves convergence
constant on any connected subset. In contrast, congider to a circular formation but the asymptotic phase arrangement
(T,0) € E such that/(0) is not a minimum and denote Yz is not constrained. FoK < 0, the control law (19) forces
the connected component &f containingx. U is constant in convergence to the synchronized circular formation. Kor

Ex. To show instability ofk, consider a compact neighborhood), the control law (19) forces convergence to a balanced

B(x) in the shape space such thax)\ Fx contains no other circular formation. Note that foiX = «, the expression of

relative equilibrium. A solution with initial condition i3(X)  the control law simplifies to

either asymptotically converges #6; or leavesB(X) after a

finite time. Letx = (F,0) € B(X) such thatU(6) < U(8). up = wo(l+ K < T, 7 >) .

Then the solution with initial conditiorx cannot converge

to Fx (and therefore leave® after a finite time) since/ The stability analysis in Theorem 3 is entirely determined by

decreases along solutions aftr,8) < V/(F,8). Because the critical points of the phase potentia (local) minima cor-

V(%) is not minimum,x can be chosen arbitrary close xp respond to stable equilibria and other critical points correspond

which proves instability ok. m to unstable relative equilibria. When a critical point is nonde-
Theorem 3 thus provides a global convergence analy§ignerate, this analysis extends to the Jacobian linearization of

of closed-loop dynamics achieved with the control law (19§he closed-loop system, providirfpcal) exponential stability

It shows that solutions either converge to circular relatieonclusions. We say that a critical pothis nondegenerate (in

equilibria with a phase configuration that (locally) minimized ™ /S") if all eigenvalues of the Hessig;7 () are different

the phase potentidl or belong to the stable manifold of anfrom zero, except for the zero eigenvalue (with eigenvetjor

unstable equilibrium. As an illustration, simulation results igssociated to the rotational symmetry.
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Theorem 4:Consider as in Theorem 3 the particle modekhich depends on thexth momentp,,» of the phase distri-
(1), a smooth phase potentiél(0) that satisfies< grad bution on the circle, defined as
U,1 >= 0, and the control law (19). A relative equilibrium
determined by a nondegenerate critical pdlnf U is expo-
nentially stable if@ is a (local) minimum and exponentially
unstable otherwise.

Proof: The proof is a local version of the proof ofNote thatp;s = py. The next proposition is a direct general-

Theorem 3 around the relative equilibriugn= (¥, ). In the ization of Theorem 1.

N
1 § imbg _
p'mﬂ:meile k,m—l,Z,.... (26)

coordinateqs, 8), the quadratic approximation &f atx is Theorem 5:Let m € N. The potentialU,,, = %|pm9\2
1 reaches its uniqgue minimum whep,y = 0 (balancing modulo
oV = E(H < Ps,Ps > +50" H50) 2r) and its unigue maximum when the phase difference

B o between any two phases is an integer muItipIe%gf (syn-
whered6 = 6 — (6 +wotl) and H = 95 (0). Likewise, the chronization modulc?Z). All other critical points ofU,, are
control law (23) linearizes to isolated in the shape manifol" /S* and are saddle points

oup = —k < Pks,iei(‘g’“Jr““t) > —H.60, of Upn. . )
Proof: Critical points ofU,,, are the roots of
where Hy, is the kth row of H. Then, U
N ) =< g, i >=0, k=1,...,N. (27)
Vo= HZ < Pys,ie’ O t@ot) 5 5y + (H60)T su 00
k=1 Critical points for whichp,,s = 0 are global minima of
N o U,,. Critical points for whichp,,s = |pmele’*™ # 0 are
= (k < Pys,ie" "0t > 4 H,.560)5uy, characterized byV — M phases satisfyingi, = ¥,, mod 2
k=1 and M phases satisfyingnf, = (¥,, + 7) mod 27, with
N ) 0 < M < & Atthose critical pointsyn|pg| = 1— 24 > L.
= _Z(éuk) =0 U,, is maximized whenM = 0. Critical points for which
k=1 1< M< % are saddles because the second derivative
along the closed-loop solutions of the linearized system.
The stability analysis then proceeds as in the proof of 0%U,, 1 imb
Theorem 3: if@ is a minimum, thenH > 0 and the 902 N TS Pmos€ >
LaSalle invariance principle proves asymptotic stability of 1
the linearized (periodic) closed-loop system, which implies - N = cos(Wym — mby)m|pme| (28)

