
Tech. Rep. FSU-CSIT-04-22 Compiled August 4, 2005, 16:01

Newton-KKT Interior-Point Methods for

Indefinite Quadratic Programming∗

Pierre-Antoine Absil
School of Computational Science

Florida State University
Tallahassee, FL 32306-4120

http://www.csit.fsu.edu/∼absil/

André L. Tits†

Department of Electrical and Computer Engineering
and Institute for Systems Research

University of Maryland
College Park, MD 20742

andre@umd.edu

Revised version, submitted to COAP on 4 August 2005

Abstract

Two interior-point algorithms are proposed and analyzed, for the
(local) solution of (possibly) indefinite quadratic programming prob-
lems. They are of the Newton-KKT variety in that (much like in the
case of primal-dual algorithms for linear programming) search direc-
tions for the “primal” variables and the Karush-Kuhn-Tucker (KKT)

∗The work of the first author was supported in part by the School of Computational
Science of Florida State University through a postdoctoral fellowship. Part of this work was
done while this author was a Research Fellow with the Belgian National Fund for Scientific
Research (Aspirant du F.N.R.S.) at the University of Liège. The work of the second author
was supported in part by the National Science Foundation under Grants DMI-9813057 and
DMI-0422931 and by the US Department of Energy under Grant DEFG0204ER25655.

†Corresponding author.

multiplier estimates are components of the Newton (or quasi-Newton)
direction for the solution of the equalities in the first-order KKT condi-
tions of optimality or a perturbed version of these conditions. Our al-
gorithms are adapted from previously proposed algorithms for convex
quadratic programming and general nonlinear programming. First, in-
spired by recent work by P. Tseng based on a “primal” affine-scaling
algorithm (à la Dikin) [J. of Global Optimization, 30 (2004), no 2,
285–300], we consider a simple Newton-KKT affine-scaling algorithm.
Then, a “barrier” version of the same algorithm is considered, which
reduces to the affine-scaling version when the barrier parameter is
set to zero at every iteration, rather than to the prescribed value.
Global and local quadratic convergence are proved under nondegener-
acy assumptions for both algorithms. Numerical results on randomly
generated problems suggest that the proposed algorithms may be of
great practical interest.

Key words. interior-point algorithms, primal-dual algorithms, indefinite
quadratic programming, Newton-KKT

1 Introduction

Consider the quadratic programming problem

(P) minimize
1

2
〈x,Hx〉 + 〈c, x〉 s.t. Ax ≤ b, x ∈ Rn,

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and withH ∈ Rn×n symmetric. In the past
two decades, much research activity has been devoted to developing and an-
alyzing interior-point methods for solving such problems in the convex case,
i.e., when H is positive semidefinite. In particular, such algorithms were first
proposed and analyzed in [Ye87, Ye89] and in [MA89]. The Interior Ellipsoid
method of Ye and Tse [YT89] is a primal affine-scaling algorithm for convex
quadratic programming in standard equality form. The primal affine scaling
idea consists in minimizing the cost over a sequence of ellipsoids whose shape
depends on the distance from the current interior feasible point to the faces
of the feasible polyhedron. Dikin [Dik67] developed the method for linear
problems and proved its global convergence under a primal nondegeneracy
assumption. This method may alternatively be viewed as an interior trust-
region method [CGT00] where the Dikin ellipsoid is used as the trust region.

2

Ye and Tse [YT89] showed that if the sequence generated by their Interior
Ellipsoid algorithm converges, then the limit point is an optimal solution. In
the strictly convex case, the algorithm generates sequences that converge to
the optimal solution [Ye89]. In [YT89], a modified version is also proposed,
derived as an extension of Karmarkar’s linear programming algorithm, and
complexity bounds are obtained. Monteiro and Tsuchiya [MT98] proved con-
vergence of the algorithm without any nondegeneracy assumption. (We refer
to [MT98] for further references on the convex quadratic programming prob-
lem.) Monteiro and Adler [MA89] proposed a barrier-based path-following
algorithm and obtained complexity bounds.

Interior-point methods have also been proposed for the computation of
local solutions to general, nonlinear programming problems (see, e.g., [FM68,
Her82, Her86, PTH88, ETTZ96, FG98, GOW98, Yam98, VS99, BGN00,
QQ00, BT03, TWB+03, YLQ03, GZ05], and the recent survey [FGW02]),
and these of course can be used for tackling (P). However, only limited at-
tention has been devoted to exploiting the quadratic programming structure
of (P) in the nonconvex case. Notable exceptions include the work of Ye and
of Tseng ([Ye89, Ye92, Tse04, TY02]) on Dikin’s algorithm [Dik67], and that
of Bonnans and Bouhtou [BB95], of Coleman and Liu [CL99], and of [Ye98],
as we discuss next.

Interior-point methods for the general (indefinite) quadratic program-
ming problem were first considered in [Ye89], where numerical experiments
with the Interior Ellipsoid method in the indefinite case were mentioned.
The Interior Ellipsoid method was formally extended to indefinite quadratic
programming in [Ye92]. In that paper, under some nondegeneracy assump-
tions, the sequences produced by that algorithm are shown to converge to a
point satisfying the first and second order necessary conditions of optimality.
This algorithm was further analyzed by Bonnans and Bouhtou [BB95], who
proposed an extended algorithm allowing inexact solution of the trust-region
subproblems and the possibility of a line search in the direction obtained from
the subproblem. Under nondegeneracy assumptions and an assumption on
the step length, they show that this algorithm converges to a first-order opti-
mal point. These ideas were further generalized by Bonnans and Pola [BP97]
to nonlinear optimization under linear constraints.

Coleman and Liu [CL99] proposed an “Interior-Newton” algorithm for
(indefinite) quadratic programming in standard equality form. Each step
involves two directions: the solution to a projected trust-region subproblem
and a projected steepest descent direction. The trust-region-based step is

3

prefered over the steepest-descent-based step when it produces a sufficient
decrease of a test function. In the trust-region subproblems of [CL99], the
model and the ellipsoid are different from the ones of the Interior Ellip-
soid method [Ye92, BB95], and are chosen in such a way that the subprob-
lem solution is ultimately the primal part of the Newton direction for the
KKT equations. Under standard assumptions (compact sublevel sets, pri-
mal nondegeneracy and strict complementarity), the authors show that their
Interior-Newton algorithm converges (globally) to a single point satisfying
the second-order necessary conditions, and that the rate of convergence is
2-step quadratic if the limit point is a strong local minimizer. However,
the result requires that a trust-region subproblem be solved exactly at each
iteration, a computationally costly task.

Tseng and Ye [TY02] showed how path-following and affine-scaling type
methods, applied to nonconvex quadratic optimization, may fail to converge
to a local minimizer. Strategies are proposed in [TY02] to overcome this
difficulty, based on increasing the size of the ellipsoid or partitioning the
feasible region.

Recently, focusing on the box-constrained case, Tseng [Tse04] produced
a global and local convergence analysis of a primal affine scaling algorithm,
similar to the ones of [Ye92, BB95], that does not require degeneracy as-
sumptions: under the assumption that H is rank dominant with respect to
its maximally-positive-semidefinite principal submatrices, the sequences gen-
erated by the algorithm converge globally and linearly to a solution satisfying
the first and weak second order optimality conditions.

Few interior-point algorithms have been considered for indefinite quadratic
programming that are not of the primal affine-scaling type. For the box-
constrained case, a barrier function method was proposed by Dang and
Xu [DX00].

In this paper, we propose and analyze two interior-point methods, one
of the affine scaling type, the other of the barrier type, for the solution of
problem (P). Like the algorithms of [Ye89, Ye92, Tse04, TY02, BB95, CL99,
Ye98], they both construct feasible primal iterates (and require an initial
feasible point). Strong global and local convergence properties are established
for both, and a numerical comparison with the Dikin-type algorithm studied
in [Ye92] and [Tse04] (and tested in [Tse04]) is reported, that shows clear
promise.

The proposed algorithms do not involve trust regions. Much like in the
case of primal-dual algorithms for linear programming, search directions for

4

the “primal” variables and the Karush-Kuhn-Tucker (KKT) multiplier es-
timates are components of the Newton (or quasi-Newton) direction for the
solution of the equalities in the first-order KKT conditions of optimality or
a perturbed version of these conditions. (KKT points and KKT multipliers
are formally defined in Section 2.) While in the nonlinear programming lit-
erature such algorithms are often referred to as primal-dual, mindful of the
stricter tradition in the linear/quadratic programming literature, we choose
to refer to the proposed schemes as Newton-KKT.

Inspired by [Tse04], the present work first focuses on affine scaling. In
contrast with [Tse04] though, a Newton-KKT (rather than purely primal) al-
gorithm is considered. It is an improved, affine-scaling version of the barrier-
based general nonlinear programming algorithm of [PTH88] and [TWB+03],
refined to take advantage of the structure of (P). (A related affine-scaling
algorithm was considered in [TZ94] for the case of convex quadratic program-
ming.) Following [TWB+03], in early iterations, the Newton-KKT direction
is replaced by a quasi-Newton direction obtained by substituting for H (or
the Hessian of the Lagrangian in the general case of [TWB+03]) a carefully
chosen matrix W = H + E, with E positive semidefinite. The reason for
doing this is that, in the absence of convexity, the Newton-KKT system may
be singular or, when it is not, may yield a primal direction that is a direc-
tion of ascent rather than descent for the objective function. In the present
context however, the quadratic programming structure allows for a more ef-
ficient computation of W and such computation can even often be skipped
(and W reused from the previous iteration). As another enhancement, ap-
plicable to general nonlinear programming problems, a simpler update rule
than the one used in [PTH88] and [TWB+03] is adopted for the KKT multi-
plier estimates. Global convergence as well as local q-quadratic convergence
of the constructed sequence to KKT points is proved under nondegeneracy
assumptions.

While affine scaling algorithms have the advantage of simplicity, it has
been observed in various contexts that comparatively faster convergence is
often achieved by certain barrier-based interior-point methods. The search
direction generated by such algorithms can be thought of as consisting of
an affine scaling component and a centering component. When the barrier
parameter is set to zero, the centering component vanishes, and the direction
reduces to the affine scaling direction. As a second contribution of this paper,
we propose a Newton-KKT barrier-based interior-point method for the solu-
tion of (P). The proposed algorithm is, again, strongly inspired from [PTH88]

5

and [TWB+03] and indeed, reduces to our Newton-KKT affine scaling algo-
rithm if the rule assigning a value to the barrier-parameter µk at each itera-
tion is replaced by the rule µk := 0. Apart from modifications to exploit the
quadratic programming structure of (P) and from the simplified KKT multi-
plier estimate update rule mentioned above, the main difference between the
proposed algorithm and that of [TWB+03] is that the former uses a scalar
barrier parameter, as is done traditionally in interior-point methods, whereas
the latter employs a “vector” barrier parameter, i.e., a different barrier pa-
rameter value for each constraints. Specifically, in [TWB+03] (and [PTH88]),
these values are selected to be proportional to the corresponding components
of the current KKT multiplier vector estimate z > 0. The proof of superlin-
ear convergence given in [PTH88] (and invoked in [TWB+03]) relies on this
selection, specifically in Proposition 4.5 of [PTH88] where it is shown that,
under appropriate assumptions, close to KKT points, the full (quasi-)Newton
step of one is always accepted by the line search. A secondary contribution
of the present paper is to establish local quadratic convergence (in particu-
lar, acceptability of a stepsize asymptotically close to one) with a modified,
scalar barrier parameter: it is proportional to the smallest among the com-
ponents of z. Like for the affine scaling algorithm, global convergence as well
as local q-quadratic convergence of the constructed sequence to KKT points
is proved under nondegeneracy assumptions.

