ANALYSIS OF FEEDBACK SYSTEMS: THEORY AND COMPUTATION HOMEWORK 1

RODOLPHE SEPULCHRE

 Let H(s) be a (SISO) transfer function with no poles in the right half plane and H the (causal) operator associated to H(s). Show that the L₂-gain of H satisfies

$$\gamma_2 = \sup_{\omega \in \mathbb{R}} |H(j\omega)|$$

and that the \mathcal{L}_{∞} -gain of H is

$$\gamma_{\infty} = \|h\|_{1}$$

where h is the impulse response associated to H(s). (Hint: Establish first the inequality \leq . Then construct a sequence of signals for which the upper bound is attained in the limit).

Estimate the difference between the two gains for $H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ as $\zeta \to 0$.

- (2) Under the same assumption, consider the feedback interconnection of H with a time-invariant sector nonlinearity $\phi(\cdot) \in \text{Sector } [-1, 1]$.
 - (a) Derive a stability criterion from the small-gain theorem.
 - (b) Derive a stability criterion from the passivity theorem (hint: to reduce the conservatism, consider applying first a loop transformation that maps $\phi(\cdot)$ in the sector $(0,\infty)$).
 - (c) Interpret the criteria (a) and (b) as a graphical conditions on the NYQUIST curve of H.
 - (d) Show the equivalence of the two conditions using the conformal mapping $\frac{z-1}{z+1}$ in the complex plane.
- (3) Consider the feedback loop

- (a) Estimate the maximal gain K_{max} that ensures stability of the feedback system.
- (b) Can you obtain a less conservative estimate if $\tau = 0$ (no delay)?