exponential stability of the equilibrium. In contrast @fis not ) ) . )
a minimum, then there exist initial conditions for whiél™ < takes negative values b, = T, and posmve_ Vf”"“es i
0. The corresponding solutions of the linearized system canﬁ?)?k - ‘I,’T” + ”'_AS a consequence, a smal[ variatiaf), at
converge to the equilibrium and must diverge exponentiaiiy. 110S€ critical points decreases the valud/yf it mfy = Vo,
The above result yields a systematic and general desfyid increases the value of,, it méy, = ¥, +7. ®
methodology by reducing the design of exponentially stabj- W& Show in the next section how linear combinations of
lizing control laws to the construction of phase potentiald'® Potentialsl,, enable the stabilization of specific sets of
Specifically, control laws that exponentially stabilize isolatetfolated relative equilibria characterized by varioasscrete
relative circular equilibria are automatically derived fron?YMMetry groups.
phase potential$/ that have nondegenerate minima at the
desired location. The phase potential of (4) achieves this B
objective for the stabilization of the synchronized circular
formation. The next section focuses on the construction ofLét 1 < M < N be a divisor of N. An (M, N)-
more general phase potentials that can be used to isolg@tern is a symmetric arrangement &f phases consisting

. Symmetric balanced patterns

specific balanced circular formations. of M clusters uniformly spaced around the unit circle, each
with N/M synchronized phases. For afdy, there exist at
V1. EXPONENTIAL STABILIZATION OF ISOLATED least two symmetric patterns: thi¢, V)-pattern, which is the
CIRCULAR RELATIVE EQUILIBRIA synchronized state, and ti&/, N)-pattern, which is the splay

state, characterized by phases uniformly spaced around

A. Stabilization of higher momenta . . . . . .
) . o the circle. Figure 3 provides an illustration of all symmetric
When the phase potentiél, reaches its minimum, the phasg,515nced patterns faV = 12.

arrangement of the particles is only stabilized to the balancedSymmetric balanced patterns are extremals of the potentials

set which is high dimensional. More general phase potentlzﬂ%_ As a consequence, they are characterized as minimizers

are introduced in this section in order to reduce the dimensigg’\\ o||.chosen potentials; these can be written as linear

of this equilibrium set. A natural generalization of the po'[emi%lombinations of thé/,,.. This result forM = N, i.e. the splay

U, is a potential state, was also presented in [27]. We first prove a technical

Un = 5|pm9\2 (25) lemma that we will use in making this characterization explicit.
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(OO
(L

Fig. 3. The six possible different symmetric patterns for = 12

like to show thatN, = & e Nforall k = 1,...,M. We

M
have
1 M
S2mm .
pm@zmszel Mk:07m:17"'7M_1 (32)
k=1
and
1 M
Mp]wg— NZN 6127”6*1 (33)

Equations (32) and (33) are a system of linear equations in
the unknown variableg = (Ny,..., Ny)T. Namely, (32) and
(33) can be written agdx = b whereA = AT € CM*M with
[Aly; = €55, jk=1,....,M andb = (0,...,0,N)T ¢
RM. The inverse ofd is given by A~! = L AT, where the

corresponding ta\/ = 1,2,3,4,6 and12. The top left is the synchronized har denotes the complex conjugate. To see this, observe that
state and the bottom right is the splay state. The number of collocated phases

is illustrated by the width of the black annulus denoting each phase cluster.

Lemma 1:Consider the following sum whema, M € N,

M

PN £Y e

Jj=1

i 2mm
L vy

(29)

If 57 €N, thenP,(nM) =M, otherwiseP&M) =0.
Proof: If ™ ¢ N thene'*#*7 = 1 for all j € N which

proves the first part of the lemma. To prove the second p
we treat (29) as the sum of a geometric series and evaluat

for all m € N that satisfy{; ¢ N. Multiplying both sides of

2mm

M 27 (k—j)
el jk=1,...,M.
=1
For j = k, equation (34) evaluates tbo/ by Lemma 1. For
j # k, we have|k — j| < M and equation (34) evaluates to
zero by Lemma 1. Therefore, the solution to the system of
equations (32) and (33) is = ;;A”b. Since both thel/th
row and column of4” are all ones, we find tha¥,, = 2% for
alk=1,..., M.