An additional, side constribution of the present paper is that the analysis
is self-contained (while the analysis in [TWB+03] makes references to that
in [PTH88], where a different notation is used), and, we believe, significantly
more transparent than that in [PTH88] and [TWB+03].

The remainder of the paper is organized as follows. Section 2 includes a
full statement of the proposed affine scaling algorithm, and a discussion of
its main features. Section 3 is devoted to a careful analysis of the global and
local convergence properties of this algorithm. The proposed barrier-type
algorithm is stated, discussed and analyzed in Section 4. Implementation
issues are considered in Section 5 and numerical experiments are reported in
Section 6. Finally, Section 7 is devoted to concluding remarks. Our notation
is standard. In particular, ‖ · ‖ denotes the Euclidean norm, and A � B
indicates that matrix A−B is positive semidefinite (and so does B � A).

6

2 Problem Definition and Algorithm State-

ment

Let I = {1, · · · ,m}, where m is the number of rows of A, and, for i ∈ I, let
ai be the transpose of the ith row of A, let bi be the ith entry of b, and let
gi(x) := 〈ai, x〉− bi. Also let f(x) := 1

2
〈x,Hx〉+ 〈c, x〉, and let ∇f(x) denote

its gradient, Hx+ c. Of course, for any ∆x,

f(x+ ∆x) = f(x) + 〈∇f(x),∆x〉 +
1

2
〈∆x,H∆x〉. (1)

The feasible set F is given by

F := {x ∈ Rn : gi(x) ≤ 0 ∀i ∈ I},

and the strictly feasible F o set by

Fo := {x ∈ Rn : gi(x) < 0 ∀i ∈ I}.

A point x∗ ∈ F is said to be stationary1 for (P) if there exists an associated
multiplier (vector) z∗ ∈ Rm such that

∇f(x∗) + ATz∗ = 0
z∗i gi(x

∗) = 0 ∀i ∈ I.
(2)

(In particular, all vertices of F are stationary.) If furthermore z∗ ≥ 0, then
x∗ is a KKT point for (P). (z∗ is then an associated KKT multiplier (vector),
and (x∗, z∗) a KKT pair.) Given x ∈ F , we let I(x) denote the index set of
active constraints at x, i.e.

I(x) := {i ∈ I : gi(x) = 0}.

Let (x, z) be an estimate of a KKT pair (x∗, z∗) for (P) and substitute
for the left-hand side of (2) its first order expansion around (x, z) evaluated
at (x+ ∆x, z+ ∆z), i.e., consider the linear system of equations in (∆x,∆z)

∇f(x) +H∆x+ AT(z + ∆z) = 0
zi〈ai,∆x〉 + gi(x)(zi + ∆zi) = 0 ∀i ∈ I,

(3)

1Such terminology has been used by a number of authors in the context of inequal-
ity constrained optimization at least as far back as [Her82]. Consistent with its age-old
use in unconstrained and equality constrained contexts, with this definition, the term
“stationary” applies equally to minimizers and maximizers.

7

which we refer to as the Newton-KKT equations. This system is equivalently
written as

M(x, z,H)

[

∆x
ζ

]

=

[

−∇f(x)
0

]

, (4)

where ζ := z + ∆z and where, for any given n× n symmetric matrix W ,

M(x, z,W) :=

[

W AT

diag(zi)A diag(gi(x))

]

. (5)

It will be shown that, under mild assumptions, and after possible adjustment
of H, if x ∈ F o (strict primal feasibility) and zi > 0 for all i ∈ I (strict
“dual feasibility”), then the solution ∆x of (3), if it is nonzero, is a feasible
direction which is also a direction of descent for f , a useful property when
seeking global convergence to KKT points. Note that a favorable effect of
strict primal and dual feasibility is that it implies that 〈ai,∆x〉 < 0 whenever
zi+∆zi < 0, so that the iterate will tend to move away from stationary points
that are not KKT points.

A pure Newton iteration for the solution of (2) amounts to selecting
x+ = x + ∆x and z+ = z + ∆z as next iterates, where (∆x,∆z) solves (3).
Under appropriate nondegeneracy assumptions, such iteration yields a local
q-quadratic rate of convergence in (x, z). However, even close to a solution of
(2), this iteration may not preserve primal and dual feasibility. Fortunately, it
is possible to define next iterates x+ and z+ that are strictly feasible and close
enough to x + ∆x and z + ∆z that the quadratic convergence of Newton’s
method is preserved. Such iterates are used in Algorithm A1, which we
now state. Note that the algorithm statement implicitly requires that F o be
nonempty.

Algorithm A1.

Parameters. β ∈ (0, 1), z > 0, zu > 0, σ > 0, γ > 1.

Data. x0 ∈ Fo, z0
i > 0 ∀i ∈ I.

Step 0. Initialization. Set k := 0. Set I := ∅. Set αi := 0, i = 1, . . . ,m.
Set E := I.2

Step 1. Computation of modified Hessian. Set W k := H + Ek, where
Ek � 0 is computed as follows.

2The initial values assigned to the components of α and to E are immaterial as long
as E 6= 0.

8

• If H � σI, then set Ek := 0.

• Else

– If
zk
i

|gi(xk)|
≤ αi for some i ∈ I or (E 6= 0 and I = ∅) or (E 6= 0 and

zk
i

|gi(xk)|
≥ γ2αi for some i ∈ I) then (i) set I := {i :

zk
i

|gi(xk)|
≥ 1}

and αi := 1
γ

zk
i

|gi(xk)|
, i ∈ I; and (ii)

∗ if H +
∑

I αiaia
T
i � σI, set E := 0;

∗ else pick E � 0, with E � (‖H‖F + σ)I, such that H +
∑

I αiaia
T
i + E � σI. (Here, ‖H‖F is the Frobenius norm of

H.)

– Set Ek := E.

Step 2. Computation of a search direction. Let (∆xk, ζk) solve the linear
system in (∆x, ζ)

W k∆x+ ATζ = −∇f(xk) (6a)

zk
i 〈ai,∆x〉 + gi(x

k)ζi = 0 ∀i ∈ I. (6b)

If ∆xk = 0, stop.

Step 3. Updates.
(i) Set

t
k

:=

{

∞ if 〈ai,∆x
k〉 ≤ 0 ∀i ∈ I,

min
{

|gi(x
k)|

〈ai,∆xk〉
: 〈ai,∆x

k〉 > 0, i ∈ I
}

otherwise.
(7)

Set
tk := min

{

max{βt
k
, t

k
−‖∆xk‖}, 1

}

. (8)

Set xk+1 := xk + tk∆xk.
(ii) Set

(

ζk
−

)

i
:= min{ζk

i , 0}, ∀i ∈ I. Set

zk+1
i := min

{

max
{

min{‖∆xk‖2 + ‖ζk
−‖

2, z}, ζk
i

}

, zu

}

, ∀i ∈ I. (9)

(iii) Set k := k + 1. Go to Step 1.
�

Let Sk denote the Schur complement of diag(gi(x
k)) in M(xk, zk,W k),

i.e., since xk ∈ Fo,

Sk := W k+
m

∑

i=1

zk
i

|gi(xk)|
aia

T
i . (10)

9

Step 1 in Algorithm A1 ensures that Sk � σI, as we now explain. The case
when H � σI is clear. Assume that H � σI. Then, after completion of

Step 1, the relation W k +
∑

I αiaia
T
i � σI is satisfied, and

zk
i

|gi(xk)|
≥ αi for

all i ∈ I. Consequently, Sk � W k +
∑

I αiaia
T
i � σI, hence the desired

conclusion. Next, under appropriate assumptions, {Ek} is eventually zero
(see Lemma 3.12 below) and Newton-related superlinear convergence can set
in. Step 1 also ensures that {W k} is bounded, since W k � H + (‖H‖F + σ)I
for all k. (Note that, since it always holds that H+‖H‖FI � 0, the conditions
imposed on E can always be met.) Further, an interesting feature of Step 1
is that E need not be updated at each step: update occurs in particular if

one of the ratios
zk
i

|gi(xk)|
, i ∈ I, leaves the interval (αi, γ

2αi) through its lower

end, or if E 6= 0 and one of these ratios leave the corresponding interval
through its upper end. Finally, while Step 1 leaves open the option to always
select the Hessian correction Ek to be either 0 or (‖H‖F + σ)I, a “small”,
intermediate value is of course preferable when 0 is not allowed, so Newton’s
method is approximated more closely.

In Step 3(i), borrowed from [TZ94], t
k

is the maximum step preserving

primal feasibility (xk + t
k
∆xk ∈ F) and the term βt

k
ensures that tk is

positive even when ‖∆xk‖ is large. It will be shown that, close to a solution
of (P), tk is close enough to 1 for quadratic convergence to take place.

Step 3(ii) is partly new, though strongly inspired from the multiplier
update rule used in [PTH88, TZ94, TWB+03]. In contrast to usual practice,
zk+1

i is not obtained by a step in the direction of ζk − zk. The reason for
this is that the lower bound ‖∆xk‖2 + ‖ζk

−‖
2 in (9) is key to our global

convergence analysis, in that it forces the components of zk to remain away
from zero, which will be shown, in turn, to force M(xk, zk,W k) to remain
away from singularity, unless a KKT point is approached—‖∆xk‖2 + ‖ζk

−‖
2

goes to zero near such points. (The reason for the “square” is that—together

with the bound t
k
−‖∆xk‖ in (8)—it allows for local quadratic convergence

to take place.) Updating zk by means of a step in direction ζk − zk would
preclude enforcement of such lower bound. Indeed, for some components, the
lower bound might unduly reduce the step size, and may even necessitate a
“backwards” step.

Like in [PTH88, TZ94, TWB+03], the upper bound zu is needed in our
global convergence analysis (though in our experience not needed in practice);
note however that the analysis guarantees appropriate convergence of ζk

regardless of the value of zu (see Proposition 3.11). (In practice, zu should be

10

set to a “large” value.) As for z, it was used in the numerical experiments
in [TWB+03] (see second bullet at the bottom of page 191 in that paper) but
was not included in the formal statement of the algorithm there. Removing it
from (9) (i.e., setting it to +∞) would not affect the theoretical convergence
properties of the algorithm. However, allowing small values of zk+1

i even
when ‖∆xk‖2 + ‖ζk

−‖
2 is large proved beneficial in practice, especially in

early iterations. (Accordingly, z should be set to a “small” value.)
The z update adopted in (9) has a significant difference from that used

in [PTH88, TZ94, TWB+03] however, in that, in the latter, the lower bound
involves only ‖∆xk‖2. In itself such lower bound does not prevent conver-
gence to non-KKT stationary points—where ‖∆xk‖ goes to zero but ζk has
some significantly negative components, so that ζk

− does not go to zero. Ac-
cordingly, additional safeguards (less “natural”, we feel) were then incorpo-
rated in [PTH88, TZ94, TWB+03].

