Répondez à chaque question sur une feuille séparée sur laquelle figurent nom, prénom et section.
Soyez bref et concis, mais précis.

1. Une compagnie d’assurance désire implémenter une base de données lui permettant de gérer ses activités. Ces dernières sont organisées de la manière suivante.

 - La compagnie comporte un certain nombre d’agences décrites par un nom unique et une adresse. Chaque agence est dirigée par un directeur.
 - Les membres du personnel sont caractérisés par un code unique, un nom, un prénom et une fonction (directeur, responsable client, secrétaire, avocat, ...). Chaque membre du personnel est associé à une seule agence.
 - Les services fournis par la compagnie sont des contrats d’assurance. Chaque contrat est identifié par un numéro unique au sein de la compagnie. À chaque contrat sont associés un souscripteur, une agence (endroit de souscription), le montant et une période d’application (date début et date fin). En fin de contrat, ce dernier peut être renouvelé. Dans ce cas, le numéro est inchangé, les dates et éventuellement d’autres informations sont modifiées (l’agence conserve toutefois un historique complet).
 - Les informations concernant les clients (nom, prénom, adresse et code identifiant) sont insérées dans la base de données lors de la première souscription.

 (a) Dessinez un diagramme entités-relations conforme à la description ci-dessus. Précisez les clés des ensembles d’entités et des relations, ainsi que les contraintes d’intégrité non représentées dans le diagramme entités-relations.
 (b) Effectuez la conversion de ce diagramme vers le modèle relationnel.
 (c) Donnez une couverture de l’ensemble des dépendances fonctionnelles et dépendances à valeurs multiples satisfaites par chaque relation obtenue. Précisez les clés de chaque relation.

2. Calcul relationnel

 (a) Définissez le domaine effectif d’un attribut par rapport à une formule ψ du calcul relationnel tuple.
 (b) Définissez la classe des formules sûres du calcul tuple.
 (c) Donnez un exemple de formule sûre et un exemple de formule non sûre. Justifiez.

3. Dépendances fonctionnelles.

 (a) Présentez le système axiomatique d’Armstrong.
 (b) Soit $R(A, B, C, D, E)$, un schéma de relation et $F\{A \to B, BC \to AD, CD \to E\}$, l’ensemble de dépendances satisfaites par R.
 Démontrez en utilisant les axiomes d’Armstrong que $F \models AC \to E$.

4. La base de données d’une bibliothèque contient la relation Livres contenant les attributs suivants : Titre, Année, Nom_Auteur, Prénom_Auteur, Code_Auteur, Code_Bibli, Numéro_Exemplaire, Disponibilité. Cette relation décrit la disponibilité des exemplaires de la bibliothèque.

 Cette relation satisfait les contraintes suivantes :
 - Chaque auteur est identifié par un code unique au sein de la bibliothèque (Code_Auteur).
 - La bibliothèque peut posséder plusieurs exemplaires du même livre.
 - Un livre peut avoir plusieurs auteurs.
- Un auteur peut avoir écrit plusieurs livres.
- Tous les exemplaires d’un même livre possèdent le même code, unique au sein de la bibliothèque (*Code_Bibli*)
- L’association d’un code de livre (*Code_Bibli*) et d’un numéro d’exemplaire (*Numéro_Exemplaire*) identifie un exemplaire.

(a) Traduisez les contraintes précédentes en termes de dépendances fonctionnelles et/ou à valeurs multiples.
(b) Indiquez dans quelles formes normales 2FN, 3FN, BCNF ou 4FN se trouve le schéma de relation *LIVRES* par rapport à l’ensemble de dépendances définies en (a).
(c) Si le schéma n’est pas en 3 FN, donnez une décomposition de ce schéma qui soit sans perte par rapport à l’ensemble de dépendances. Indiquez si cette décomposition préserve les dépendances fonctionnelles de l’ensemble.

5. La base de données d’une compagnie offrant des services de téléphonie GSM contient les relations suivantes :
- *Client*(id_client, nom, prénom, adresse) associant les nom, prénom et adresse d’un client avec son code d’Identification.
- *GSM*(numéro, id_client) associant un client à chaque numéro de GSM géré par la compagnie.
- *Appels*(numéro_appelant, numéro_appelé, date, heure, durée) répertoriant tous les appels émis à partir des GSMs.

Soient les deux requêtes :
(a) Rechercher le nom et l’adresse des clients qui ont téléphoné le 5 avril 2001.
(b) Rechercher le numéro d’identification des clients qui ont appelé plusieurs fois le même numéro au cours d’une journée.

Exprimez chacune de ces requêtes en algèbre relationnelle, en calcul relationnel-domaine et en SQL.

6. Implémentation des opérations de l’algèbre relationnelle,
(a) Estimez la complexité totale de la requête suivante (le résultat doit être trié) :
\[\pi_X(\sigma_{A=a}(r_1 \bowtie r_2) \cup r_3) \]. Justifiez.
(b) Discutez les optimisations possibles.

7. Gestion des transactions,
(a) Décrivez la règle des 2 phases.
(b) Que permet-elle de garantir ? Démontrer.
(c) Quels problèmes peuvent encore survenir lorsqu’elle est utilisée. Expliquez.

8. Bases de données déductives
(a) Quand peut-on dire qu’une interprétation \(\mathcal{I} \) est un modèle d’une formule logique \(A \)?
(b) Soient \(A \) et \(U \), deux formules logiques. Sous quelle(s) condition(s) a-t-on \(U \models A \) (\(A \) est une conséquence logique de \(U \)).
(c) Comment définit-on l’extension d’un prédicat dérivé d’une base de données déductive ?
(d) Spécifiez les conditions pour qu’une interprétation \(\mathcal{I} \) d’une base de données déductive soit dite de Herbrand.
(e) Décrivez brièvement une méthode d’évaluation des prédicats dérivés d’une base de données déductive.