Next, we show that arii, N)-pattern configuration min-

[AAT]); = (34)

a{'mizes eachK,,U,, for m = 1,...,M. For an (M, N)-

q’{tern, the size of clustéris N/M and its phase is given by
k = 2%k, wherek = 1,..., M. Recall that thenth moment
pme Of the phase distribution is given by (26). Evaluated at

equation (29) by gives, an (M, N)-pattern, thenth moment becomes
M ) M
PO G2 N7 3P G+ = pO) i35 i3 (M), oy _ LN £imO;
j=1 mo NmM .
j=1
R ing t d solving f&.," yield LN~ iz
earranging terms and solving féh,"’ yields, o 2617J7 m=1,...,M. (35)
P eiQﬂ'm -1 Jj=1
PM) = 5 — (30) (M) 1 .
et — 1 By Lemma 1,p, ,° = ;- for 7; € N and zero otherwise.
o Therefore, for phases in g/, N)-pattern,p,,y = 0 for m =
which shows thatP{) = 0 since the numerator of (30)1,....M — 1 andpyg = L. ]
vanishes for alin € N that satisfy; ¢ N. B Corollary 1: Let M = N. Then® € TV is an (N, N)-

Theorem 6:Let 1 < M < N be a divisor of N. Then

pattern, i.e. the splay state, if and only if it is a global minimum

6 € TV is an (M, N)-pattern if and only if it is a global of the potential

minimum of the potential

M
U]W,N _ Z KmUm

m=1

with K,,, >0form=1,..., M — 1 and K; < 0.

Proof: The global minimum of/*:V is reached (only)
when K,,U,, is minimized for eachm. If K,, > 0 for
m=1,...,.M — 1 and K; < 0, following (25) and (26)
this means the global minimum correspondspigy = 0
form =1,...,M — 1 and ppg

(31)

L%
UNN =N KpUpn,

m=1

with K,, >0form=1,.. %gfj where | I | is the largest
integer less than or equal t9.

Proof: By Theorem 6, the phases are in the splay state
if and only if they correspond to the global minimum of the
potential (31) withM = N. Sincep,,y = 0 imposes two
constraints on the system for eaeh minimizing the potential

(36)

+7- We show that this UMV imposes2N constraints on the phase arrangement.

implies an(M, N)-pattern configuration. From the conditionHowever, for potentials witt6! symmetry, the dimension of
Pro = ﬁ and Theorem 5, we can conclude that theredre the shape space /8§ —1. Therefore, we need only sgt,g = 0

clusters such that thkth cluster is of sizeV, > 0 at phase
O =2k, k=1,...,M, where}"}" N, = N. We would

for m = 1,...,|%| since that imposeg |5 > N —1

independent constraints. ]
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Due to the characterization of Theorem 6, stabilizing control

15
laws for (M, N)-pattern circular formations are directly and
systematically provided by Theorem 3. 1or
Theorem 7:Each (M, N)-pattern circular formation of ra- sl
dius pg is an isolated relative equilibrium of the particle model /3\0\0
(1) and is exponentially stabilized by the control law o / \}
UMN — kU Yo
U :UJO(1+K/< F]ﬁ'rk >) - % (37) o f \®j
—10+ —
Proof: The theorem is a consequen’ée of Theorems 3, 4, c\ /
and 6. We only need to prove that egdd, N)-pattern defines 15
a nondegenerate critical point of the potentigh’:™), o0l °\°\2/
Let the negative gradient of the potenti@-" be defined
in terms of the coupling functiorf;(6y;), i.e. R T 0 10 20

OUM.N N M K . N
m .
o 00;, = Z Z m Sin ma"'j = ZF(ij), (38) Fig. 4. The result of a numerical simulation starting from random initial
Jj=1m=1 Jj=1 conditions and stabilizing the splay state formation using the control (37)

with M = N = 12, wo = % = 0.1, Km = wo form:1,...,L%J,and

whereK,, >0form=1,...,M —1and K, < 0. Also, let
I (6x,) be the derivative of' (6);) with respect tdfy;, given Km =0 form > HJ

by M
/ _ .
F'(0ks) = 3 Ko cosmby; B9\ _ g, KetEaes < gfor p = 1,...,M — 1 and
m= (M)

= 0. The zero eigenvalue corresponds to rigid rotation
N phases [28]. Since the coupling function (38) is the
gradient of the potential/™:V  its Jacobian is equivalent to

k ol ' ) St 8 Hessian ot/ and, consequently, all the eigenvalues are
of the eigenvalueX™) with multiplicity N — M. These

X ) L . real. Therefore, each/, N)-pattern defines a nondegenerate
eigenvalues are associated with intra-cluster fluctuation. Ta‘?tical point of the potential/ M-V since the Hessian has rank
second set consists 0f eigenvalues\,"), p=0,...,M—1. 4 -

These eigenvalues are associated with inter-cluster fluctuatio

h BoFth sgts of i}g?”"a'“e;c;” beFexpressed als funcFon tions that correspond to other critical points of the phase
the Fourier coefficients of”(6;;). For a general coupling potential {7(M-N). However, no other local minima were

function, the Fourier expansion &F (0;) is identified and simulations suggest large regions of attraction of

As shown in [28], the linearization of coupling functions ofO? all
this form about ar{M, N)-pattern hasV eigenvalues that can
be described as the union of two sets. The first set cons

heorem 7 does not exclude convergence to circular for-

) > L the (M, N)-pattern circular formations. Figure 4 illustrates a
I (6k;) = _ (aj cos0x; + by sin 16);) . (40)  simulation of the splay state stabilization fdr = 12 particles
=1 using the control law (37).

