$\begin{bmatrix} I \end{bmatrix}$ $\begin{bmatrix} I \end{bmatrix}$ $\mathfrak{l}=\mathfrak{A}$.əldatə zi mətəyə əht nəht
$\sum_{N} \gamma^{k} \left[\underbrace{\mathcal{O}(\mathfrak{j}m)}_{k} \right]_{*} \sqcup^{\mu} \left[\underbrace{\mathcal{O}(\mathfrak{j}m)}_{k} \right]_{*} = 0, \forall m \in [0,\infty]$	$[\infty, 0] \ni \omega \forall 0 > \begin{bmatrix} I \\ (\omega) \end{bmatrix} (\omega) \begin{bmatrix} I \\ (\omega) \end{bmatrix} (\omega)$
• Resulting stability test	
	$0 > c_{C} \square bne 0 < c_{II} \square (iii)$
	$(ii) \Delta \in IQC(\Pi)$
Ισς(μ¹)	pəsod-yəm si mətəvəs əh T (i)
	$P_{2\mathfrak{s}}[U,\infty)$. $P_{2\mathfrak{s}}[U,\infty)$
where $\lambda_k \ge 0$	Theorem 1. Let $G \in \mathbf{RH}_{\infty}$, and let Δ be bounded, causal on
• If $\Delta \in IQC(\Pi_k)$, $k = 1, \ldots, N$, then also $\Delta \in IQC(\sum_{k=1}^N \lambda_k \Pi_k)$,	
• We use convex parameterizations.	
 I here are generally many IQCs. 	
	noitevitoM :e2QI to noitezimitqO
U. Jönsson, KTH 2 Louvain-la-Neuve, Feb 16-19, 2004	1 HTX , nozznölU Art
 J. Optimization of IQCs Motivation Algorithms Algorithms Discrete Toolbox Environments Tutorial on the IQC part of the toolbox 	Control of IQCa Department of Mathematics الا التجانبانية مناع Systems Theory Department of Mathematics الامها التجانبانية من الحداساموي (لاتلا) Stockholm, Sweden Stockholm, Sweden
əniltuO	

U. Jönsson, KTH

.9ldats vi m9tsve oht n9ht

ε

Louvain-la-Neuve, Feb 16-19, 2004

U. Jönsson, KTH

4002 ,01-81 ds7 ,9vusN-61-nisvuo2

U. Jönsson, KTH

Louvain-la-Neuve, Feb 16-19, 2004

Louvain-la-Neuve, Feb 16-19, 2004

Example 1. Consider the IQC with

$$_{L}X = X$$
 $`0 \leq _{L}X = X$ $\left[\begin{matrix} X - & _{L}X \\ X \end{matrix} \right] = \Box$

If we use the parametrizations (where N = N and N = N) are the parametrizations (where N = N

$$\begin{aligned} \text{tpen } \mathbf{V} &= \left\{ \mathbf{y} \in \mathbf{B}_{5N-u} : X(\mathbf{y}) \ge \mathbf{0} \right\} \\ & \left[\begin{array}{cccc} \vdots & \vdots & \ddots \\ \gamma^3 & \gamma^{u+5} & \gamma^{5u} & \cdots \\ \gamma^5 & \gamma^{u+1} & \gamma^{u+5} & \cdots \end{array} \right] \\ X(\mathbf{y}) &= \left[\begin{array}{cccc} \vdots & \vdots & \ddots \\ -\gamma^{N+1} & \mathbf{0} & \gamma^{N+1} & \mathbf{0} \end{array} \right] \\ & \mathbf{y}^{N+1} & \mathbf{y}^{N+2} & \cdots \end{array} \right] \end{aligned}$$

$$\left\{ \mathsf{0} \leq (\mathsf{\lambda}) X : {}^{n-N\mathsf{S}} \mathsf{R}
i \mathsf{\lambda}
ight\} = \mathsf{\Lambda}$$
 nəht

