Tutorial 2: Technological Aspects and Components
Layout design rules (1)

Simplified view of a partially finished MOS transistor and its important dimensions:

- The design rules are expressed in terms of \(\lambda \).
- Minimum gate length: \(L_{\text{min}} = 2\lambda \).
Layout design rules (2)

The corresponding layout of the active, polysilicon, and contact masks of the smallest transistor that can be realized in a given process when a contact must be made to each junction:
Layout design rules (3)

A possible layout of a CMOS inverter with several design rules:
Exercise 1 (1st/2nd, P2.9)

Find the circuit that the layout shown hereunder realizes. Simplify the circuit, if possible, and give the sizes of all transistors. Assume \(L = 2\lambda \), where \(\lambda = 1 \mu m \).

1 in the case of a digital circuit, it could be the “pull-down” part of the function: \(d = c \cdot (a + b) \), if \(e \) is connected to ground

2 size of the transistors: 10/2
Exercise 2 (1st/2nd, P2.10)

Find the schematic for the CMOS logic circuit realized by the layout shown hereunder.\(^3\) Give the widths of all transistors.\(^4\) Assume \(L = 2\lambda \), where \(\lambda = 0.4 \, \mu m \). In tabular form, give the area and perimeter of each junction.\(^5\)

\(^3\) \(out = ab + c = (\overline{a} + \overline{b}) \overline{c} \)

\(^4\) top→down, left→right: 3.2/0.8, 3.2/0.8, 3.2/0.8, 2.4/0.8, 2.4/0.8, 2.4/0.8

\(^5\) area (\(\mu m^2 \)): 7.68, 7.68, 7.68, 7.68, 5.76, 1.92, 5.76, 5.76

\(^6\) perimeter (\(\mu m \)): 8, 4.8, 4.8, 8, 7.2, 1.6, 4.8, 7.2
Exercise 3 (1st/2nd, E2.2, P2.12, P2.13)

Consider the transistor shown in the layout hereunder, where the total width of the four parallel transistor is 80λ, its length is 2λ, where $\lambda = 0.5 \mu m$.

![Diagram of a transistor layout with labels for nodes, metal interconnect, active region, and gates.](image)
Exercise 3 (cont)

The schematic drawn in the same relative positions as the layout, and the circuit redrawn to make the parallel transistors more obvious are:

Assume node 1 is the drain, node 2 is the source, and the device is in the active region.
Exercise 3 (cont)

1. Find the source-bulk and the drain-bulk capacitances. Assume $C_j = 2.4 \times 10^{-4} \, pF/\mu m^2$, and $C_{j-sw} = 2.0 \times 10^{-4} \, pF/\mu m$.\(^7\)

2. Find the equivalent capacitances if the transistor were realized as a single device with source and drain contacts still evenly placed.\(^8\)

3. Repeat the same exercise, where an overall transistor width of 80λ is still desired, but with 8 parallel transistors of width 10λ.\(^9\)

4. Repeat the same exercise, where an overall transistor width of 80λ is still desired, but with 2 parallel transistors of width 40λ.\(^{10}\)

\(^7\) $C_{sb} = 0.036 \, pF$, $C_{db} = 0.017 \, pF$
\(^8\) $C_{sb} = 0.043 \, pF$, $C_{db} = 0.033 \, pF$
\(^9\) $C_{sb} = 0.034 \, pF$, $C_{db} = 0.019 \, pF$
\(^{10}\) $C_{sb} = 0.044 \, pF$, $C_{db} = 0.016 \, pF$
Exercise 4 (1st, P2.14, P2.15, 2nd, P2.20)

We desire to match two capacitors of relative sizes 9 and 4.523.

1. Draw a layout for the two capacitors such that their ratio will be maintained during overetching.\(^{11}\)

2. Given that a unit-sized capacitor is \(5 \mu m \times 5 \mu m\) and that the e-beam lithography rounds all sizes to \(0.1 \mu m\), what is the matching accuracy due to rounding of the capacitors?\(^{12}\)

3. What is the new matching accuracy if the capacitors sizes are doubled to 18 and 9.046?\(^{13}\)

\(^{11}\) \(C_1 = 9\) squares, \(C_2 = 3\) squares plus a rectangle with ratio \(0.631 \times 2.415\)

\(^{12}\) matching acc. = 1.9785 (theoretical matching acc. = 1.9898), \(\Rightarrow\) −0.6%

\(^{13}\) matching acc. = 1.9927 (theoretical matching acc. = 1.9898), \(\Rightarrow\) +0.15%
Exercise 5 (1st, P2.16, P2.17)

- Given that a polysilicon layer has $7 \Omega/\square$, what is the resistance of a long line that is $2 \mu m$ wide and $1000 \mu m$ long? \(^{14}\) (Ignore any contact resistance)

- Now assume that the previous resistive line is laid out in a serpentine manner, where enough bends are used such that a line drawn along the middle of the serpentine resistor has a length $1000 \mu m$. Assume the fingers have length $10 \square$ (the last finger length might be shorter). The bend width is $3 \square$, but contributes for $2.11 \square$. The contact area is $1 \square$, but contributes for $0.14 \square$. Compute the resistance of the serpentine, as well as the resulting height and width of the overall layout. \(^{15}\) How should we modify the serpentine in order to approach the desired resistance? \(^{16}\)

\[^{14}\] $R = 3.5 \, k\Omega$

\[^{15}\] $R = (10 \times 38 + 2.11 \times 38 + 6 + 2 \times 0.14) \times 7 = 3265 \Omega \, (24 \mu m \times 154 \mu m)$

\[^{16}\] 41 “fingers” and “bends”, and 3 single squares, plus the two contacts
Exercise 6 (2nd, E1.19, E1.21)

- In many CMOS manufacturing processes, polysilicon strips are used to provide a controllable sheet resistance for analog design. A typical value is $R_{\square} = 500 \Omega$. If each strip is $1 \mu m$ wide and $5 \mu m$ long, how many must be connected in series to make a resistor of value $50 \, k\Omega$?\(^{17}\)

- As before, you require a resistor of value $50 \, k\Omega$. However, since the voltage across the resistor is never expected to exceed $200 \, mV$, you decide it is feasible to use a NMOS in triode to implement it. You elect to use multiple NMOS sized $W/L = 2 \mu m/1 \mu m$ to avoid short-channel effects. If $\mu_n C_{ox} = 300 \mu A/V^2$, $V_{tn} = 0.3 \, V$, and you elect to use $V_{GS} = 1 \, V$, find the number of series NMOS required to implement the resistor.\(^{18}\) Compare the resulting total area to that calculated in the first part for a strip resistor.\(^{19}\)

\(^{17}\) $n = 20$

\(^{18}\) $n = 21$

\(^{19}\) $A_{strip} = 20 \times (1 \times 5 \mu m^2)$, $A_{mos} = 21 \times (1 \times 2 \mu m^2)$