The formulas for calculating the (real part of) the eigenvalues

are as follows [28]:
VII. SPATIAL SYMMETRY BREAKING IN PARALLEL

3O Za/]\/ll (41) FORMATIONS
=1

. , As shown in Theorem 1, the phase coniuok gradU; suf-
oo a _ + a’yr . - - . .
Re{)\g‘“} _ Z (aM M-+ Ml p>. (42) fices to stabilize parallel equilibria. However, the asymptotic

2 relative positions of particles are arbitrary. In this section, we
, o ] N show how to reduce the dimension of the equilibrium set in
Note that only they; coefficients determine stability and thaigse analogy to the design of the spacing control in Section

=1

Re{A;"} = Re{A(}" ). V.
The q; coefficients are given by integrating We choose an arbitrary isolated parallel relative equilibrium
1 [ in the shape space by imposing on the relative positjonf
/ / . . .
a = — / I (Or;) cos 10y, dOy; (43) particle & with respect to the center of mass a fixed length
) ) o pr. and a fixed orientation),, relative to the group direction.
which gives Assuming that all phases are synchronized at the relative
q=K, l=1,....M (44)  equilibrium, this gives in complex notation
e ay=0, l=0orl> M. (45) Fr =1 — R = ppe’ TV & dite™ (46)
eV

As a result,a),, = 0 for I > 1, which, using (41), yields whered), = o is a constant complex number. The relative
MM — K < 0. In addition, using (42), we find that positions with respect to the center of mass must balance, that
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is, > 7, = 0, which imposes the constraint Fix an arbitrary compact neighborhooll” of the parallel
n equilibrium (46) that contains no critical point bf, other than
Zd; —=0. (47) the synchronized state. Then there exists a constant 0
such that the inequality
Motivated by the derivation of the spacing control in Section di o,
. <
IV, we observe that the definition | < Pt d+1° [ <e|l Pt (55)
o dp . 0, holds inN for kK =1,..., N. We show that a similar constant

P, (i + ™) s > 0 exists for the inequality

allows one to specify the parallel relative equilibrium of | < PLe® e > | < ¢y || gradl; |2 . (56)

interest by the conditions . . - .
y Because the seV is compact, it is sufficient to establish (56)

Pt=0, |pg| =1, P=1Iy— iHT. (48) in the vicinity of critical points ofUy, that is when the right
N hand side of (56) vanishes. By assumption, the synchronized
Indeed, the conditiofpg| = 1 imposes phase synchronizationstate is the only critical point of/; in the setA. Locally
that is, 8 = 16, for somefd, € S, whereas the condition around that state, we wrlt% = 0; — 04y + h.o.t. where

Pt =0 impliest = 1t0 for somet, € C, which in turn gives 0,, = Z 9; and h.o.t. stands for “higher-order terms”.
10, __ 10 N =1

TR+ e’ = (1+d,; Yto. Summing overk yields ty = e, We then obtain
which Corresponds to the desired relative equilibrium. N

The desired relative equilibrium thus minimizes the Lya- | gradU; sz 2(9, *0%)2 L hot (57)
punov function i ’

1 _ . .
V(r,0) =k <2 | Pt |2 U1(0)> . k>0 (49) The left-hand side of (56) can be rewritten as
N
1 1
which, in analogy with the results of Section IV, suggests the 1 — +- > cos(0; — O) =N > (0;—0x)* + hoo.t. (58)
control law j=1 j=1
oU, di . 0 Using§; — 0y = 0; — 04, + 04, — 0, and the triangle inequality
uk7(1+n)89k /@<Pkt,dk+1ze > k>0.(50) yield

Lyapunov analysis provides the following result. N N )

