
FAST MULTI-CLASS IMAGE ANNOTATION WITH RANDOM
SUBWINDOWS AND MULTIPLE OUTPUT RANDOMIZED TREES
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Abstract: This paper addresses image annotation, i.e. labelling pixels of an image with a class among a finite set of
predefined classes. We propose a new method which extracts a sample of subwindows from a set of annotated
images in order to train a subwindow annotation model by using the extremely randomized trees ensemble
method appropriately extended to handle high-dimensionaloutput spaces. The annotation of a pixel of an
unseen image is done by aggregating the annotations of its subwindows containing this pixel. The proposed
method is compared to a more basic approach predicting the class of a pixel from a single window centered on
that pixel and to other state-of-the-art image annotation methods. In terms of accuracy, the proposed method
significantly outperforms the basic method and shows good performances with respect to the state-of-the-art,
while being more generic, conceptually simpler, and of higher computational efficiency than these latter.

1 INTRODUCTION

In this paper, we propose a new supervised learn-
ing approach for fast multi-class image annotation.
Given a training set of images with pixel-wise la-
belling (i.e. every pixel is labelled with one class
among a finite set of predefined classes), the goal is
to build a model to predict accurately the class of
every pixel of any new, unseen image. We distin-
guish this problem from image classification (where
the goal is to assign classes to entire images), image
segmentation (where the goal is to partition images
into coherent regions without semantic labelling), ob-
ject detection (where the goal is to determine if an
object of a certain type is present in an image), and
image retrieval (where the goal is to retrieve images
similar to a set of given images). In some sense,
image annotation could be considered as the joint
detection, recognition, and segmentation of (multi-
ple) objects in one image. Image annotation is also
named image labelling in (He et al., 2004), simulta-
neous object recognition and segmentation in (Shot-
ton et al., 2006), background/foreground separation
or figure/ground segregation (when only two classes
are defined) in (Yu and Shi, 2003). Examples of im-

ages and their annotation are given in Figure 1. Since
manual annotation is labor intensive and some ap-
plications require the annotation of thousands of im-
ages, there is a strong need for automatic annotation
tools. Moreover, possible applications of such tech-
niques are numerous, eg. in aerial photography analy-
sis or in biomedical problems where high-throughput
microscopy systems can generate thousands of im-
ages daily that represent very different phenotypes un-
der various experimental conditions. In this context,
generic methods that can automatically learn to adapt
to problem specificities are strongly needed.

Figure 1: Examples of images (left) with their manual an-
notation (right). Each color on the right images representsa
different class.

Several methods have been proposed in the lit-
erature to automatically annotate images. Some of



them are ad-hoc methods developed for specific im-
age families while others seek to be more generic.
In (Cour and Shi, 2007) and (Borenstein and Malik,
2006), a bottom-up approach is used to segment horse
images into coherent regions and a top-down method
groups the segments into larger regions. The method
of (Meurie et al., 2003) was applied to cell images
and consists in simplifying the images by filtering, us-
ing a SVM pixel classifier, realizing a marker extrac-
tion and finally, applying color watershed segmenta-
tion. In (Bertelli et al., 2007), a method is proposed to
separate foreground and background of retina images,
based on the minimization of a cost function express-
ing the dissimilarity between the image to annotate
and a reference image. Several authors (Shotton et al.,
2006; Shotton et al., 2007; He et al., 2004; Verbeek
and Triggs, 2007) have proposed to use conditional
random field models for image annotation. These ap-
proaches differ in the features that are exploited in
the model (which are based on texture, shape, color,
layout, location...), the incorporation of local and/or
global information, and in the way the model param-
eters are learned.