Finally, one may wonder why the arguably even more “natural” lower
bound ‖∆xk‖2 + ‖∆zk‖2 is not used in (9). Indeed, just like ζk

−, ‖∆zk‖
should go to zero when KKT points are approached and (since zk is forced
to remain in the positive orthant throughout) it is bounded away from zero
in the neighborhood of non-KKT stationary points. The reason we chose to
use ‖ζk

−‖
2 is that the proofs are then somewhat simpler, in particular that

of part (iii) of Proposition 3.11,3 and that the numerical results we obtained
were essentially identical under both schemes.

It is readily checked that the unique solution of (6a)-(6b) is given by

∆xk = −(Sk)−1∇f(xk) (11a)

ζk = −diag

(

zk
i

gi(xk)

)

A∆xk. (11b)

Expression (11a) shows that Algorithm A1 belongs to the affine scaling fam-
ily. Since Sk � σI, it also follows from (11a) that

〈∇f(xk),∆xk〉 ≤ −σ‖∆xk‖2 (12)

which shows that ∆xk is a direction of descent for f at xk. Since zk
i /gi(x

k) < 0

3In fact, when ‖∆zk‖2 is used, Proposition 3.11(iii) no longer holds as stated but, under
the condition that z < 1/m, zk still converges to z∗ when all components of z∗ are less
than zu.

11

for all i and k, it follows from (11b) that

〈ζk, A∆xk〉 ≥ 0 (13)

for all k.
Next we establish that Algorithm A1 is well defined and only stops at

unconstrained KKT points.

Proposition 2.1 Algorithm A1 constructs an infinite sequence {xk} unless
the stopping criterion in Step 2 (∆xk = 0) is satisfied at some iteration k0.
In the latter case, ∇f(xk0) = 0, hence xk0 is a KKT point.

Proof. The computations in Step 3(i) of Algorithm A1 ensure that every
constructed xk+1 belongs to F o, so that diag(gi(x

k)) is nonsingular for all
k such that Step 3 is executed at iteration k − 1 (as well as for k = 0).
Since its Schur complement Sk also is nonsingular for all such k, it follows
that M(xk, zk,W k) is nonsingular for all such k, thus that (6) has a unique
solution whenever Step 2 of Algorithm A1 is attempted. Since it is clear
that all other operations performed are well defined, the entire algorithm is
well defined and can only terminate when the stopping criterion in Step 2 is
satisfied, say at xk0

. In such case, since gi(x
k0) < 0, substitution of ∆xk0 = 0

in (6) yields ζk0 = 0 and ∇f(xk0) = 0, i.e., xk0 is a KKT point (indeed, an
unconstrained KKT point). �

The next section is devoted to analyzing the sequences constructed by
Algorithm A1 in the case where the stopping criterion is never satisfied.
Before proceeding with this analysis, we conclude this section with three
lemmas which will be of repeated use. The first lemma further characterizes
the relationship between ∆x vanishing and x being stationary.

Lemma 2.2 Let (∆x, ζ) satisfy (4) for some x, z, and with H replaced by
W , for some symmetric W . Then (i) if x ∈ F and ∆x = 0, then x is
stationary for (P) and ζ is an associated multiplier vector; and (ii) if x ∈ F
is stationary for (P) and M(x, z,W) is nonsingular, then ∆x = 0 and ζ is
the unique multiplier vector associated with x.

Proof. To prove the first claim, simply substitute ∆x = 0 into (4). Concern-
ing the second claim, let η be a multiplier vector associated with stationary
point x. It is readily verified that (0, η) satisfies (4). The claim then follows
from nonsingularity of M(x, z,W). �

Conditions guaranteeing the nonsingularity required in (ii) above are es-
tablished in the next lemma, borrowed from [TWB+03, Lemma PTH-3.1∗].

12

Lemma 2.3 4 Let x ∈ F be such that {ai : i ∈ I(x)} is a linearly indepen-
dent set and let z ≥ 0, with zi > 0 for all i ∈ I(x). Suppose W satisfies

〈

v,



W +
∑

i6∈I(x)

zi

|gi(x)|
aia

T
i



 v

〉

> 0 ∀v ∈ T (x) \ {0},

where
T (x):={v : 〈ai, v〉 = 0 ∀i ∈ I(x)}.

Then M(x, z,W) is nonsingular.

The final lemma builds on Lemma 2.3 to show that M(x, z,W) is non-
singular at all accumulation points of certain sequences. It is a simplified
version of the first portion of Lemma PTH-3.5∗ in [TWB+03], and is repro-
duced here with proof for ease of reference. It relies on a linear independence
assumption.

Assumption 1 (linear independence constraint qualification) For all
x ∈ F , {ai : i ∈ I(x)} is a linearly independent set.

Lemma 2.4 5 Suppose Assumption 1 holds. Let {xk}, {zk}, and {W k} be
arbitrary infinite sequences such that {xk} converges to x∗, {zk} to z∗, and
{W k} to W ∗, for some x∗, z∗, and W ∗. Suppose that g(xk) < 0 for all k,
that zk > 0 for all k, that Sk defined by (10) satisfies Sk � σI for all k and
that z∗j > 0 for all j ∈ I(x∗). Then M(x∗, z∗,W ∗) is nonsingular.

Proof. It suffices to show that (x∗, z∗,W ∗) satisfies the assumptions of
Lemma 2.3. Thus let v 6= 0 be such that

〈ai, v〉 = 0 ∀i ∈ I(x∗). (14)

It then follows from (10) and positive semidefiniteness of Sk − σI, by adding
terms that vanish in view of (14), that for all k

〈

v,



W k +
∑

i6∈I(x∗)

zk
i

|gi(xk)|
aia

T
i



 v

〉

≥ σ‖v‖2.

4It is readily checked that the result still holds if z ≥ 0 is omitted and zi > 0 is replaced
by zi 6= 0 in the statement. Only the case zi > 0 is needed in this paper, though.

5Much as Lemma 2.3, Lemma 2.4 holds under weaker hypotheses, but the stated version
is adequate for the purpose of this paper.

13

Letting k → ∞, k ∈ K shows that

〈

v,



W ∗ +
∑

i6∈I(x∗)

z∗i
|gi(x∗)|

aia
T
i



 v

〉

≥ σ‖v‖2 > 0.

The proof is complete.

3 Convergence Analysis

3.1 Global Convergence

We first show (Proposition 3.5) that, under Assumption 1, the accumulation
points of {xk} are stationary for (P). Then, under the additional assump-
tion that stationary points are isolated, we show (Theorem 3.9) that these
accumulation points are KKT for (P).

First of all, at every iteration, the values of the objective function and of
all constraint functions with negative multiplier estimates decrease. This is
established in our first proposition.

Proposition 3.1 Let {xk}, {∆xk}, and {ζk} be as constructed by Algo-
rithm A1. Suppose ∆xk 6= 0.
(i) If 〈∆xk, H∆xk〉 ≤ 0, then

f(xk + t∆xk) < f(xk) ∀t > 0, (15)

(ii) If 〈∆xk, H∆xk〉 > 0, then

f(xk + t∆xk) ≤ f(xk) +
t

2
〈∇f(xk),∆xk〉 < f(xk) ∀t ∈ (0, 1], (16)

(iii)

gi(x
k + t∆xk) = gi(x

k) + t〈ai,∆x
k〉 < gi(x

k) ∀t > 0, ∀i s.t. ζk
i < 0. (17)

Proof. Claim (i) follows directly from (12). To prove claim (ii) observe
that (1) yields

f(xk + t∆xk) = f(xk) + t

(

〈∇f(xk),∆xk〉 +
t

2
〈∆xk, H∆xk〉

)

, (18)

14

and that (6a) and (13) yield

〈∆xk,W k∆xk〉 ≤ −〈∇f(xk),∆xk〉

which, since H � W k, yields

t

2
〈∆xk, H∆xk〉 ≤

1

2
〈∆xk, H∆xk〉 ≤ −

1

2
〈∇f(xk),∆xk〉 ∀t ∈ [0, 1].

Substituting into (18) yields the left-hand inequality in (16). Since ∆xk 6= 0,
the right-hand inequality in (16) follows as a direct consequence of (12),
completing the proof of claim (ii). Finally, since g is linear,

gi(x
k + tk∆xk) = gi(x

k) + tk〈ai,∆x
k〉, i = 1, . . . , m.

Since zk
i > 0 and gi(x

k) < 0 for all i ∈ I, it follows from (6b) that 〈ai,∆x
k〉 <

0 whenever ζk
i < 0, proving claim (iii). �

With these results in hand, we now proceed to show that the accumulation
points of {xk} are stationary points for (P). The argument is a simplified
version of that used in [PTH88]. It is given here for ease of reference. The
rationale is as follows: Given an infinite index set K such that {xk}k∈K → x∗

for some x∗, either (i) {∆xk}k∈K → 0, or (ii) there exists an infinite index
set K ′ ⊆ K such that {∆xk−1}k∈K′ → 0 (Lemma 3.2). In case (i), it follows
from Lemma 3.3 below that x∗ is stationary. In case (ii), {xk−1}k∈K′ → x∗

(Lemma 3.4) and it again follows from Lemma 3.3 that x∗ is stationary. Based
on these results, stationarity of x∗ is then established in Proposition 3.5. The
lemmas prove somewhat more than is needed here, to be used in the proof
of convergence to KKT points and in the local convergence analysis of the
next subsection.

Lemma 3.2 Let {xk}, {∆xk}, and {ζk
−} be as constructed by Algorithm A1.

Suppose Assumption 1 holds. Let K be an infinite index set such that {xk}k∈K →
x∗ for some x∗ and

inf{‖∆xk−1‖2 + ‖ζk−1
− ‖2 : k ∈ K} > 0. (19)

Then ∆xk → 0 as k → ∞, k ∈ K.

Proof. Proceeding by contradiction, assume that {xk}k∈K → x∗, that (19)
holds, and that, for some infinite index set K ′ ⊆ K, inf

k∈K′

||∆xk‖ > 0. Since

15

{zk} and {W k} are bounded, we may assume, without loss of generality,
that for some z∗ and W ∗,

{zk} → z∗ as k → ∞, k ∈ K ′,

{W k} → W ∗ as k → ∞, k ∈ K ′.

In view of (19) and (9), it follows that z∗ > 0. Since in view of Lemma 2.4
M(x∗, z∗,W ∗) is nonsingular, it follows that {∆xk}k∈K′ and {ζk}k∈K′ are
bounded and that, for some ∆x∗ with ∆x∗ 6= 0 (since inf

k∈K′

‖∆xk‖ > 0),

{∆xk} → ∆x∗ as k → ∞, k ∈ K ′.

On the other hand, it follows from (6b) and (7) that

t̄k =

{

∞ if ζk
i ≤ 0 ∀i ∈ I,

min{(zk
i /ζ

k
i) : ζk

i > 0, i ∈ I} otherwise.