Theorem 8:Consider the particle model (1) with the control ﬁ Z Z — Oav)” + (Ok — Oav)
law (50). The parallel relative equilibrium defined by (48) j=1 J=1
is Lyapunov stable and a global minimum of the Lyapunov N+1 )
function (49). Moreover, for every. > 0, there exists an < N (93‘ — Oav)
invariant set in which the Lyapunov function is nonincreasing i=1
along the solutions. In this set, solutions converge to a paraighich, from (58), provides the inequality
relative equilibrium that satisfies N + 1

dy Ji0 ——ZCOSG —6) |< Z - 2+ hot.
< Pyt, °>=0 (51) = =
di + 1 (59)

for somed, € S* and fork =1,...,N. Comparing (57) and (59), we see that (56) holds for (apy}

Proof: In the coordinate$t 0), the system (1) becomes% in the vicinity of the synchronized state and therefore

i, = (Prei® + ieiruy) also for some uniformly bounded constastin the compact
ék d*“ " g (52) setN. Using the inequalities (55) and (56) in (54) yields
E = Ug. .
V |v=0< —k(1 — Nejeo || Pt radU; ||? 60
Writing the control law (50) asu, = aUl +ou = — < | _O_ ( ez | Dl g_ ol _ (60)
Ppet® it > 4y, and using the identlty This implies that fqr. every: > 0, there exists a nelghborhopd
) , , ‘ o , of the parallel equilibrium (46) where the Lyapunov function
Pre®® —ic% < Pre® ie' >=< Ppe? ¢ > i V satisfies
one obtains V [y=0< —¢ || gradU, |? (61)
ty = y +1(< Prpe®® it > ¢ifk 4 jeify;) for somee > 0. With v, = uy — gg; defined from (50), one
) _ oty (53)  obtains
F)k = a0, + vg.
y 2
Settingvy, = 0, the time-derivative of the Lyapunov function Vo< —clgradl | -
(49) along solutions of (53) is i\’: <8U1 Cp di >)
. K —_—— kL, e
V= = —r|gradl |?+ (54) =\ 00y, dy +1
N N
m; < Pyt, 7 1elg’f >< Ppet? et > = —¢| gradlU, | — Zvi <0. (62)
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For a fixeds > 0, let V,. be the largest value such that (62fontrol law (19) where’, =, — Ro, Ry is the location of a
holds in the sef),, = {(t,0) | V(t,0) < V,.}. Then the set fixed beacon, and’; is removed, i.e.,

Q, is invariant and solutions if2,, converge to the largest ' oU

invariant set wher@ = 6,1 for somef, € S* and v, = 0, up = wo(l + K <rp — Ro,7p >) — 90, 0 #0 (63)

k =1,...,N. This is a set of parallel equilibria satisfying ) ) )
(51). - enforces convergence of all solutions to a circular formation

The phase contrak = gradU; stabilizes the set of parallel of radius pp = “*’0‘_,1 about Ry. Moreover, the asymptotic
equilibria, which is of dimensiog(N —1) in the shape spa\ce.phase arrangement is a critical point Of the poterﬁ/’lgl _
Away from singularities, theV algebraic constraints (51) are . F1oof: We use the Lyapunov functiob(r, 8) which is
independent. As a result, the control law (50) isolates a subd¥ Sum of the composite Lyapunov functidfir, 8) defined
of parallel equilibria of dimensionV — 2 in the shape space.PY (20) in the proof of Theorem 3 and a new term that is

The result of Theorem 8 is thus weaker than the resu_@n'm'zed when the center of the circular relative equilibrium
for circular equilibria for two reasons: the result is onlylS at Ry:
local and the control law does not isolate the desired parallel _ b . 2
equilibrium for N > 2. A simple calculation indeed shows that Vo(r,0) = V(r.0) + 2N 117 +iNwo ol (©4)
the Jacobian linearization of (52) at the parallel equilibriurRecall that
(46) possessed — 2 uncontrollable spatial modes with zero V(r,0) = E||Ps||2 +U(0)
eigenvalue. This means that the Jacobian linearization of the ) 2 _ _ )
closed-loop system will possesé — 2 zero eigenvalues for With s given by (9) andP the projector defined in (10). We
any smooth static state feedback. Fér> 2, no smooth static cOmpute
state feedback can achieve exponential stability of an isolated ) N .
relative parallel equilibrium. Vo = k< Prs+ —1"s+

p q 0 ; < ks +
VIIl. STABILIZABLE COLLECTIVES iwoRo, i€ > +5U) (g — wo).