Our starting point in this paper is the image clas-
sification method of Marée et al. (Marée et al., 2003;
Marée et al., 2005) based on the extraction of ran-
dom subwindows, their description by raw pixel val-
ues, and their classification by extremely randomized
trees (Geurts et al., 2006a). Randomization of patch
extraction was first proposed in (Marée et al., 2003)
for image classification and subsequently in (Marée
et al., 2005; Nowak et al., 2006). To the best of
our knowledge it was never considered for multi-class
pixelwise labelling. Different variants of randomized
trees were used in the recent years by an increas-
ing number of computer vision researchers, respec-
tively for content-based image retrieval (Marée et al.,
2007; Philbin et al., 2007), keypoint tracking (Lepetit
and Fua, 2006) (inspired by (Amit and Geman, 1997)
for handwritten digit recognition), object categoriza-
tion (Bosch et al., 2007; Moosmann et al., 2006), vi-
sual identification (Nowak and Jurie, 2007), bilayer
video segmentation (Yin et al., 2007), robot naviga-
tion (Jodogne et al., 2006; Ernst et al., 2006), image
reconstruction (Geurts et al., 2006b). Very recently
(Shotton et al., 2008), ensembles of randomized trees
were used to build bags of semantic textons for image
annotation. Another decision tree model, the Proba-
bilistic Boosting-Tree, was used in the context of the
detection of object boundaries (Dollar et al., 2006) to
classify as edge or non-edge the central pixel of image
patches described by roughly 50000 features.

The paper is structured as follows. We first de-
scribe a basic pixel annotation method and then our

proposed method in Section 2. The first one is
an adaptation of Marée et al’s image classification
method (Marée et al., 2005) to classify each pixel
from a subwindow centered on it. The proposed ap-
proach exploits a multiple output extension of deci-
sion trees to simultaneously annotate all pixel labels
of a subwindow. In Section 3, these methods are con-
fronted on a diverse set of problems taken from the
literature to assess their generality and compare their
performances. We also analyse these two methods in
terms of computing times and parameter sensitivity.
Finally, we conclude and provide future work direc-
tions in Section 4.

2 METHODS

In Section 2.1, we briefly remind the basic princi-
ples behind the image classification method of (Marée
et al., 2005). Section 2.2 describes our two extensions
for dealing with the image annotation problem.

2.1 Image Classification

The goal of image classification is to build, from a
learning sample of images, each labelled with a class
among a set of predefined classes, a classifier able to
predict as well as possible the class of unseen images.
To this end, the method described in (Marée et al.,
2003; Marée et al., 2005) first randomly extracts a
large set of image subwindows and describes them by
feature vectors composed of raw pixel values. Each
subwindow is labelled with the class of its parent im-
age. Then, a supervised learning method is used to
build a subwindow classification model from these
subwindows. At the prediction stage, subwindows are
extracted from the unseen image and classified by the
subwindow classifier. These predictions are then ag-
gregated to get a single class prediction for the whole
image.

In principle, any supervised classification method
can be used to grow the subwindow classifiers. Marée
et al. exploited a particular decision tree ensemble
method, called extremely randomized trees or Extra-
Trees (Geurts et al., 2006a). This method grows an
ensemble ofM (typically M ∈ [10;100]) unpruned
trees, each one being created in a top-down fash-
ion. With respect to other tree-based ensemble meth-
ods such as Tree Bagging or Random Forests, Extra-
Trees select cut-points at random and use the whole
learning sample rather than a bootstrap replica. Their
node splitting algorithm depends on two parameters,
namely the sizeK of the random subset of attributes
considered at each split, and the minimal (sub)sample



size to split a node,nmin. In our experiments in Sec-
tion 3, we will use the default value recommended in
(Geurts et al., 2006a), i.e.K equal to the square root
of the total number of attributes andnmin = 2 (corre-
sponding to fully developed trees). In Section 3.5, we
will discuss the influence ofK on accuracy and com-
puting times.

2.2 Image Annotation

We address the problem of image annotation as fol-
lows: given a sampleLS of images with every pixel
labelled with one class among a finite set of prede-
fined classes, build a classifier able to predict as accu-
rately as possible the class of every pixel of an unseen
image.