KYP Lemma		noitezimita0 201			
Louvain-la-Neuve, Feb 16-19, 2004	07	HTX ,nozznöl. U	Louvain-6-16-19, ds ⁻ 1,evus	6	U. Jönsznöl, W

 $\{\omega \forall 0 \leq (\lambda, \omega \forall x : \lambda) = \Lambda$

 $\left(\frac{\eta - \eta - \eta}{\eta - \eta} + \frac{\eta - \eta}{\eta - \eta}\right) \sum_{i=-1}^{N} + \frac{\eta - \eta}{\eta - \eta} = (\chi, \omega_i) x$

 $\Pi(j\omega) = \begin{bmatrix} 0 & -x(j\omega) \\ x(j\omega) & 0 \end{bmatrix}, \quad \text{where } x(j\omega) \ge 0$

where a_k are given pole locations. Convex parameter set

Use the affine parameterization

Consider the IQC with

.2 əlqmex3

tollowing are equivalent Lemma 1. Assume $j \omega \notin eig(A)$ and (A, B) stabilizable. Then the

.sixe vreigemi ent no seulevnegie on

How to solve the feasibility test:

Find $\lambda \in \Lambda$ such that

$$0 > \begin{bmatrix} I \\ (ml) \mathcal{D} \end{bmatrix} (\chi, ml) \prod^{*} \begin{bmatrix} I \\ (ml) \mathcal{D} \end{bmatrix} < 0$$

- 1. KYP lemma
- 2. Transformation to Linear Matrix Inequality (LMI)

ΤŢ

3. Fast algorithms

4002 ,01-01 def ,evuev Feb 16-19, 2004

 Kelly-type cutting plane algorithm Kelly-type cutting plane algorithm T.I.M mori sizer Chao. PhD. Action (a) Mattp://www.washi.kth.se/~cykao/pub.html 	Four recent ideas to get around the problem with large size P matrix: • Cutting plane algorithms (Kao et. al) — Use Hamiltonian to obtain hyperplanes		
emtinoglA enal9 guittuD	Fast algorithms		
• Standard LMI software works well for mid-size problems • Computationally demanding if A has high dimension since P becomes large, dim $(P) = n_A + (n_A - 1)^2/2$ U. Jönsson, KTH II (P)	$= \begin{bmatrix} (j\omega I - A)^{-1}B \\ I \end{bmatrix}^{*} \begin{bmatrix} Q(\lambda) & S(\lambda) \\ S(\lambda)^{T} & R(\lambda) \end{bmatrix} \begin{bmatrix} (j\omega I - A)^{-1}B \\ I \end{bmatrix}^{*} $ where Q, S, R are affine in λ U. Jönson, KTH 13 $I = I_{0} I$		
$\label{eq:Festive} \begin{split} F\text{easibility test: Find } \lambda \in \Lambda \text{ and } P = P^{\mathrm{T}} \text{ s.t.} \\ P^{\mathrm{T}}P + PA + Q(\lambda) + PB + S(\lambda) P \\ P^{\mathrm{T}}P + PA + Q(\lambda) + PB + S(\lambda) P \\ P^{\mathrm{T}}P + PA + Q(\lambda) + PB + S(\lambda) P \\ P^{\mathrm{T}}P + PA + Q(\lambda) + S(\lambda) P \\ P^{\mathrm{T}}P \\ P^{\mathrm$	Use state space realization of Π and G to get $\begin{bmatrix} G(j\omega) \\ I \end{bmatrix}^* \Pi \begin{pmatrix} (j\omega,\lambda) \\ I \end{bmatrix}$		

- Analytic center cutting plane algorithm
- (a) C.-Y. Kao. PhD thesis

U. Jönsson, KTH

Automatica IQC Feasibility and Optimization Problems. To appear in (b) C.-Y. Kao, A. Megretski and U. Jönsson. Fast Algorithms for

Transactions on Automatic Control, 46(4):579–592, April 2001.