In this section, we focus on the control structure (19) and 90y,
discuss the role of key parameters. The constgrdetermines Since
the type of relative equilibrium. Fapg # 0, the control (19) 1, _ o
produces circular motion with radiys = |wo|~* and sense Pys + ﬁl s +iwo Ry = €™ —iwo(r — Ro),
of rotation determined by the sign ofy,. The potentiallU
determines the steady-state phase arrangementugFerx =
0 andU = KU;, K < 0, the control (19) produces parallel

using the control law (63), we once again obtdip =
—Zﬁ:l(uk — wp)? < 0 along the solutions of the closed-
loop system. Solutions converge to the largest invariant\set

motion. h
In the following subsections, we investigate removing thgnere o oU
SE(2) symmetry of the control19), i.e. its invariance to RS wofk, 16T >= 5o (65)

rigid translation and rotation in the plane [1]. We stabiliz
circular motion about a fixed beacon and parallel motion alo
a fixed reference direction. We define behavior primitives
enable the group to track piecewise-linear trajectories wi
fixed waypoints.

E rk=1,...,N. Proceeding as in the proofs of Theorems 2
d 3, we use the result that anthe control isu;, = wq for
= 1,...,N. This implies that the right hand side of (65)
is constant for eaclt. Sinced), = wo, T # 0 and the left
hand side of (65) is constant only if it is zero. This implies a
circular relative equilibrium centered &t,. [ |
A. SE(2) Symmetry Breaking Next, we break thes! rotational symmetry of the control
The control (19) depends only on the relative spacigg= (19) by introducing a heading referenég, wherefy = wp.
rp—r;, and relative phaséy,; = 0, —6;, variables. As a result, We couple the dynamics of the particle group to the reference
the model (1) with control (19) is invariant to rigid translationdieading by adding a new coupling term to only one of the
and rotations in the plane, which corresponds to the actiongdrticles in the group. This yields the following extension of
the symmetry grou E/(2). In this subsection, we investigateTheorem 3.
breaking this symmetry first by adding a fixed beacon to breakCorollary 3: Consider the particle model (1) and a smooth
the R? symmetry and, second, by adding a heading referenglease potential/ (#) that satisfies< grad U,1 >= 0. Let

to break theS!' symmetry. ug, k=1,..., N —1 be given by (19) and
We break theR? translation symmetry of the spacing control AU — kUy)
(19) by stabilizing circular motion with respect to a fixed uny = wo(l+k <7n,7Nn >)— 900 +
beacon. LetRy, € C be the location of a fixed beacon dsi N
sin(fp — On) (66)

and (re)define the vector from the beacon to particley )
7 = rr — Ry. We obtain the following extension of Theoremwhered, = wy andd > 0. This control enforces convergence
3. of all solutions to relative equilibria as in Theorem 3. In ad-

Corollary 2: Consider the particle model (1) and a smoothition, relative equilibria with phase arrangement minimizing
phase potential/ (#) that satisfies< grad U,1 >= 0. The U and satisfyingd = 6, define an asymptotically stable set.
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Proof: Consider the potential

150F
W(r,0) =V(r,0)+ d(1 — cos(6y — n)) (67) 100}

with V(r,8) given by (20). The time-derivative dfi’ along 50f //// \ B D
the solutions of the particle model is ofl i \

W=V 4+ dsin(90 — 91\])(90 — 91\[) (68) y -sor A \\ //// \‘\\

. -100 AN o \

The control law (66) withfy = wo anduy given by (19) for isok \ ]
k=1,...,N—1resultsinW = — fo:l(uk—wo)? Solutions C \' ¢ Q\
therefore converge to the largest invariant setvhere (24) 2001 ®
holds fork = 1,...,N — 1. The N — 1 equationsP;s = 0, -250f E )8
k=1,...,N —1, imply Ps = 0 because the matri® has 300} 1
rank N — 1. Likewise, the N — 1 equations{i- = 0, k = e
1,...,N — 1, imply gradU = 0 because the Hessian 6f X

has rankN — 1. The relationuy = wo then reduces to
Fig. 5. Trajectory tracking withNV = 12 starting from random initial
dsin(6y —On) =0 (69) conditions. The reference input is a piecewise-linear curve. The behavior
sequence starts in the vicinity of A by stabilizing circular motion with
which implies thatdy = 6y or 6y + w. Therefore, relative wo = 1/25 and then follows Acircular-to-parallel, B parallel-to-parallel
g : _ : I : and Cparallel-to-circular. This sequence repeats for the points C, D, and E
equlllbn?‘ withy = 6o Whlqh mlnlmlzeV are asymptotically and then ends with theircular-to-circular behavior at E withvg = —1/50.
stable since they also minimize the potentil B See text for control parameters.
We note that in the casey = 0, Corollary 3 proves
asymptotic stability of parallel collective motion to a fixed

heading referencef,. We use this result in the following to this behavior are the parametess, # 0 andx > 0, the

subsection. initial center of mass of the groui,, and the phase potential
U(0). The impulsive control used to align the particles in the
B. Trajectory tracking with behavior primitives input rotation direction is given by