2.2.1 Subwindow Classification Model (or SCM)

A first obvious, but novel, extension of the image clas-
sification approach (Marée et al., 2005) for dealing
with pixelwise labeling is to associate to each subwin-
dow the class of its central pixel and then to label the
pixels of an image with this classifier. The different
steps of this approach are detailed below.

Learning sample generation. The learning sample
of subwindows that will be used to create the subwin-
dow central pixel classifier is created by extracting
subwindows of fixed sizew×h at random positions
in training images. Each subwindow is then labeled
by the class of the central pixel in its parent image.
Each subwindow is described by the HSB values of
its raw pixels, yielding a vector ofw×h×3 numeri-
cal attributes.

Learning. From the learning sample created at the
previous step, a model is built using ensembles of
extremely randomized trees (following (Marée et al.,
2005)). Each test associated to an internal node of
a tree simply compares a pixel HSB component to a
numerical threshold (T = [a < ac]). The search of the
best internal test amongK random tests requires to de-
fine a score measure. Different scores measures have
been proposed in the decision tree literature. In this
paper, we have chosen the Gini splitting rule of CART
(Breiman et al., 1984) (also used in Random Forests)
1. Formally, this score measure is defined as follows:

score(S,T) = GC(S)−GC|T(S), (1)

1We did some comparison with a log entropy based
score that does not show any significant difference. We
choose Gini entropy because it is faster to compute.
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where S is the subsample of sizen.. associated to
the node to split,m is the number of pixel classes,
ni.(i = 1, ...,m) is the number of subwindows inS
whose central pixel is of classi, ni1 (resp.ni2) is the
total number of subwindows ofSwhose central pixel
is of classi and which satisfy (resp. do not satisfy)
the testT, while n.1 (resp.n.2) is the number of sub-
windows ofSwhich satisfy (resp. do not satisfy)T.

The vector of probabilities which is attributed to
each terminal node (or leaf) is computed by using the
subsetSof LSreaching this node: thei-th element (i =
1, ...,m) is the proportion of subwindows ofS whose
central pixel is in theith class.

Prediction step. For each pixel a subwindow cen-
tered on it is extracted from the test image and its
class is predicted using the Extra-Trees, by averag-
ing the class-probability vectors returned by the trees
of the ensemble and selecting the most probable class.
Note that when we extract the subwindow centered on
a pixel which is close to the borders of the image, we
simply consider that the part of the subwindow that is
out of the image is composed of black pixels.

Computational complexity. The number of opera-
tions to buildM trees from a learning sample ofN
subwindows isO(M

√
whNlog2N). The classification

of a pixel with an ensemble ofM balanced trees grown
from a sample ofN subwindows requires on the av-
erageO(M log2N) tests. The number of subwindows
to extract is equal to the number of image pixels. The
annotation is thus linear in the size of the image.

2.2.2 Subwindow Classification Model with
Multiple Outputs (or SCMMO)

We now describe a second approach whose main dif-
ference with the previous one is that the subwindows
classifier is extended so as to predict the class of all
subwindow pixels.

Learning sample generation. Random subwin-
dows of sizew×h are extracted from training images
as in the previous method. The difference is that the
full annotation is associated to each subwindow.



Learning. Our idea here is to build a classifier able
to predict at once a class for each pixel of a sub-
window (instead of only the central pixel). Several
extensions of decision trees have been proposed to
handle multiple outputs (eg. (Geurts et al., 2006b)).
These methods differ from the standard tree-growing
method in the score measure used to select splits and
in the way predictions are computed at tree leaves.

The score measure that we propose here is the av-
erage of the Gini entropy based score for each output
pixel. More precisely, we have:

score(S,T) =
1

w.h
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where the parameters have the same meaning as in
the previous section with the addition of the indexk∈
1, . . . ,wh that references the subwindow pixels.