Algorithm for Robustness Analysis of Periodic Systems. IEEE

(b) C.-Y. Kao, A. Megretski and U. Jönsson. A Cutting Plane

SI

Special SDP solvers (Hansson, Vandenberghe, Wallin)

- Use Hamiltonian matrix to update frequency grid

Interior path following method with barrier function defined by

- Optimize in frequency domain over a finite frequency grid

frequency domain integral (Kao and Megretski)

- Exploit structure in the LMI

Outer approximation algorithm (Parrilo)

mdtivoglA enel9 gnittuD vetneD bitylenA

It is indeed enough to find a suboptimal solution ($\bar{\lambda}, \bar{y}$) with $\bar{\lambda} \in \Lambda$ and

 $\inf_{\lambda \in \Lambda, y \in \mathbf{R}} y \quad \text{subj. to } \Upsilon(\omega, \lambda) - yI < 0, \quad \forall \omega \in [0, \infty]$

An even male optimization problem have $[0,\infty]$ iff the following optimization problem have

Note that feasibility problems also can be formulated as (1) since

Optimal performance problem

positive optimal objective

(1)
$$\inf_{\lambda \in \Lambda} c\lambda \quad \text{subj. to} \quad \Upsilon(\omega, \lambda) < 0, \ \forall \omega \in [0, \infty]$$

where $\Upsilon(\omega, \lambda)$ is defined on the next slide

the ACCPA	bnidəd zaəbl nisl	N			
<u> 161-91 (-13- № 16-119, 2004 Feb 16-119, 2004</u>	55	HTX ,nozznöl .U	2004, Feb 16-19, 2004	51	HTX ,nozznöL .U

 $\mathcal{L}(\omega,\lambda) = \begin{bmatrix} I \\ I \\ I \end{bmatrix}^{*} \begin{bmatrix} I \\ I \\ I \end{bmatrix} = \begin{pmatrix} 0 & 0 \\ -\gamma^{2}I + \Psi(j\omega) \\ 0 & 0 \end{bmatrix} \begin{pmatrix} 0 \\ -\gamma^{2}I + \Psi(j\omega) \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} I \\ I \end{bmatrix}$

- Polyhedral outer bound
- Exists oracle such that

U. Jönsson, KTH

- $c_{1}(\gamma \gamma^{k}) \geq 0$ - if the oracle detects that $\Upsilon(\omega,\lambda_k) < 0$ then introduce the cut
- otherwise the oracle generates a cutting hyperplane.

4002 ,01-01 def ,evuev Feb 16-19, 2004

 $0 > \overline{y}$

The LMI from the KYP Lemma has a specific structure Structure Preserving Interior Point Algorithms Path Following Algorithm U. Jönsson, KTH U. Jönsson, KTH Louvain-la-Neuve, Feb 16-19, 2004 <u>9</u>7 4002 ,01-01 def ,evuev Feb 16-19, 2004 52 lemma IEEE Conference on Decision and Control, 1999. P. Parillo On the numerical solution of LMIs derived from the KYP Need only "dim(Λ)" frequencies in Ω. How to drop frequencies? little more work. Can prove convergence for this case. add new frequencies to the grid 22. • Can update with worst case frequency in step 4. This requires a 3. Use KYP lemma to check feasibility. If feasible then stop otherwise 5. Go to step 2. 2. If $\gamma \ge 0$ then stop. iqot2 .sidizest stop! 1. Solve LMI problem $\min_{\lambda \in \Lambda} \gamma \quad \mathfrak{s.t.} \quad \Upsilon(\omega_k, \lambda) \leq \gamma$ for $\omega_k \in \Omega$. $\{\omega\} \cup \Omega =: \Omega$ 4. If $j\omega \in eig(\mathcal{H}(\lambda_{opt}))$ then $(\lambda_{opt}$ from step 2.) 3. If $\gamma \ge 0$ then unfeasible. Stop! $((\Lambda, \omega \eta) \Upsilon)_{\mathsf{xem}} \Lambda_{\Omega \ni \omega} \mathsf{xem}_{\Lambda \ni \lambda} \mathsf{mim} = \gamma . \mathfrak{L}$ maum m a u m (γ, α) $\{0\} = \Omega$ silalize $\Omega = \{0\}$ Outer Approximation