Since, on K ′, {ζk} is bounded and, for each i ∈ I, {zk
i } is bounded away

from zero, it follows that {t
k
} is bounded away from zero on K ′, and that so

is {tk} (Step 3 (i) in Algorithm A1); say, tk > t for all k ∈ K ′, with t ∈ (0, 1).
To complete the proof by contradiction, we show that the above implies

that f(xk) → −∞ as k → ∞, contradicting convergence of {xk}k∈K . Since
{f(xk)} is nonincreasing (Proposition 3.1) it suffices to show that for some
δ > 0,

f(xk+1) ≤ f(xk) − δ (20)

infinitely many times. We show that (20) holds for all k ∈ K ′. We consider
two cases. First, if 〈∆x∗, H∆x∗〉 > 0, then since tk ∈ (t, 1] for all k, the claim
follows from Proposition 3.1(ii) and (12). Suppose now that 〈∆x∗, H∆x∗〉 ≤
0. Then 〈∆xk, H∆xk〉 ≤ 1

2
σ‖∆x∗‖2 for k ∈ K ′, k large enough. Also, in

view of (12), 〈∇f(xk),∆xk〉 ≤ −1
2
σ‖∆x∗‖2 for k ∈ K ′, k large enough.

Since tk ∈ (t, 1] for k ∈ K ′, it follows from (1) that (20) again holds on K ′,
with δ = 1

4
tσ‖∆x∗‖2. �

Lemma 3.3 Let {xk}, {∆xk}, and {ζk} be as constructed by Algorithm A1.
Suppose Assumption 1 holds. Let x∗ be such that, for some infinite index set
K, {xk} converges to x∗ on K. If {∆xk} converges to zero on K, then x∗ is
stationary and {ζk} converges to z∗ on K, where z∗ is the unique multiplier
vector associated with x∗.

16

Proof. Suppose ∆xk → 0 as k → ∞, k ∈ K. Since {zk} is bounded, it
follows from (6b) that ζk

i → 0 as k → ∞, k ∈ K, for all i 6∈ I(x∗). Since
in view of (6a) and boundedness of W k, {AT ζk} converges on K, it follows
from Assumption 1 that {ζk} converges on K, say to z∗. Taking limits in
(6a)–(6b) as k → ∞, k ∈ K, and using the fact that {zk} is bounded on K
yields

∇f(x∗) + ATz∗ = 0

z∗i gi(x
∗) = 0, i = 1, . . . ,m,

implying that x∗ is stationary, with multiplier vector z∗. The multiplier is
unique because of Assumption 1. �

The next lemma is a direct consequence of the fact that, by construction,
xk+1 = xk + tk∆xk, with tk ∈ (0, 1].

Lemma 3.4 Let {xk} and {∆xk} be as constructed by Algorithm A1. Let K
be an infinite index set such that {xk}k∈K → x∗ for some x∗. If {∆xk−1}k∈K →
0 then {xk−1}k∈K → x∗.

In view of the rationale given above, the following holds.

Proposition 3.5 Under Assumption 1, every accumulation point of {xk}
constructed by Algorithm A1 is a stationary point for (P).

In the remainder of this section we show that, if the stationary points are
isolated, then the accumulation points of {xk} are KKT points for (P).

Lemma 3.6 Let {xk}, {∆xk}, and {ζk
−} be as constructed by Algorithm A1.

Suppose Assumption 1 holds. Suppose that K, an infinite index set, is such
that, for some x∗, {xk}k∈K tends to x∗, and {∆xk−1}k∈K and {ζk−1

− }k∈K tend
to zero. Then x∗ is a KKT point.

Proof. In view of Lemma 3.4, {xk−1}k∈K → x∗, and, in view of Lemma 3.3,
{ζk−1}k∈K converges to z∗, the multiplier vector associated with stationary
point x∗. Since {ζk−1

− }k∈K tends to zero, it follows that z∗ ≥ 0, thus that x∗

is a KKT point. �

The remainder of the proof is essentially identical to the proof of Theo-
rem 3.11 in [PTH88]. It is reproduced here for the reader’s ease of reference.
For clarity, part of the proof is given as Lemmas 3.7 and 3.8.

Lemma 3.7 Let {xk} and {∆xk} be as constructed by Algorithm A1. Sup-
pose Assumption 1 holds. Suppose that K, an infinite index set, is such that,
for some x∗, {xk}k∈K → x∗, and x∗ is not KKT. Then {∆xk}k∈K → 0.

17

Proof. Proceeding by contradiction, suppose {∆xk}k∈K does not tend to
zero. It then follows from Lemma 3.2 that

inf{‖∆xk−1‖2 + ‖ζk−1
− ‖2 : k ∈ K} = 0.

Lemma 3.6 then implies that x∗ is KKT, a contradiction. �

Assumption 2 All stationary points are isolated.

Given r > 0 and x in some Euclidean space, let B(x∗, r) denote the closed
ball {x : ‖x− x∗‖ ≤ r}.

Lemma 3.8 Let {xk} be as constructed by Algorithm A1. Suppose Assump-
tions 1 and 2 hold. Suppose {xk} has x∗ as an accumulation point, and x∗

is not KKT. Then the entire sequence {xk} converges to x∗.

Proof. In view of Proposition 3.5, x∗ is stationary. In view of Assumption 2,
there exists ε > 0 such that the closed ball B(x∗, 2ε) does not contain any
other stationary point than x∗ and hence, in view of Proposition 3.5, does
not contain any other accumulation point than x∗. We show that xk ∈
B(x∗, ε) for all k large enough, i.e., that {xk} converges to x∗. Proceeding by
contradiction, suppose that, for some infinite index set K, xk ∈ B(x∗, ε) but
xk+1 6∈ B(x∗, ε). Since {xk}k∈K converges to x∗, it follows from Lemma 3.7
that {∆xk}k∈K tends to zero. Since, in view of (8) and the update formula
for xk in Step3(i) of Algorithm A1, ‖xk+1 − xk‖ ≤ ‖∆xk‖ for all k, it follows
that xk+1 ∈ B(x∗, 2ε) \ B(x∗, ε) for all k ∈ K, k large enough, contradicting
the fact that x∗ is the only accumulation point in B(x∗, 2ε). �

Theorem 3.9 Under Assumptions 1 and 2, every accumulation point of
{xk} constructed by Algorithm A1 is a KKT point.

Proof. Let x∗ be an accumulation point of {xk}. Proceeding by con-
tradiction, suppose that x∗ is not KKT. In view of Lemma 3.8, the entire
sequence {xk} converges to x∗. In view of Lemma 3.7, it follows that {∆xk}
tends to zero, and from Lemma 3.3 that {ζk} converges to z∗, the multiplier
vector associated with stationary point x∗. Further, since x∗ is not KKT,
there exists i0 ∈ I(x∗) such that z∗i0 < 0. In view of (17), it follows that, for
k0 large enough,

gi0(x
k) ≤ gi0(x

k−1 ≤ · · · ≤ gi0(x
k0+1) ≤ gi0(x

k0) < 0,

contradicting the fact that gi0(x
∗) = 0 (since i0 ∈ I(x∗)). �

18

3.2 Local Rate of Convergence

We will now assume that some accumulation point of {xk} enjoys certain
additional properties. First we will assume that strict complementarity holds
at one such point, which will imply that the entire sequence {xk} converges to
that point and that sequences {∆xk}, {ζk}, and {zk} converge appropriately
as well. Then we will show that if, in addition, the second order sufficiency
condition of optimality holds at that point, then convergence is q-quadratic.

Assumption 3 (strict complementarity) The sequence {xk} generated
by Algorithm A1 has an accumulation point x∗ with associated multiplier
vector z∗ satisfying z∗i > 0 for all i ∈ I(x∗).

We first show that the entire sequence {xk} converges to x∗. The proof
makes use of the following lemma, adapted from [PTH88, Lemma 4.1] and [BT03,
Lemma 9].

Lemma 3.10 Let {xk} and {∆xk} be as constructed by Algorithm A1. Sup-
pose Assumptions 1 and 3 hold. Let K be an infinite index set such that
{xk}k∈K → x∗. Then {∆xk}k∈K → 0.

Proof. Proceeding by contradiction, suppose that, for some infinite index
set K ′ ⊆ K, infk∈K′‖∆xk‖ > 0. Then, in view of Lemma 3.2, there exists an
infinite index setK ′′ ⊆ K ′ such that {∆xk−1}k∈K′′ and {ζk−1

− }k∈K′′ go to zero.
It follows from Lemma 3.4 that {xk−1}k∈K′′ → x∗. In view of Lemma 3.3
it follows that {ζk−1}k∈K′′ → z∗ where z∗ is the multiplier vector associated
to x∗. In view of Assumption 3, z∗ ≥ 0. It then follows from (9) that,
for all j, {zk

j }k∈K′′ → ẑj := min{z∗j , zu} which, in view of Assumption 3 is
positive for all j ∈ I(x∗). Also, since {W k} is bounded there is no loss of
generality in assuming that, for some W ∗, {W k}k∈K′′ converges to W ∗. In
view of Lemma 2.4 it then follows that M(x∗, ẑ,W ∗) is nonsingular. Since
x∗ is stationary (indeed, KKT) it follows from Lemma 2.2 that {∆xk}k∈K′′

goes to zero, a contradiction. �

Convergence of the entire sequence {xk} to x∗ can now be proved. The
following proposition is adapted from [PTH88, Proposition 4.2].

Proposition 3.11 Let {xk}, {∆xk}, {zk}, and {ζk} be as constructed by
Algorithm A1. Suppose Assumptions 1, 2 and 3 hold. Then the entire se-
quence {xk} converges to x∗. Moreover, (i) {∆xk} → 0, (ii) {ζk} → z∗, and
(iii) {zk

j } → min{z∗j , zu} for all j.

19

Proof. Consider a closed ball of radius ε > 0 about x∗ where there is no
KKT point other than x∗ (in view of Assumption 2 such ε exists). Proceeding
by contradiction to prove the first claim, suppose without loss of generality
that the sequence {xk} leaves the ball infinitely many times. Consider the
infinite subsequence {xk}k∈K of points such that xk is in the ball and xk+1

is out of the ball. Then {xk}k∈K → x∗, otherwise the closed ε-ball would
contain an accumulation point other than x∗ and this point would be a KKT
point by Theorem 3.9. In particular, ‖xk − x∗‖ < ε/4 for all k ∈ K large
enough. On the other hand, it follows from Lemma 3.10 that ‖∆xk‖ < ε/4
for all k ∈ K large enough. Consequently, for all k ∈ K large enough, we
have

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖ + ‖xk − x∗‖ ≤ ‖∆xk‖ + ‖xk − x∗‖ ≤ ε/2.

That is, xk+1 is in the ε-ball for k ∈ K large enough, a contradiction. Thus,
the first claim holds. Claim (i) then follows from Lemma 3.10 and claim (ii)
follows from Lemma 3.3. Finally claim (iii) follows from a careful inspection
of (9). �

In order for quadratic convergence to set in, it is desirable that {W k}
converge to H, at least in the tangent plane of the active constraints at x∗.
For this to be possible with M(xk, zk,W k) still remaining bounded away from
singularity, we must assume that x∗ is in fact a minimizer.