Once the tree is built, class probability estimates
at each subwindow position could then be obtained at
each leaf simply by computing class frequencies over
all subwindows that reach the leaf. However, the size
of such a probability vector is equal to the number of
pixels times the number of classes and thus the stor-
age of these vectors at each leaf node could require
a lot of memory space. To reduce this requirement,
in our implementation, we have decided to keep track
only of the majority class of each pixel together with
its confidence as measured by its frequency. This sim-
plification leads to memory requirements independent
of the number of classes2.

Prediction. The annotation process again consists
in extracting subwindows and in testing each one of
them with all the trees. To get a prediction for each
pixel, these subwindows need at least to cover the
whole image. However, we observed that the more
subwindows are extracted, the better the predictions.
Thus, in our experiment, we extracted all possible,
overlapping, subwindows.

By testing each subwindow with all the trees, a
set of tuples(class number,rate of confidence)is as-
signed to each pixel of the initial image. From this set
of predictions, a vector of sizem (number of different

2We run several experiments keeping the full class prob-
ability vectors at tree leaves but no significant difference
was observed.

Table 1: Main properties of the four datasets

DB # Im. Im. size Protocol # Subwin.
per image

Retina 50 [630×420, LOO 2000
1386×924]

Bronchia 8 752×574 LOO 10000
Corel 100 180×120 2×(60/40) 1650
Sowerby 104 96×64 2×(60/44) 1650

classes) is computed for each pixel: itsi-th element
(i = 1, ...,m) is the sum of the confidence numbers
which are associated to thei-th class among all pre-
dictions. The predicted class for the considered pixel
is the one that receives the highest overall confidence.

Computational complexity. With respect to the
SCM approach, the complexity at the learning stage is
multiplied by the number of output pixels. This leads
to a complexity ofO(M(wh)

3
2 N log2N) to grow M

trees fromN subwindows of sizew×h. As in SCM,
the computation of a prediction for a subwindow
with M trees requiresO(M log2N) tests. The number
of subwindows is equal to(wi −w+ 1)(hi − h+ 1),
wherewi and hi are respectively the width and the
height of the image to annotate.

3 EXPERIMENTS

In this section, we provide experiments on four
databases. After a description of the problems, we
compare the two methods that are proposed and con-
clude the section with a discussion of computing
times and the influence of the main parameters of the
algorithms.

3.1 Databases

Experiments are conducted on four datasets briefly
described below. The main properties of these
datasets are summarized in Table 1. Examples of im-
ages are given in Figure 1.
Retina. This dataset consists of 50 microscope im-
ages of vertical sections through cat retinas3. Each
pixel must be classified in either theretina class(more
precisely the retina outer nuclear layer) or theback-
ground class.
Bronchial. The second database is the Bronchial Im-
age Database4, which contains 8 color images from

3http://www.bioimage.ucsb.edu/research/
retina_seg.php

4http://users.info.unicaen.fr/ ˜ lezoray/
Databases.php



bronchial cytology. The pixels of these images have
to be classified into one of the three following classes:
cell nucleus, cell cytoplasmandbackground.
Corel. The Corel database5 contains 100 images of
wild life. Seven classes are defined:rhino/hippo, po-
lar bear, vegetation, sky, water, snow, andground.
Sowerby. This database6 contains 104 images of
landscape with roads, trees, etc. The pixels must be
classified in 7 classes:sky, vegetation, road marking,
road surface, building, street objectandcar.

3.2 Accuracy results

In this section, we compare three methods in terms of
accuracy: the two approaches presented in the previ-
ous section and, as a baseline, a method called PCM
(for pixel classification model) that only uses the in-
formation about the pixel itself to predict its class,
neglecting its surrounding context. Both SCM and
SCMMO reduce to this baseline when the size of the
subwindows is fixed to 1 (w = h = 1).