We use the control (19) to define four behavior primitives
which can be combined to track piecewise-linear trajectories
following [18]. The behavior primitives include impulsiveThe feedback control used to stabilize circular motion is of
controls to align the particles with the reference input trahe form (63), which is (19) withF, = r, — Ry, whereRy is
jectory and feedback controls to stabilize this trajectory. Thefixed beacon and’; is removed.
behaviors are referred to asrcular-to-parallel, parallel-to- Circular-to-circular.  Starting from circular motion, this
parallel, parallel-to-circular, andcircular-to-circular. In par- behavior stabilizes circular motion with a different radius, i.e.
allel motion, the group center of mass follows a fixed referencilation/contraction, about the same fixed reference. The input
heading. In the circular state, particles circular a fixed beactm this behavior are the parametets; # 0 and x > 0,
with a prescribed radius and sense of rotation. the initial center of mass of the group,, and the phase

Circular-to-parallel. Starting from circular motion, this potential U (). There is no impulsive control used to realign
behavior stabilizes parallel motion along a fixed refereneRe particles. The feedback control used to stabilize circular
heading. The inputs to this behavior are the reference headingtion is of the form (63), which is (19) with, = r, — Ry,
6y, and the gaind. The impulse control which aligns thewhereR, is a fixed beacon antl; removed.
particles in the reference direction is Next, we use the behavior primitives to construct a behavior
sequence that tracks a sample reference trajectory. The admis-

NGy, = arg(iwoTy) — O. (71)

20k = 0o = O (70) sible references are piecewise-linear paths specified by a list of
The feedback control that stabilizes parallel motion is of theesired heading and duration pairs. An example of trajectory
form (19) fork = 1,...,N — 1 and (66) fork = N with tracking is shown in Figure 5. In this example, twelve particles
wo=rk=0andU = KUy, K <0. start from random initial conditions in the vicinity of the origin

Parallel-to-parallel. Starting from parallel motion, this be- (point A). Each step in the behavior sequence is simulated for
havior stabilizes parallel motion along a different referenc0 time steps. The behavior sequence starts by stabilizing
trajectory. The inputs to this behavior are the new referencicular motion about the origin withoy, = « = 1/25,
heading,fy, and the gaind. The impulsive control used to Ry = 0, andU(6) = 0. The next behavior in the sequence
align the particles in the input direction is given by (70). Thes circular-to-parallel with reference heading, = /8 and
feedback control that stabilizes parallel motion is of the formain d = 1/N, which takes the sensor network from point
(19)fork=1,...,N—1and (66) fork = N withwyg =x =0 A to point B in Figure 5. At point B, the behavigrarallel-
andU = KUy, K < 0. to-parallel is used to track the reference inplif = —37/8