Assumption 4 x∗ is a local (or global) minimizer.

Since f(xk) is reduced at each iteration, this assumption is rather mild:
points x∗ that are not local minimizers are unstable under perturbations.

Assumptions 2 and 4 imply that a second order sufficiency condition of
optimality holds, specifically (under Assumption 3) that

〈∆x,H∆x〉 > 0 for all ∆x 6= 0 such that 〈ai,∆x〉 = 0 ∀i ∈ I(x∗). (21)

In turn, under Assumption 3, (21) implies Assumption 4.

Lemma 3.12 Let {W k} be as constructed by Algorithm A1. Under As-
sumptions 1–4, if σ in Algorithm A1 is such that σ < min{〈v,Hv〉 : 〈ai, v〉 =
0 ∀i ∈ I(x∗), ‖v‖ = 1}, then W k = H for all k sufficiently large.

Proof. It follows from Assumption 3 and Proposition 3.11(iii) that {zk
j /|gj(x

k)|}
goes to ∞ for all j ∈ I(x∗). It then follows from (21) and Step 1 in Algo-
rithm A1 that Ek = 0 for all k large enough. �

To prove q-quadratic convergence of {(xk, zk)}, the following property of
Newton’s method, taken from [TZ94], will be used.

20

Proposition 3.13 Let F : Rn → Rn be twice continuously differentiable
and let w∗ ∈ Rn. Let ρ > 0 be such that F (w∗) = 0 and ∂F

∂w
(w) is invertible

whenever w ∈ B(w∗, ρ). Let δN : B(w∗, ρ) → Rn be the Newton increment

δN(w) := −
(

∂F
∂w

(w)
)−1

F (w). Then given any c1 > 0 there exists c2 > 0 such
that the following statement holds:

For every w ∈ B(w∗, ρ) and every w+ ∈ Rn for which, for each i ∈
{1, . . . , n}, either

(i) |w+
i − w∗

i | ≤ c1‖δ
N(w)‖2

or

(ii) |w+
i − (wi + δN

i (w))| ≤ c1‖δ
N(w)‖2,

it holds that
‖w+ − w∗‖ ≤ c2‖w − w∗‖2. (22)

Q-quadratic convergence of the sequence {(xk, zk)} follows. The proof is
essentially identical to that of [TZ94, Theorem 3.11] and is reproduced here
for ease of reference.

Theorem 3.14 Let {xk} and {zk} be as constructed by Algorithm A1. Sup-
pose Assumptions 1–4 hold. Then, if z∗i < zu ∀i ∈ I and σ < min{〈v,Hv〉 :
〈ai, v〉 = 0 ∀i ∈ I(x∗), ‖v‖ = 1}, {(xk, zk)} converges to (x∗, z∗) q-quadratically.

Proof. We establish that the conditions in Proposition 3.13 hold with
F : Rn ×Rm → Rn ×Rm given by

F (x, z) :=











∇f(x) + ATz
z1g1(x)

...
zmgm(x)











.

Clearly, the Jacobian of F at (x, z) is M(x, z,H) and (∆x,∆z), with (∆x, z+
∆z) solution of (4), is the Newton direction for the solution of F (x, z) = 0.
With reference to Proposition 3.13, let ρ > 0 be such that M(x, z,H) is
nonsingular for all (x, z) ∈ B((x∗, z∗), ρ). (In view of (21), Assumption 3, and
Lemma 2.3, such ρ exists.) Since, in view of the stated assumption on z∗ and
of Proposition 3.11, {(xk, zk)} → (x∗, z∗), it follows from Lemma 3.12 that
there exists k0 such that, for all k ≥ k0, (xk, zk) ∈ B((x∗, z∗), ρ) andW k = H.

21

Now, with the aim of verifying conditions (i)/(ii) of Proposition 3.13 along
{(xk, zk)} with F as specified above, let us first consider {zk}, updated in
Step 3(ii) of Algorithm A1. Since z∗i < zu, if follows that, for i ∈ I(x∗)
(so z∗i > 0), zk+1

i is equal to ζk
i for k large enough, so that condition (ii) in

Proposition 3.13 holds (with any c1 > 0) for k large enough. For i 6∈ I(x∗)
(so z∗i = 0), for each k large enough either again zk+1

i = ζk
i or zk+1

i =
‖∆xk‖2 + ‖ζk

−‖
2 ≤ ‖∆xk‖2 + ‖∆zk‖2, where ∆zk := ζk − zk. In the latter

case, since z∗i = 0, condition (i) in Proposition 3.13 holds with any c1 ≥ 1.
Next, consider {xk}. For i 6∈ I(x∗), in view of Proposition 3.11, we have

|g(xk
i)|

|〈ai,∆xk〉|
→ ∞ as k → ∞.

Thus, if I(x∗) = ∅, then, in view of Step 3 (i) in Algorithm A1, tk = 1
for k large enough and otherwise, since in view of (6b) sign(〈ai,∆x

k〉) =
sign(ζk

i) = 1, for all k large enough and i ∈ I(x∗),

t
k

= min

{

zk
i

ζk
i

: i ∈ I(x∗)

}

and

tk = min

{

1,
zk

ik

ζk
ik

− ‖∆xk‖

}

(23)

for k large enough, for some ik ∈ I(x∗). (In particular, in view of Proposi-
tion 3.11, {tk} converges to 1.) Thus, for k large enough,

‖xk+1 − (xk + ∆xk)‖ = ‖xk + tk∆xk − (xk + ∆xk)‖

= |tk − 1|‖∆xk‖

≤

∣

∣

∣

∣

‖∆xk‖ +
ζk
ik
− zk

ik

ζk
ik

∣

∣

∣

∣

‖∆xk‖

≤
(

‖∆xk‖ + (ζk
ik

)−1‖∆zk‖
)

‖∆xk‖.

Since z∗i > 0 for all i ∈ I(x∗), it follows that for some C > 0 and all k large
enough

‖xk+1 − (xk + ∆xk)‖ ≤ (‖∆xk‖ + C‖∆zk‖)‖∆xk‖

≤ (1 + C)(‖∆xk‖ + ‖∆zk‖)2.

Thus condition (ii) of Proposition 3.13 holds (with c1 = 1 + C). The claim
then follows from Lemma 3.9 and Proposition 3.13. �

22

4 Refinement: A Barrier-Based Algorithm

While the Newton-KKT affine scaling algorithm we have considered so far
has the advantage of simplicity, it has been observed in various contexts that
improved behavior is likely achieved if instead of linearizing the KKT equa-
tions (2) (yielding (3)) one linearizes a perturbed version of (2), with the
right-hand side in the second equation set to be a certain positive number
µ rather than 0. It is well known that the resulting iteration can be viewed
as a “primal-dual” barrier iteration. Typically, µ is progressively reduced
and made to tend to 0 as a solution of the problem is approached. Vari-
ants of such methods have been proved to be very effective in the solution
of linear programming, and more generally convex programming problems.
Various extensions have been proposed for general nonlinear programming
(see Section 1).

In this section, we propose and analyze a “barrier-based” algorithm which
is specially tailored to quadratic programming, and is closely related to the
affine scaling algorithm of Section 2 (Algorithm A1). Like Algorithm A1,
it is strongly inspired from the algorithm of [PTH88, TWB+03], as well
as from the related algorithm of [TZ94] for linear programming and convex
quadratic programming. At iteration k, the value µk of the barrier parameter
is determined via computation of the affine scaling direction ∆xk (used in
Algorithm A1), in such a way that (i) the resulting ∆xµ,k is still a good
descent direction for f at xk; and (ii) µk goes to zero fast enough, as ∆xk

goes to zero, that quadratic convergence can be maintained. Specifically
µk is assigned the value ϕk‖∆xk‖νzk

min, where ν > 2 is prescribed, zk
min :=

mini z
k
i > 0, and ϕk is the largest scalar in (0, ϕ], ϕ > 0 prescribed, such that

〈∇f(xk),∆xµ,k〉 ≤ θ〈∆xk,∇f(xk)〉

where θ ∈ (0, 1) is prescribed; it then follows from (12) that

〈∇f(xk),∆xµ,k〉 ≤ −θσ‖∆xk‖2. (24)

As noted in [BT03], such ϕk can be expressed as

ϕk =



















ϕ if
∑

j

ζk
j

zk
j

≤ 0

min







(1−θ)|〈∇f(xk),∆xk〉|

‖∆xk‖νzk
min

∑

j

ζk
j

zk
j

, ϕ







otherwise.
(25)

23

With µk thus computed, a second linear system is solved, with the same
coefficient matrix and modified right-hand side. The solutions ∆xµ,k and
ζµ,k of this modified system are then substituted for ∆xk and ζk in the
remainder of the iteration. The only other difference between Algorithm A1
and Algorithm A2 is linked to the fact that, while with the affine-scaling
direction f(xk + t∆xk) < f(xk) for all t ∈ (0, 1], this is no longer guaranteed
with the modified direction ∆xµ,k when 〈∆xµ,k, H∆xµ,k〉 > 0. It is readily
verified however that in that case it holds that, for any descent direction ∆x,

f(xk + t∆x) < f(xk) ∀t ∈

(

0, 2
|〈∇f(xk),∆x〉|

〈∆x,H∆x〉

)

.

Step 3(i) of the algorithm is modified accordingly.
The proposed algorithm is as follows. Note that, again, the algorithm

statement implicitly assumes that F o is nonempty.

Algorithm A2.

Parameters. β ∈ (0, 1), z ∈ (0, 1), zu > 0, σ > 0, γ > 1, θ ∈ (0, 1), ϕ > 0,
ν > 2, ψ ∈ (1, 2).

Data. x0 ∈ Fo, z0
i > 0 ∀i ∈ I.

Step 0. Initialization. Set k := 0. Set I := ∅. Set αi := 0, i = 1, . . . ,m.
Set E := I.6

Step 1. Computation of modified Hessian. Set W k := H + Ek, where
Ek � 0 is computed as follows.

• If H � σI, then set Ek := 0.

• Else

– If
zk
i

|gi(xk)|
≤ αi for some i ∈ I or (E 6= 0 and I = ∅) or (E 6= 0 and

zk
i

|gi(xk)|
≥ γ2αi for some i ∈ I) then (i) set I := {i :

zk
i

|gi(xk)|
≥ 1}

and αi := 1
γ

zk
i

|gi(xk)|
, i ∈ I; and (ii)

∗ if H +
∑

I αiaia
T
i � σI, set E := 0;

∗ else pick E � 0, with E � (‖H‖F + σ)I, such that H +
∑

I αiaia
T
i +E � σI. (Here, as in Algorithm A1, ‖H‖F is the

Frobenius norm of H.)

6Again, the initial values assigned to the components of α and to E are immaterial, as
long as E 6= 0.

24

– Set Ek := E.