Results are reported in Table 2. The test protocol
is given in the fourth column of Table 1. For the first
two datasets, we used leave-one-out cross-validation.
For Corel, we use 60 images for training and 40 im-
ages for testing and we randomized our tests twice
(with differentLSandTS). We use the same protocol
for Sowerby with 60 and 44 images respectively for
training and testing. In each case, we built 20 trees.
The number of subwindows extracted per learning
image (in the fourth column of Table 1) was chosen
such that the learning sample contains about 100000
subwindows. We restrict ourselves to square subwin-
dows (w = h) and considered four different subwin-
dow sizes on each problem,w∈ {1,5,10,20}. In Ta-
ble 2, we only report the best results over these sizes,
together with the optimal size (w∗). For an image, the
error rate is measured as the ratio between the number
of incorrectly classified pixels and the total number of
pixels of this image. Results in Table 2 are average er-
ror rates over all images in the test sample. Visual ex-
amples of predictions can be found in (Dumont et al.,
2009).

From Table 2, it is clear that SCM and SCMMO
are more efficient than the baseline pixel classifier.
We also observe that SCMMO is almost always sig-
nificantly better than SCM. These results are not sur-
prising. Since PCM and SCM classify every pixel
independently of the classification of its neighbors,
their predictions can be very discontinuous over the
image. This is well illustrated by the very noisy ap-
pearance of the PCM and SCM annotations (Dumont

5http://www.cs.toronto.edu/ ˜ hexm/label.htm
6http://www.cs.toronto.edu/ ˜ hexm/label.htm

Table 2: Accuracy results

Database PCM SCM (w∗) SCMMO (w∗)
Retina 12.54% 7.53% (5) 7.56% (5)

Bronchial 3.96% 3.42% (10) 3.13% (10)
Corel 53.71% 49.43% (5) 36.01% (20)

Sowerby 17.5% 14.96% (5) 10.93% (5)

et al., 2009). On the other hand, SCMMO produces
smoother predictions for every subwindow as it tries
to predict all subwindow pixels at once. Furthermore
the final pixel classification is obtained by averaging
the predictions over all subwindows that cover that
pixel, which further reduces the variance of the anno-
tation.

3.3 Comparison with state-of-the-art

In this subsection, we compare our results to other
results presented in the literature on each dataset:
Retina: (Bertelli et al., 2007) obtained F-measures7

on this problem ranging from 0.873 to 0.883. We
obtained the following F measures: 0.769 for PCM,
0.869 for SCM, and 0.870 for SCMMO. Note how-
ever that Bertelli et al’s test protocol is significantly
different from ours (they used one reference image
for learning and all 50 images for testing).
Bronchial: (Meurie et al., 2003) reports error rates
for each class separately using 4 images for training
and 4 images for testing. They obtained 29.1% for
thecytoplasmclass and 12.6% for thenucleusclass.
For comparison, SCMMO gives 23.86% for theCyto-
plasmclass and 23.1% for theNucleusclass.
Corel: State-of-the-art results (He et al., 2004; He
et al., 2006; Shotton et al., 2006; Verbeek and Triggs,
2007) range from 20% to 33.1% error rates, evalu-
ated on one run using the same number of images for
learning and testing as ours.
Sowerby: Error rates reported in the literature ((He
et al., 2004; He et al., 2006; Shotton et al., 2006; Ver-
beek and Triggs, 2007)) range from 10.5% to 17.6%
error rates. Note that taking a largerK for the Extra-
Trees method and extracting 5 times more subwin-
dows, it is possible to decrease our error rate down to
10.3% (see Section 3.5 for a discussion of these pa-
rameters).

In most of the cases, SCMMO results are thus
comparable to those obtained by the state-of-the-art.
Only on the Corel problem, are our results signifi-
cantly less good than others. However, it has to be

7F-Measure is defined in (Bertelli et al., 2007) as
the harmonic mean of precision (p) and recall (r): F =
2pr/(p+ r).



noted that exactly the same method was applied here
on the four different problems without any specific
adaptation while other methods are usually evaluated
on less diverse types of images. Suggestions to fur-
ther improve the results of the proposed method on
specific problems are given in Section 4.