Parallel-to-circular. Starting from parallel motion, this to point C. Then theparallel-to-circular behavior stabilizes
behavior stabilizes circular motion about the location of thercular motion about a fixed center of mass with= —1/25,
center of mass at the time the behavior is initiated. The inpgit= |wy|, andU(0) = 0. The sequence is repeated for the
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points C, D, and E. Lastly, theircular-to-circular behavior the present paper. This setup has already been successfully
stabilizes circular motion in the same direction with the nedemonstrated in a simulated pilot study [29] and will be
radiuspy = |wo|~! = 50 andU(0) = 0. used in a major field experiment with a fleet of ten or more
autonomous underwater gliders in Monterey Bay, California,
C. Relevance and limitations for engineering applications throughout the month of August 2006. We note that the
The proposed coordinated group trajectory design methadl-to-all communication setting works best for this ocean
ology has been developed on the basis of simplified partidampling application because the vehicles do not communicate
models. We briefly discuss the relevance and the limitatiodgectly with one another but rather each communicates (albeit
of the proposed approach to thengineering applications asynchronously) with a common central computer.
presented in the introduction, in particular in the context of Decoupling the collective trajectory design problem from
the specific ocean sampling application that motivated mutie individual reference tracking problem does not mean that
of this work. the setup of the present paper is sufficient to address all of the
Models of point-mass particles steered at constant speed i@y challenges of collective engineering applications. For
a simplification of models that include variable speed and rigidstance, the issue of avoiding collisions (between vehicles
body dynamics. Our approach is to decouple the trajectasy between vehicles and obstacles) is not addressed in the
design problem, that we primarily view ascallectivedesign present paper. For the described ocean sampling application,
problem, from the tracking control problem, that we primarilyhe spatial scales are such that collision avoidance is not a
view as anindividual design problem. This decoupling mayprimary issue for the trajectory generation controller. Rather, it
not hold in full generality but is reasonable in applicationis a design specification for the individual controllers. In other
where the time-scale of the collective mission is significantlgpplications, such as collective flight in narrow formations,
slower than the time-scale of the individual dynamics; see, foollision avoidance might be a primary issue that should be
example, the experimental results in [29]. addressed at the level of the coordinated trajectory design.
In such situations, we envision the use of the controlleGontrol laws with this capability have been proposed in [1] and
constant-speed, particle models primarily in the task of trajeitis of interest in future research to include collision avoidance
tory design (and related collective optimization designs). Thiis the present setting.
means that given an initial condition and a desired collective There are several further stability and robustness issues that
motion for the group, the simulated closed-loop trajectory @ilso deserve to be addressed at the group level and not only
the particle model provides a reference trajectory for each aif the individual level. A concrete example in the context of
the vehicles. In such a scheme, each vehicle is equipped wllk ocean sampling application is the issue of sea currents. In
an internal tracking controller whose task is to resolve theal ocean conditions, currents can be of the same magnitude
discrepancies between the reference and the actual trajectorygreater than the propulsion capability of some underwater
The natural place to use a more detailed model is in tlhehicles. As a consequence, they should be taken into account
design of the tracking controller of the individual vehicleseven in the simplified models used for the trajectory design.
This hierarchical control scheme is common in applicationBurther collective measures, such as the string stability notion
It does not necessarily imply that the design of the referencensidered in the framework of vehicle platooning [30], may
trajectories be offline and centralized. In fact, the wholgrove useful to assess the relevance of the proposed approach
purpose of the present work is to make the design of sutdengineering applications.
reference trajectorieadaptiveand decentralized This means
that the initial conditions of the controller that produces the
coordinated trajectory design will be continuously refreshed
but typically at a slower time scale than the time scale of the This paper proposes a design methodology to stabilize
individual tracking controllers. The all-to-all communicatiorisolated relative equilibria in a model of all-to-all coupled
setting of the present paper limits application to a centralizédentical particles moving in the plane at unit speed and
path planning controller, but this limitation will be overcomesubject to steering control. The stabilizing feedbacks derive
in a companion paper. from potentials that reach their minimum in the desired config-
In the ocean sampling application described in [10], weration and possess no other identified local minima. Lyapunov
provide further details on the integration of the proposeahalysis of the closed-loop system thus proves exponential
design in a sensor network of underwater vehicles. In thésability of the desired equilibria and suggests almost global
application, the collective task is to maximize the informatiopnonvergence properties.
intake. Solving this dynamic optimization problem over the Stabilization of the phase variable®,, is based on min-
individual trajectories is a formidable and unrealistic task imizing or maximizing successive momenta associated to
a changing environment that involves several distinct tinthe N phasors,e’*. The m-th moment is minimum when
scales. We rather propose to restrict the optimization problgrarticle phases balance mod@e/m and is maximum when
over the few parameters that define simple collective shag#®ases synchronize modulr/m. For parallel formations,
like the ones proposed in this paper. We explicitly discussaximizing the first moment results in synchronization of the
an example involving several vehicles tracing elliptical shapesientations and a spacing potential can be added to (locally)
with prescribed relative spacing around the ellipses; this resrrect the relative distances between particles. For circular
quires some generalization of the circular shapes discussedormations, a spacing potential is proposed that reaches its

IX. CONCLUSION
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minimum when all particles orbit the same point. This spacirge] E. Justh and P. Krishnaprasad, “A simple control law for UAV formation
potential is combined with the phase potentials in order to
stabilize symmetric pattern circular configurations. The Iagltﬂ
section of the paper proposes a low-order parametrized family
of stabilizable collectives that can be combined to solve pat[qé]
planning or optimization problems at the group level.

The results of the paper rest on two idealistic assumptions:
all-to-all communication and identical individuals. The ag®]
sumption of all-to-all communication is completely relaxed

in a companion paper where we extend the present resydty

to restricted communication topologies. The assumption of
identical individuals is fundamental to the symmetry propertiqﬁ]
of the closed-loop vector field, but the exponential stability
of isolated relative equilibria implies some robustness of thé?!
corresponding collective motions to individual variations. It ing]
of interest to study in future work how the ideally engineered
models considered in this paper may help in capturing grdsé!
dynamical properties of more realistic simulated multi-agent

models or empirical observations of animal groups.
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