Step 2. Computation of a search direction.
(i) Let (∆xk, ζk) solve the linear system in (∆x, ζ)

W k∆x+ ATζ = −∇f(xk) (26a)

zk
i 〈ai,∆x〉 + gi(x

k)ζi = 0 ∀i ∈ I. (26b)

If ∆xk = 0, stop.
(ii) Set µk := ϕk‖∆xk‖νzk

min, where zk
min := mini z

k
i and ϕk is given by

ϕk =



















ϕ if
∑

j

ζk
j

zk
j

≤ 0

min







(1−θ)|〈∇f(xk),∆xk〉|

‖∆xk‖νzk
min

∑

j

ζk
j

zk
j

, ϕ







otherwise.
(27)

Let (∆xµ,k, ζµ,k) solve the linear system in (∆xµ, ζµ)

W k∆xµ + ATζµ = −∇f(xk) (28a)

zk
i 〈ai,∆x

µ〉 + gi(x
k)ζµ

i = −µk ∀i ∈ I. (28b)

Step 3. Updates.
(i) Set

t
k

:=

{

∞ if 〈ai,∆x
µ,k〉 ≤ 0 ∀i ∈ I,

min
{

|gi(x
k)|

〈ai,∆xk〉
: 〈ai,∆x

µ,k〉 > 0, i ∈ I
}

otherwise.

(29)
Set

tk :=







min
{

max{βt
k
, t

k
−‖∆xµ,k‖}, 1

}

if 〈∆xµ,k, H∆xµ,k〉 ≤ 0,

min
{

max{βt
k
, t

k
−‖∆xµ,k‖}, 1, ψ |〈∇f(xk),∆xµ,k〉|

〈∆xµ,k,H∆xµ,k〉

}

otherwise.

(30)
Set xk+1 := xk + tk∆xµ,k.

(ii) Set
(

ζµ,k
−

)

i
:= min{ζµ,k

i , 0}, ∀i ∈ I. Set

zk+1
i := min{max{min{‖∆xµ,k‖2 + ‖ζµ,k

− ‖2, z}, ζµ,k
i }, zu}, ∀i ∈ I. (31)

25

(iii) Set k := k + 1. Go to Step 1.
�

We now proceed to establish global and local convergence properties for Al-
gorithm A2. The results are the same as for Algorithm A1, with the same
assumptions. Many of the steps in the analysis are analogous to those of Sec-
tion 3. The numbering of the first 12 lemmas, propositions and theorems is
parallel to that used in Section 3. We start with a modified (and expanded)
version of Proposition 3.1.

Proposition 4.1 Let {xk}, {∆xµ,k}, and {ζµ,k} be as constructed by Algo-
rithm A2, and let ψ ∈ (0, 2). Suppose ∆xk 6= 0.
(i) If 〈∆xµ,k, H∆xµ,k〉 ≤ 0, then

f(xk + t∆xµ,k) < f(xk) ∀t > 0. (32)

(ii) If 〈∆xµ,k, H∆xµ,k〉 > 0, then

f(xk + t∆xµ,k) ≤ f(xk) + t

(

1 −
ψ

2

)

〈∇f(xk),∆xµ,k〉 < f(xk)

∀t ∈

[

0, ψ
|〈∇f(xk),∆xµ,k〉|

〈∆xµ,k, H∆xµ,k〉

]

(33)

and furthermore

f(xk + t∆xµ,k) < f(xk) iff t ∈

(

0, 2
|〈∇f(xk),∆xµ,k〉|

〈∆xµ,k, H∆xµ,k〉

]

. (34)

(iii)

gi(x
k + t∆xµ,k) = gi(x

k) + t〈ai,∆x
µ,k〉 < gi(x

k) ∀t > 0,∀i s.t. ζµ,k
i < 0.

(35)

Proof. Claim (i) follows directly from (24) and the second part of (ii)
follows from (24) via routine manipulations on the quadratic function

f(xk + t∆xµ,k) = f(xk) + t〈∇f(xk),∆xµ,k〉 +
1

2
t2〈∆xµ,k, H∆xµ,k〉. (36)

To prove the first part of (ii), observe that (1) yields

f(xk + t∆xµ,k) = f(xk) + t

(

〈∇f(xk),∆xµ,k〉 +
1

2
t〈∆xµ,k, H∆xµ,k〉

)

(37)

26

and that t〈∆xµ,k, H∆xµ,k〉 ≤ −ψ〈∇f(xk),∆xµ,k〉 for all t ∈
[

0, ψ−〈∇f(xk),∆xµ,k〉

〈∆xµ,k,H∆xµ,k〉

]

.

In view of (24), substituting into (37) yields the left-hand inequality in (33).
Since ∆xk 6= 0 and ψ < 2, the right-hand inequality in (33) follows as a
direct consequence of (24), completing the proof of claim (ii). Finally, since
g is linear,

gi(x
k + tk∆xµ,k) = gi(x

k) + tk〈ai,∆x
µ,k〉 i = 1, . . . , m.

Since zk
i > 0 for all i ∈ I, it follows from (28b) that 〈ai,∆x

µ,k〉 < 0 whenever
ζµ,k
i < 0, proving claim (iii). �

The following is the critical step in the global convergence analysis.

Lemma 4.2 Let {xk}, {∆xµ,k}, and {ζµ,k
− } be as constructed by Algorithm A2.

Suppose Assumption 1 holds. Let K be an infinite index set such that {xk}k∈K →
x∗ for some x∗ and

inf{‖∆xµ,k−1‖2 + ‖ζµ,k−1
− ‖2 : k ∈ K} > 0. (38)

Then {∆xk}k∈K → 0 and {∆xk}k∈K → 0.

Proof. First we prove that {∆xk}k∈K → 0. As in the proof of Lemma 3.2,
we proceed by contradiction by assuming that, for some infinite index set
K ′ ⊆ K, inf

k∈K′

||∆xk‖ > 0. The same argument that was used in that proof

shows that, on K ′, the components of {zk} are bounded away from zero and,
without loss of generality, {zk}k∈K′ → z∗ for some z∗ > 0, {W k}k∈K′ → W ∗

for some W ∗, M(x∗, z∗,W ∗) is nonsingular, and

{∆xk}k∈K′ → ∆x∗

for some ∆x∗. Then it follows from Step 2(ii) of Algorithm A2 that {µk}k∈K′

is bounded. It follows that {∆xµ,k}k∈K′ and {ζµ,k}k∈K′ are bounded and
that, without loss of generality, for some ∆xµ,∗,

{∆xµ,k}k∈K′ → ∆xµ,∗.

(Boundedness of {∆xµ,k}k∈K′ and {ζµ,k}k∈K′ follows from the fact that they
solve the linear system (28), whose right-hand side is bounded and whose
system matrix M(xk, zk,W k), nonsingular for all k, converges to the nonsin-
gular matrix M(x∗, z∗,W ∗).) On the other hand, it follows from (28b) that,
for all i such that 〈ai,∆x

µ,k〉 6= 0,

−
gi(x

k)

〈ai,∆x
µ,k〉

ζµ,k
i = zk

i +
µk

〈ai,∆x
µ,k〉

.

27

For all i, the right-hand side is positive whenever 〈ai,∆x
µ,k〉 > 0 and under

the same condition is bounded away from zero on K ′ since {zk
i } is. Since

ζµ,k
i is bounded on K ′, it follows that {−gi(x

k)/〈ai,∆x
µ,k〉} is (positive and)

bounded away from zero on K ′ when 〈ai,∆x
µ,k〉 > 0. In view of Step 3(i) of

Algorithm A2, it follows that {t
k
} is bounded away from zero on K ′.

To proceed with the proof, we show that tk is bounded away from zero
on some infinite index set K ′′ ⊆ K ′. If 〈∆xµ,k, H∆xµ,k〉 ≤ 0 holds infinitely
many times on K ′, then in view of (30), the case is clear. Otherwise, there
exists an infinite index set K ′′ ⊆ K ′ such that 〈∆xµ,k, H∆xµ,k〉 > 0 for all
k ∈ K ′′. In view of (24), for all such k,

|〈∆xµ,k,∇f(xk)〉|

〈∆xµ,k, H∆xµ,k〉
>

θσ‖∆xk‖2

〈∆xµ,k, H∆xµ,k〉
.

Since {‖∆xk‖}k∈K′ is bounded away from zero and K ′′ ⊆ K ′, if follows
from (30) that {tk}k∈K′′ is bounded away from zero, say, tk > t for all k ∈ K ′,
with t ∈ (0, 1).

Proposition 4.1 and Step 3(i) in Algorithm A2 imply that {f(xk)} is
monotonic decreasing. Thus, as in the proof of Lemma 3.2, to complete the
contradiction argument, it then suffices to show that for some δ > 0,

f(xk+1) ≤ f(xk) − δ (39)

infinitely many times. We show that it holds for all k ∈ K ′′. When
〈∆xµ,∗, H∆xµ,∗〉 > 0, the result follows from Proposition 4.1(ii) and (24).
When 〈∆xµ,∗, H∆xµ,∗〉 ≤ 0, essentially the same argument as that used in
the proof of Lemma 3.2 applies. Namely, 〈∆xµ,k, H∆xµ,k〉 ≤ 1

2
σ‖∆x∗‖2 for

k ∈ K ′, k large enough; in view of (24), 〈∇f(xk),∆xµ,k〉 ≤ −1
2
σ‖∆x∗‖2 for

k ∈ K ′, k large enough; since tk ∈ (t, 1] for k ∈ K ′, it follows from (1)
that (39) again holds on K ′, with δ = 1

4
tσ‖∆x∗‖2. Hence (39) holds on K ′′,

and the proof that {∆xk}k∈K → 0 is complete.
It remains to prove that {∆xµ,k}k∈K → 0. Suppose not. Then there is an

infinite index set K ′ ⊆ K such that {∆xµ,k}k∈K′ is bounded away from zero.
Since the sequences {zk} and {W k} are bounded, we assume without loss
of generality that {zk}k∈K′ → z∗ for some z∗ > 0 and {W k}k∈K′ → W ∗ for
some W ∗. It then follows from Lemma 2.4 that M(x∗, z∗,W ∗) is nonsingular.
Since {∆xk}k∈K → 0, it follows from the choice of µk in Algorithm A2 that
{µk}k∈K → 0. Therefore, as k tends to infinity in K ′ ⊆ K, the right-hand
side of (26) tends to the right-hand side of (28). Since M(x∗, z∗,W ∗) is

28

nonsingular, it follows that limk→∞,k∈K′ ∆xµ,k = limk→∞,k∈K′ ∆xk = 0, a
contradiction with the supposition that {∆xµ,k}k∈K′ is bounded away from
zero. �

Lemma 4.3 Let {xk}, {∆xµ,k}, {ζk}, and {ζµ,k} be as constructed by Al-
gorithm A2. Suppose Assumption 1 holds. Let x∗ be such that, for some
infinite index set K, {xk}k∈K converges to x∗. If {∆xµ,k}k∈K converges to
zero, then x∗ is stationary and {ζk}k∈K and {ζµ,k}k∈K both converge to z∗,
where z∗ is the unique multiplier vector associated with x∗.