$$\mathbf{0} > (\mathbf{\gamma})_{W} + \begin{bmatrix} \mathbf{0} & I \end{bmatrix}_{L} \mathbf{b} \begin{bmatrix} I & \mathbf{0} \end{bmatrix} + \begin{bmatrix} W \end{bmatrix}_{L} \mathbf{0} \begin{bmatrix} I & \mathbf{0} \end{bmatrix}_{L} \mathbf{0}$$

- \bullet Most of the variables are usually in P. Exploit this structure!
- Two different algorithms have been suggested in e.g.

quadratic constraints LiTH-ISY-R-2502, Mar 2003. structure-exploiting optimization algorithms for integral R. Wallin, A. Hansson, L. Vandenberghe Comparison of two

- Conjugate gradient based method
- Reduction of the number of variables

C.-Y. Kao. PhD Thesis.

 $(\chi) B \mu + \chi_{2} \ln(\lambda)$

optimization problems American Control Conference, 2003.

C.-Y. Kao and A. Megretski A new barrier function for IQC

 $B(\lambda) = \log\left(\frac{1}{\pi} \int_{-\infty}^{\infty} tr(\Upsilon(\omega, \lambda)^{-1}) \frac{d\omega}{\pi}\right) gol = (\lambda)B$

U. Jönsson, KTH

 Two modes of operation Graphical user interface (GUI) Command line mode The IQC environment Definition of IQC 	I. Standard LMI problems inf c λ subj. to $F(\lambda) := F_0 + \sum_{i=1}^m \lambda_i F_i > 0$ 2. Frequency dependent LMI problems inf c λ subj. to $H(\omega, \lambda) := H_0(\omega) + \sum_{i=1}^m \lambda_i H_i(\omega) > 0$
Tutorial	Abstract Environments
U. Jönsson, KTH and Son KTH and Son KTH and Son KTH	U. Jönsson, KTH 29 Louvain-la-Neuve, Feb 16-19, 2004
 I. Early versions IQCTools (94-96) by Jönsson and Rantzer, LTH. An interface inspired by the Mu Toolbox. Toolbox (around 94-96) by Megretski and Cygankov. Equipped with a graphical user interface. The IQC toolbox IQC/3 (97) Initiated by Megretski. The idea was to exploit new features in optimization. The code, installation instructions, and manual can be found at the homepage of Chung-Yao Kao The tomepage of Chung-Yao Kao 	 History Environments Tutorial on the IQC part of the toolbox
Background	χοάΙοοΤ ϽΩΙ ϶άΤ