3.4 Computing Times

The annotation with our method is quite fast. Com-
puting times are obviously a function of the size of
the image to annotate. In our case, the complexity is
minimal as it is linear with respect to the image size.
Table 3 gives the duration of the building of 20 trees
and of the annotation of an image in the case of the
Sowerby and Retina databases8. The dimension of
the subwindows is 5×5. The Sowerby database con-
tains very small images (94× 64) while Retina con-
tains larger ones (752× 574 minimum). For Retina,
the annotation times are given for one image of size
990×660.

For comparison, computing times for He et al.’s
method on Sowerby are 24h for training and 30s
per image prediction (mentioned by (Shotton et al.,
2007)), TextonBoost needs 5h/10s (Shotton et al.,
2006) or 20m/1.1s (Shotton et al., 2007), (Verbeek
and Triggs, 2007) requires 20m/5s, while our best
method, SCMMO, needs about 6m for learning and
less than 1s per image for annotation.

Note that the method offers several possibilities to
further reduce training and prediction times. To build
trees, we could consider using a smaller subset of at-
tributes at each split (parameterK). In the next sub-
section, we will also highlight the fact that a smaller
number of trees could be used. To reduce the comput-
ing times at the prediction stage, we could consider
subsampling subwindows in test images, in principle
at the expense of classification accuracy. Some pre-
liminary results show that it is possible to reduce this
sampling rate at least by a factor of two without sig-
nificant increase in error rates. It is also worth noting
that our method is highly parallelizable. Indeed, tree
induction, subwindow extraction and their propaga-
tion in trees are processes that could be run indepen-
dently and their results subsequently aggregated.

3.5 Influence of Method Parameters

Our methods essentially depend on four parameters:
the subwindow sizeh×w, the number of treesM, the
numberN of extracted subwindows to build up the

8The method is implemented in JAVA and runs on a
2.4Ghz processor

Table 3: Training and prediction times on Retina and
Sowerby (20 trees)

Dataset Sowerby Retina
Method Training Prediction Training Prediction
PCM 10.53s 0.15s 5.34s 15.19s
SCM 76.63s 0.12s 41.22s 17.64s

SCMMO 315.68s 0.26s 125.5s 26.98s

Table 4: Influence of the Extra-TreeK parameter with
SCMMO (100 000 training subwindows, 20 trees).

Database K = 1 K =
√

m K = m
Retina 8.22 (58s) 7.56 (125s) 7.23 (1219s)

Bronchial 3.27 (134s) 3.13 (994s) 3.16 (24835s)
Corel 38.00 (284s)36.01 (9115s)36.79 (18714s)

Sowerby 11.67 (108s) 10.93 (316s) 10.49 (3581s)

training set, and the Extra-Tree parameterK that fil-
ters test during tree induction.

The influence of the size of the extracted subwin-
dows is significant. In most of the cases, we observed
that there exist an optimal size, which is problem de-
pendent. This is illustrated for the Sowerby database
in Figure 2.

Concerning the number of trees, since each tree of
the ensemble classifier is an independent realization
of the random tree growing process, the more trees
are grown, the better is the accuracy of the ensem-
ble classifier. This is clearly illustrated in Figure 2 on
the Corel problem. In most cases, the error converges
however quite rapidly. With SCMMO, 10 trees give
already quite good results. Notice that more trees are
however needed with SCM since this latter does not
benefit from the additional averaging effect of multi-
ple subwindows voting for a same pixel as in the case
of SCMMO.

Concerning the number of subwindows extracted
from the images in order to create the learning sam-
ple, like the number of trees, the larger it is, the better.
This is illustrated in Figure 2 in the case of the Retina
database. Notice that good results are typically ob-
tained by using a learning sample containing about
100 000 subwindows. Usually, this parameter should
be fixed to the maximal possible value given the avail-
able computer resources.