Proof. First, since {∆xµ,k}k∈K → 0, it follows from (24) that {∆xk}k∈K →
0. The claims are then proved using the same argument as in the proof of
Lemma 3.3, first starting from (26a)–(26b) to show that {ζk}k∈K converges
to z∗, then starting from (28a)–(28b) and using the fact that, due to the
boundedness of {zk}, {∆xk}k∈K → 0 implies that {µk}k∈K → 0, to show
that {ζµ,k}k∈K converges to z∗. �

The proofs of the next six results are direct extensions of those of the
corresponding results in Section 3 and are omitted.

Lemma 4.4 Let {xk} and {∆xµ,k} be as constructed by Algorithm A2. Let
K be an infinite index set such that {xk}k∈K → x∗ for some x∗. If {∆xµ,k−1}k∈K →
0 then {xk−1}k∈K → x∗.

Proposition 4.5 Under Assumption 1, every accumulation point of {xk}
constructed by Algorithm A2 is a stationary point for (P).

Lemma 4.6 Let {xk}, {∆xµ,k}, and {ζµ,k
− } be as constructed by Algorithm A2.

Suppose Assumption 1 holds. Suppose that K, an infinite index set, is such
that, for some x∗, {xk}k∈K tends to x∗, and {∆xµ,k−1}k∈K and {ζµ,k−1

− }k∈K

tend to zero. Then x∗ is a KKT point.

Lemma 4.7 Let {xk} and {∆xµ,k} be as constructed by Algorithm A2. Sup-
pose Assumption 1 holds. Suppose that K, an infinite index set, is such that,
for some x∗, {xk}k∈K → x∗, and x∗ is not KKT. Then {∆xµ,k}k∈K → 0.

Lemma 4.8 Let {xk} be as constructed by Algorithm A2. Suppose Assump-
tions 1 and 2 hold. Suppose {xk} has x∗ as an accumulation point, and x∗

is not KKT. Then the entire sequence {xk} converges to x∗.

Theorem 4.9 Under Assumptions 1 and 2, every accumulation point of
{xk} constructed by Algorithm A2 is a KKT point.

29

Lemma 4.10 Let {xk} and {∆xµ,k} be as constructed by Algorithm A2.
Suppose Assumptions 1 and 3 hold. Let K be an infinite index set such that
{xk}k∈K → x∗. Then {∆xµ,k}k∈K → 0.

Proposition 4.11 Let {xk}, {∆xµ,k}, {zk}, and {ζµ,k} be as constructed
by Algorithm A2. Suppose Assumptions 1, 2 and 3 hold. Then the entire
sequence {xk} converges to x∗. Moreover, (i) {∆xµ,k} → 0, (ii) {ζµ,k} → z∗,
and (iii) {zk

j } → min{z∗j , zu} for all j.

Lemma 4.12 Let {W k} be as constructed by Algorithm A2. Under As-
sumptions 1–4, if σ in Algorithm A2 is such that σ < min{〈v,Hv〉 : 〈ai, v〉 =
0 ∀i ∈ I(x∗), ‖v‖ = 1}, then W k = H for all k sufficiently large.

The remainder of the analysis departs somewhat from that of Section 3.
We use the following additional lemma, which hinges on µk going to zero at
least as fast as the smallest component of zk.

Lemma 4.13 Let {∆xk}, {∆xµ,k}, {ζk} and {ζµ,k} be as constructed by
Algorithm A2. Suppose Assumptions 1–4 hold. For k large enough,

‖∆xµ,k − ∆xk‖ + ‖ζµ,k − ζk‖ = O(‖∆xk‖ν). (40)

Furthermore,

max{0,−〈ζµ,k, A∆xµ,k〉} = O(‖∆xµ,k‖ν).

Proof. The first claim is a direct consequence of nonsingularity ofM(x∗, z∗, H)
(which, like in the proof of Theorem 3.14, follows from Lemma 2.3), the fact
that µk ≤ ϕ‖∆xk‖νzu. Next, since gi(x

k) < 0 for all i and all k, (28b) implies
that, for all i ∈ I,

−ζµ,k
i 〈ai,∆x

µ,k〉 =
−(ζµ,k

i)2

zk
i

|gi(x
k)| +

µkζµ,k
i

zk
i

≤
µkζµ,k

i

zk
i

.

The second claim then follows from positiveness of zk
i , boundedness of {ζk}

(since it converges) and the fact that µk ≤ ϕ‖∆xk‖νzk
min in Step 2(ii) of

Algorithm A2. �

Theorem 4.14 Let {xk}, {zk} be as constructed by Algorithm A2. Sup-
pose Assumptions 1–4 hold. Then, if z∗i < zu ∀i ∈ I and σ < min{〈v,Hv〉 :
〈ai, v〉 = 0 ∀i ∈ I(x∗), ‖v‖ = 1}, {(xk, zk)} converges to (x∗, z∗) q-quadratically.

30

Proof. (Only the differences with the proof of Theorem 3.14 are pointed
out.) First consider {zk}. For i ∈ I(x∗), zk+1

i = ζµ,k
i for k large enough.

In view of Lemma 4.13 and since ν > 2, it follows that condition (ii) in
Proposition 3.13 holds for k large enough. For i 6∈ I(x∗), for k large enough,
either again zk+1

i = ζµ,k
i or zk+1

i = ‖∆xµ,k‖2 + ‖ζµ,k
− ‖2. In the latter case, we

note that

|zk+1
i − 0| ≤ ‖∆xµ,k‖2 + ‖ζµ,k‖2

≤ ‖∆xµ,k − ∆xk‖2 + ‖∆xk‖2 + ‖ζµ,k − ζk‖
2 + ‖ζk‖2.

For k large enough, this yields

|zk+1
i − 0| ≤ ‖∆xµ,k − ∆xk‖ + ‖ζµ,k − ζk‖ + ‖∆xk‖2 + ‖ζk‖2.

Again using Lemma 4.13 and the fact that ν > 2, we conclude that condition
(i) in Proposition 3.13 holds.

To conclude the proof, we first show that, when 〈∆xµ,k, H∆xµ,k〉 > 0,

ψ
|〈∆xµ,k,∇f(xk)〉|

〈∆xµ,k, H∆xµ,k〉
> 1 (41)

for k large enough, implying that, for all k large enough, tk is given by (see
Step 3(i) of Algorithm A2)

tk = min
{

max{t
k
−‖∆xµ,k‖, βt

k
}, 1

}

. (42)

Taking the inner product of both sides of equation (28a) by ∆xµ,k and using
the fact that W k = H for all k large enough (Lemma 4.12), we get

〈∇f(xk),∆xµ,k〉 = −〈∆xµ,k, H∆xµ,k〉 − 〈ζµ,k, A∆xµ,k〉

Now let τ = 2/ψ. Then τ ∈ (1, 2). Since f is quadratic, it follows that

f(xk + τ∆xµ,k) = f(xk) + τ〈∇f(xk),∆xµ,k〉 +
τ 2

2
〈∆xµ,k, H∆xµ,k〉

= f(xk) + (τ −
τ 2

2
)〈∇f(xk),∆xµ,k〉 −

τ 2

2
〈ζµ,k, A∆xµ,k〉.

≤ f(xk) − τ(1 −
τ

2
)θσ‖∆xk‖2 +O(‖∆xµ,k‖ν).

31

where we have used Lemma 4.13 and equation (24). Since ν > 2, it follows
that f(xk + τ∆xµ,k) < f(xk) for k large enough, and Proposition 4.1 (“only
if” portion of (34)) then implies that for k large enough,

τ < 2
|〈∆xµ,k,∇f(xk)〉|

〈∆xµ,k, H∆xµ,k〉
,

i.e., (41) holds for k large enough. Hence (42) holds for all k large enough.
Now, for i 6∈ I(x∗),

|g(xk
i)|

|〈ai,∆xµ,k〉|
→ ∞ as k → ∞.

Thus, if I(x∗) = ∅, then, in view of Step 3(i) in Algorithm A2, tk = 1 for k
large enough. Further, since, whenever 〈ai,∆x

µ,k〉 > 0 and ζµ,k
i > 0,

zk
i

ζµ,k
i

=
|gi(x

k)|

〈ai,∆xµ,k〉
−

µk
i ζ

µ,k
i

〈ai,∆xµ,k〉
≤

|gi(x
k)|

〈ai,∆xµ,k〉
,

it follows that, when I(x∗) is not empty, then

t
k

= min

{

zk
i

ζµ,k
i

: i ∈ I(x∗)

}

.

and

tk = min

{

1,
zk

ik

ζµ,k
ik

− ‖∆xµ,k‖

}

(43)

for k large enough, for some ik ∈ I(x∗). (In particular, in view of Proposi-
tion 4.11, {tk} converges to 1.) Thus,

‖xk+1 − (xk + ∆xk)‖ = ‖xk + tk∆xµ,k − (xk + ∆xk)‖

= |tk − 1|‖∆xk‖ + tk‖∆xµ,k − ∆xk‖

In view of (43), we get

‖xk+1 − (xk + ∆xk)‖ =

∣

∣

∣

∣

∣

‖∆xµ,k‖ +
ζµ,k
ik

− zk
ik

ζµ,k
ik

∣

∣

∣

∣

∣

‖∆xk‖ + tk‖∆xµ,k − ∆xk‖

≤

∣

∣

∣

∣

∣

‖∆xk‖ + ‖∆xµ,k − ∆xk‖ +
ζµ,k
ik

− zk
ik

ζµ,k
ik

∣

∣

∣

∣

∣

‖∆xk‖ + tk‖∆xµ,k − ∆xk‖.

32

In view of Lemma 4.13 and since ν > 2, we obtain, for k large enough,

‖xk+1 − (xk + ∆xk)‖ ≤ 2
(

‖∆xk‖ + (ζµ,k
ik

)−1‖∆zk‖
)

‖∆xk‖.

The remainder of the proof is as in the proof of Theorem 3.14. �

5 Implementation issues

We still have to define explicitly a way of choosing E � 0 “small” such that
H +

∑

I αiaia
T
i + E � σI (Step 1 of Algorithms A1 and A2). We use the

following method, borrowed from [TWB+03, p. 192]: E = hI, with

h =











0 if λmin≥σ,

−λmin + σ if |λmin|<σ,

2|λmin| otherwise,

(44)

where λmin denotes the leftmost eigenvalue of H +
∑

I αiaia
T
i . 7 (This idea

of choosing E as a nonnegative multiple of the identity has been used in
interior-point algorithms for nonlinear programming, e.g., in [VS99].)

Another implementation issue concerns the feasibility of the iterates. The

presence of the expression t
k
−‖∆xk‖ in the definition (8) of the primal step-

size tk is key to obtaining quadratic convergence. However, when ‖∆xk‖

becomes small, tk may become so close to the maximal feasible stepsize t
k

that, in finite precision arithmetic, gi(x
k+1) returns a nonnegative number,

due to an accumulation of numerical errors in the evaluation of t
k
, t, xk+1

and finally gi(x
k+1). This was indeed observed in our numerical experiments,

where the evaluation of a constraint function sometimes returned a nonnega-
tive number—but never larger than a small multiple of the machine relative
accuracy u.8 To circumvent this difficulty, we allow the constraints to recede
slightly. At each iteration, before Step 1, we define g̃k

i = min{gi(x
k),−ε},

where ε is a small positive multiple of u, and we replace gi(x
k) by g̃k

i through-
out the iteration. If, as a result, some gi(x

k) eventually becomes too pos-
itive, then it is possible to apply a small perturbation to the current it-
erate along the corresponding ai’s in order to make it numerically feasible

7Note that the use of eigenvalues to construct the matrix E could potentially be avoided
by using a modified Cholesky factorization instead. In some cases, such as large-scale prob-
lems, computing a (modified) Cholesky factorization is impractical, and iterative methods
are preferred.