3. Robustness analysis in the IQC framework

11

6. Example

5. Optimization Code

35

Example: $w = \Delta v$, $\ \Delta\ _{\mathbf{H}_{\infty}} \leq 1$ We can use the IQC $\int_{-\infty}^{\infty} (\widehat{v}^* X(j\omega) \widehat{v} - \widehat{v}^* X(j\omega) \widehat{w}) d\omega \geq 0$ where $X(j\omega) = X(j\omega)^* \geq 0$. We use the following parametrization $\chi(s) = X_0 + \sum_k X_k \frac{1}{s + a_k}, X_k = X_k^T \geq 0$ $X(s) = \chi(s) + \chi(s)^*$	<pre>abst_init_iqc; G=ss(A,B,C,D); f=signal(n); w=ds(w+f); X=symmetric(n); X>0; Y=skew(n); iqc_gain_tbx(f,V) iqc_gain_tbx(f,V)</pre>
Definition of IQC-Blocks	
Example 1: Compute gain $f \to v$ of v = G(w + f) v = G(w + f) $w = \delta v, \delta(t) \in [-1, 1]$ We can use the IQC $\int_0^\infty (v^T X v - w^T X w + v^T Y w) dt \ge 0$ where $X = X^T \ge 0$ and $Y^T = -Y$.	 Linear matrix inequalities (LMI) Frequency dependent LMI Frequency dependent LMI Example of "abst" types to define descriptions Example of "abst" types to define descriptions Linear: A'*P+P*A Linear: A'*P+P*A Linear: A'*P+P*A Linear: A'*P+P*A aignal: constant LTI transform A*v; G*v aignal: constant LTI transform A*v; G*v varsignal: transpose of signal v' dform: quadratic form v'*X*v-w'*X*w>0 iqc: inequality of qforms v'*X*v-w'*X*w>0 iqc: inequality of qforms v'*X*v-w'*X*w>0 iqc: inequality of signals w==v
sDQI fo noitinif9D	Description :

4002 ,01-∂1 də7 ,9vuэN-в1-півvuoJ

0†

<u>6</u>E

	της_multi_harmonic	multi-harmonic oscillation			
	m.nisgitl_opi	nuknown constant	white noise performance ide.m		
	iqc_harmonic	harmonic oscillation	dominant harmonics iqc_domharmonic.m		
	iqc_delay1	uncertain delay (simple)	Block name M-file name		
	iqc_delay	uncertain delay			
	üqc_cdelay.m	сqејау			
	əmen əlit-M	Block name	Predefined IQC blocks		
4002 ,eI-∂I də7 ,əvu9N-al-nisvuoJ	45	U. Jönsson, KTH	U. Jönsson, KTH 41 Louvain-la-Neuve, Feb 16-19, 2004		
			(О<М+Д+ М У+Д+ V		
			:0 <x< td=""></x<>		
;Lzw==w		;[zw==w	end		
;(s,v)ψπίεττθραμ_ppi==[X,[zw]		əɔnu_ɔpi==[X,law]	;(((X)s+z)\t)*XX+X=X		
			Xk=symmetric(n);		
OĽ		OL	IOL K=I:TGUGCU(3)		
	:(Ρ'Λ)λ	านาซาเสอวนก_วุbi==พ			
	(0).	+4:0+400400 00:	(u) (u)		
		This is used either as	:(([.v)95i2)[6m9i2=W		
			(s,v)ψtaistrecuncopi=w noitonul		
			asiteaut delte MA a sa asitiaite MA add adT		

m.rotsez-spi	sector
m.tɔəv_voqoq_ɔpi	popov IQC
m.voqo <u>-</u> ppi	sector+popov
iqc_ratelimiter	rate limiter
ш. эіпотопо <u>т</u> эрі	monotonic with restricted rate
m.mronvtl_opi	L2 norm-bounded general block
iqc_dzn_e_odd	əuozpeəp ppo pətelusqeənə
ə −uzp- ɔbī	əuozpeəp pətelusqeənə
iqc_d_slope_odd	odd nonlinearity version of iqc_d_slope
éqola_b_opi	repeated diagonal slope-restricted nonlinearity
əmɛn əliî-M	Block name

t3

т

4002 ,01-∂1 d∋7 ,9vu∍N-61-nievuoJ

wobniw

TV scalar

STV scalar

bolytope

polytope with restrict rate

m.wobniw_opi

ш.vtwola_эрі

m.rstssavi_opi

m.eqolytopi

m.qvj2_9qojvloq_opi

Optimization Code

Aumerical Example

- Space shuttle lateral axis flight control system
- . Isunsm sloot-u ant ni alqmexa ne mort batqaba ullet
- The example is taken from

Kao, Megretski, Jönsson, Rantzer A MATLAB Toolbox for Robustness Analysis

where it was adapted from

C.-Y. Kao "Efficient Computational Methods for Robustness Analysis". Department of Mechanical Engineering, MIT. September 2002. http://www.math.kth.se/~cykao/pub.html