The Extra-Tree parameterK influences both accu-
racy and computing times (lower values ofK require
less score computations). Table 4 shows results in
terms of error rates and computing times for three val-
ues ofK: K = 1,K =

√
m, andK = m, wherem= 3wh

is the total number of attributes. SettingK to m im-
proves accuracy on Retina and Sowerby. The default
settingK =

√
m is however very close in terms of ac-



Figure 2: Left: error rate versus width (= height) of the subwindows on the Sowerby database. Middle: error rate versus
number of trees on the Corel database. Right: error rates versus total number of learning subwindows on the Retina database.
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curacy and brings an important improvement of com-
puting times. TakingK = 1 deteriorates accuracy with
respect to the two other settings but the resulting error
rate might still be considered acceptable for some ap-
plications where low computing times are important.
Note that this value ofK amounts at building the trees
in an unsupervised way (ie., not looking at the outputs
when selecting the tests).

4 CONCLUSION AND FUTURE
WORK

In this paper, we have introduced and compared
two generic image annotation methods: SCM and
SCMMO. We have shown that the idea of (Marée
et al., 2005) for image classification using random
subwindows and ensemble of randomized trees can
be extended for pixel-wise labelling. In particular,
our extension of extremely randomized trees to deal
with multiple output prediction opens the door to a
wide range of potential applications. Indeed, from our
experiments on four distinct databases, SCMMO ap-
pears to be the most interesting one among the two
proposed methods: SCMMO is almost always signif-
icantly better than SCM and by using it, we obtained
good results on three problems among four. We deem
that the main merit of our approach is its good over-
all performance while remaining conceptually very
simple and keeping computing times very low. Our
approach also requires less tuning than others which
makes it an excellent candidate as an off-the-shelf
method even if it does not reach state-of-the-art re-
sults on each and every problem. Moreover, it might
be exploited as a first, fast step for image annotation
as its output predictions might be post-processed by
various techniques at the local and/or global level.

Although we focused on the design of a generic
method, possible improvements or extensions of this
framework are numerous and might be considered to

improve results when dealing with a specific problem.
First, as proposed by (Marée et al., 2005) in the con-
text of image classification, it could be possible to in-
troduce more robustness into the pixel classification
models by applying random perturbations (rotation,
scaling, etc.) to the subwindows or original images
before the learning stage. Computing features at mul-
tiple scales or orientations or over various filter re-
sponses (like in (Dollar et al., 2006)) instead of using
feature vectors composed by raw pixel values might
also help to achieve a higher level of invariance and
robustness to disturbances that might be required for a
given application. However, such an extension would
require additional computational costs.

There exist also several further degrees of free-
dom in the way subwindows are extracted. For in-
stance, we could generate several models exploit-
ing each a different size of input/output subwindows.
This would allow to combine into the final model lo-
cal and global information from the images. For ex-
ample, some preliminary results show that combin-
ing three models built on subwindows of sizes 5×5,
2× 30 and 30× 2 reduces the error rate on Corel
dataset with SCMMO downto 33.89%. Optimizing
the number of models and the subwindow sizes might
further improve the accuracy on a given problem.

Also, our multiple output model can be cast as
a special case of the generic method proposed in
(Geurts et al., 2006b) to handle complex kernelized
output spaces. We believe that it would be interest-
ing to exploit this method with moread hockernels
for image annotation, for example to take more ex-
plicitly into account correlations among neighboring
pixel classes or any other domain specific knowledge.

Comparison with other recent image annotation
methods using randomized trees should also be inves-
tigated (Shotton et al., 2008; Schroff et al., 2008).

Finally, other computer vision applications of ran-
dom subwindows and tree-based ensemble methods
with high-dimensional output spaces might be investi-
gated, e.g. the detection of edges (Dollar et al., 2006).
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