.səlqmexə sitricə	too slow for many r
the current version of the Matlab LMI toolbox is	• The SDP solver in t

- Special purpose codes are being developed
- 1. Cutting plane algorithms by C.-Y. Kao
- 2. Path following algorithms by C.-Y. Kao
- 3. Various structure exploting SDP solvers by Hansson, Vandenberghe and Wallin

S†

1+

$(p,r,n_y,\phi) \xrightarrow{W_{n}} (p,r,n_y,\phi) \xrightarrow{W_{n}} (p,r,n_$		
	<pre>abst_init_iqc; w_unct = signal(9); w_waitu = signal(2); w_wwind = signal(2); w_ueitu= SC [w_L;w_satu;w_wind]; w_L = WL*w_unct; v_L = output_SS(1:3); output_sCS = SC:[w_L;w_satu;w_wind]; nutput_sCS = SC*[w_L;w_satu;w_wind]; nutput_sCS = AC1*output_ctr1(1); nutput_sCS = AC1*output_ctr1(2); nutput_sCS = AC1*output_sC1, nutput_sC1; nutput_sCS = AC1*output_sC1; nutput_sC1; nutput_sCS = AC1*output_sC1; nutput_sC1; nutput_sCS = AC1*output_sC1; nutput_sCS = AC1*output_sC1; nutput_sCS = AC1*output_sC1; nutput_sC1; nutput_sCS = AC1*output_sC1; nutput_sC1; nutp</pre>	$(p, r, n_y, \phi) \xrightarrow{\Psi_{R}} A^{W} \xrightarrow{W_{L}} W^{L}$

ULIN 'UOSSUOC 'O

U. Jönsson, KTH

U. Jönsson, KTH

Louvain-la-Neuve, Feb 16-19, 2004

Louvain-la-Neuve, Feb 16-19, 2004

- Choice of basis for the IQC is important for feasibility.
- Advanced IQC were used for the multiple repeated nonlinearity. If

$$\begin{bmatrix} (x)\phi\\ (x)\phi \end{bmatrix} = (x)\phi$$

where $\phi \in \text{slope}[0, 1]$ then $\sigma_{ZF}(v, \Phi(v) = \langle \Phi(v), (\Upsilon - H)(v - \Phi(v)) \rangle \geq 0$, where $- \Upsilon = \Upsilon^T \in \mathbf{R}^{2 \times 2}$ has non-positive off diagonal elements $- h : \mathbf{R} \to \mathbf{R}^{2 \times 2}$ be a symmetric matrix valued function s.

2002 ,e1-81 de⊐ ,evueN-el-nievuoJ	09	U. Jönszon, KTH	↓002 ,eI-∂I də7 ,əvuəN-el-nievuoJ	67	U. Jönsznöl, WTH
			ica 37(5), 2001.	temotuA zeitireenilno	repeated n
			Its for analysis of systems with	nato, et. al. New resu	F. J. D'An
ing the S-procedure.	ven for a few cases us	• Necessity is prov	$\ u,\ldots, \mathbf{f}=i \forall ,\mathbf{f} \ _{\ell i} \Lambda$	$\ \sum_{i=i}^{n} + _{ii} T \sum_{i \neq i, i \neq j} \sum_{i=i}^{n} T $	r_{ii} T
.slengis	arizations of the input	– IQC characté	.t.s noitonut beulev xir:	² be a symmetric mat	$- y : \mathbf{B} \to \mathbf{B}_{5 \times 7}$
2-performance.	$ ightarrow {f L}_{\infty}-$ gain, robust ${f H}$	– L 2-gain, L 2	in diagonal elements) əvijisod-non sen	$\mathbf{H} \ni \mathbf{J} = \mathbf{I} - \mathbf{H}$

Concluding Remarks

ullet We do not need to rearrange the system on the G- Δ form before

• Performance analysis using IQCs

using IQCbeta.