8The floating point relative accuracy is the distance from 1.0 to the next (larger) floating
point number.

33

again. In our numerical experiments, we never had to apply this latter proce-
dure since the gi(x

k)’s always remained below 103u, which should be typical
under our linear independence assumption (Assumption 1): indeed, since

(W k +
∑m

i=1
zk
i

|gi(xk)|
aia

T
i)∆xk = ∇f(xk) in view of (11a), it then follows that

when gi(x
k) is close to zero and ‖∇f(xk)‖ is not very large, the component

of ∆xk along ai is very small.
The major computational tasks in Algorithms A1 and A2 are the follow-

ing. First, in Step 1 (when the αi’s are recomputed), compute a sufficiently
good approximation λ̃min of the leftmost eigenvalue of H +

∑

I αiaia
T
i , to

be used in (44); many possibilities are available for computing λmin, see
e.g. [BDD+00], [ABG04] and references therein. Second, in Step 2, solve sys-
tem (6)—in Algorithm A1—or systems (26) and (28)—in Algorithm A2. The
other operations require minimal computation (note that A∆xk computed
in (6b) can be reused in the computation of t̄k).

Structured linear systems like (6), or (26) and (28), are ubiquitous in
primal-dual interior-point methods; see e.g. [Wri98] or [FG98]. Since these
three systems have the same matrix M(xk, zk,W k), we focus on one of them,
say (6). One option is to solve (6) explicitly using a classical technique.
However, if the number m of constraints is very large, then the cost of a
“black-box” method may be prohibitive. An alternative is to eliminate ζ
from the second line (6b) and substitute into the first line (6a), leading to
the condensed primal-dual system (11a). This expresses ∆xk as the solution
of an n× n linear system. The multiplier estimate ζ is then obtained at low
cost from (11b). When the matrices are dense, solving a linear system of
the form (6) via the Schur complement (11) costs O(mn2) flops to form Sk,
O(n3) to solve (11a) and O(mn) to solve (11b).

Solving the condensed primal-dual system (11a) for the update ∆xk may
seem inappropriate because the condition number of the condensed primal-
dual matrix Sk grows unbounded if some constraints are active at x∗. How-
ever, as shown by M. Wright [Wri98], this ill-conditioning is benign: the
singular values of Sk split into two well-behaved groups, one very large and
the other of order 1 (this is responsible for the large condition number of
Sk), and the expected inaccuracies preserve this structure. (In her paper,
M. Wright shows this for our Sk −Ek. Because our Ek is a bounded multiple
of the identity, it applies to Sk as well.) It follows that the absolute error on
∆xk computed with a backward-stable method is comparable to u, and so is
the error on the multipliers computed via (11b). Moreover, the absolute error
in the computed solution of the full, well-conditioned primal-dual system (6)

34

by any backward-stable method is also comparable to u. We refer to [Wri98]
for details. In our implementations (see Section 6), we solve (6), (26) and (28)
via the condensed approach.

Finally, we point out that Algorithms A1 and A2 can be adapted to deal
with equality constraints by means of elimination techniques; see e.g. [NW99,
Section 15.2] for details.

6 Numerical experiments and comparisons

In order to assess the practical value of Algorithms A1 and A2, we per-
formed preliminary comparative tests using Matlab implementations of Al-
gorithm A1 (affine scaling, µ = 0), Algorithm A2 (barrier function, µ > 0)
and two interior ellipsoid trust-region (TR) algorithms based on [Ye89, Ye92,
Tse04].

We considered indefinite quadratic programs in standard inequality form

minimize
1

2
〈x,Hx〉 + 〈c, x〉 s.t. Cx ≤ d, x ≥ 0, x ∈ Rn,

because they fit within the framework of (P) and, by means of slack variables,
the constraints are readily transformed into the form Ax = b, x ≥ 0 used
in [Ye89, Ye92, Tse04]. We chose the entries of C independently from a
uniform distribution on the interval (10−6, 1 + 10−6). This ensures that the
feasible set {Cx ≤ d, x ≥ 0} has a nonempty interior and does not feature
exceedingly acute angles that would compromise the behavior of a strictly
feasible method. The number m−n of rows in C was itself chosen randomly
in [1, 2n] with uniform distribution. The algorithms were initialized with
x0 = e, the vector of all ones. The vector d was selected as d = Cx0 +
e. The matrix H, with condition number 10ncond and number of negative
eigenvalues approximately negeig, was generated as described by Moré and
Toraldo [MT89, p. 392]. Finally, the vector c was defined as c = −Hx∗ (so
∇f(x∗) = 0) where x∗ was chosen from the normal distribution N (0, 1). The
algorithms were tested on a common set of sample problems, with n = 100
and varying values of ncond and negeig. Ten problems were generated in each
category, for a total of 250 test problems, and the algorithms were compared
on these problems with regard to the number of iterations, the number of
times the leftmost eigenvalue of a large (n× n) matrix has to be computed,
the number of times a large (n× n) linear system has to be solved, and the
final value obtained for the cost function.

35

In order to assess the usefulness of the procedure defined in Step 1, we
also tested a simpler version of Algorithms A1 and A2 where the leftmost

eigenvalue of H+
∑m

i=1
zk
i

|gi(xk)|
aia

T
i is evaluated at every iteration in order

to compute Ek according to (44). We ran comparative tests with Y. Ye’s
spsolqp algorithm, or more precisely with a modification thereof, provided
to us by Prof. Ye, tuned to address the standard inequality form described
above; we dub this algorithm spsolqp-std-ineq. The spsolqp code, ini-
tially written in 1988, is based on the Interior Ellipsoid TR method described
and analyzed in [Ye89, Ye92]. The TR subproblems are tackled using an in-
ner iteration based on [Ye89, Procedure 3.1]; the inner iteration terminates
as soon as a feasible point is found that produces a decrease of the cost func-
tion (note that the decrease guaranteed by [Ye89, Lemma 3.5] assumes that
H is positive semidefinite). Accordingly, this algorithm does not attempt to
solve the TR subproblems accurately.

We also tested our algorithm against an interior-ellipsoid-based algorithm
that computes nearly exact solutions to the TR subproblems; we dub the al-
gorithm exact-TR. The motivation for considering such an algorithm is that
most convergence analyses, including the ones in [Ye89, Ye92, Tse04], assume
that the TR subproblems are solved accurately. The exact-TR algorithm is
based on a Matlab script for box constrained problems that was communi-
cated to us by P. Tseng and was used for the tests reported in [Tse04].9 We
modified the script in accordance with [Tse04, Section 2] to include equality
constraints and made further adjustments to improve its performance on our
battery of test problems.

We chose to use the stopping criterion of spsolqp in all the algorithms.
Thus, execution terminates when (f(xk) − f(xk+1)/(1 + |f(xk)|) is smaller
than a prescribed tolerance, which we set to 10−8. For Algorithms A1
and A2, the following parameter values were used: β = .9, z = 10−4, zu =
1015, σ = 10−5, γ = 103, θ = .8, ϕ = 106, ν = 3, ψ = 1.5, ε = 10−14 (ε appears
in the definition of g̃, see Section 5). The multiplier estimates are assigned the
initial value z0

j = max{.1, z′0j } where z′0 = −(AT)†∇f(x0) (with reference to
formulation (P)) and the superscript † denotes the Moore-Penrose pseudo-
inverse. All tests were run on a PC with Intel Pentium 4 CPU 2.60 GHz
with 512 KB cache, running Linux kernel 2.6.1 and Matlab 6.5 (R13). The
floating point relative accuracy (see definition in footnote 8) is approximately
2.2 · 10−16.

9Note that in the results reported in [Tse04], ncond is the natural logarithm of the
condition number. (This was confirmed to us by P. Tseng.)

36

The numerical results are presented in Tables 1 to 3 and Figures 1 to 4.
Tables 1 to 3 show that Algorithms A1 and A2 clearly outperform the interior
ellipsoid TR codes in terms of number of iterations and number of system
solves, and the exact-TR code in terms of eigensolves. (spsolqp-std-ineq
does not involve eigensolves.) The particularly large performance gap in
terms of system solves between exact-TR and the other codes is to be at-
tributed to the fact that in the former, consistent with the assumption made
in the analysis in [Ye89, Ye92, Tse04], the TR subproblems are solved with
high accuracy (using the Moré-Sorensen method [CGT00, Section 7.3]).

Barrier-based Algorithm A2 tends to outperform affine-scaling Algorithm A1
in terms of number of iterations, eigensolves, and system solves for nonconvex
problems (negeig > 0). When the problem is convex, there is no clear winner
in terms of number of iterations and system solves, and both algorithms only
require one eigensolve per problem (enough to notice that the problem is
convex). Concerning the number of system solves, note that, in Table 3,
two system solves—(26) and (28)—are counted per iteration for the barrier-
based algorithm A2, which possibly does a disservice to that algorithm: since
the two systems have the same matrix, decomposition-based solvers will be
able to reuse information to dramatically speed-up the second solve.

The advantage of using Step 1—instead of computing the smallest eigen-

value of H +
∑m

i=1
zk
i

|gi(xk)|
aia

T
i at each iteration—is clearly seen in the numer-

ical results (“simplified Step 1” versus original algorithms): the number of
eigensolves is significantly reduced whereas the number of iterations (and,
thus, of system solves) is hardly affected. Note however that, every time the
αi’s are recomputed (via eigenvalue decomposition) in Step 1, a dedicated
Schur complement H +

∑

I αiaia
T
i has to be formed. Fortunately, if A is

sparse (which is the case in many applications), the cost of constructing the
Schur complement is comparatively low. Moreover, if an inverse-free eigen-
solver is used, it may even not be profitable to form the Schur complement.

Since none of the tested algorithms is a global method, it is natural that
they sometimes converge to different local minima. The purpose of Figures 1
to 4 is to compare the methods in terms of quality of the solutions. In
each figure, the top histogram shows on a log scale the distribution of the
differences favorable to Algorithm A2, and the bottom histogram shows the
distribution of the differences unfavorable to that algorithm. Figures 1 and 2
show a strong tendency of Algorithm A2 to produce lower-cost solutions than
the interior TR methods. The reasons are unknown. Figures 3 and 4 suggest
that the variants of the Newton-KKT algorithms (simple or elaborate Step 1,

37

Mean number of iterations

Algorithm A1 with simplified Step 1
negeig

ncond 0 10 50 90 100
0 22.0 71.4 86.1 102.2 89.7
3 29.9 61.3 79.2 82.6 81.6
6 34.4 73.7 86.5 81.8 89.1
9 42.1 95.6 86.8 98.5 99.7
12 47.0 95.6 110.4 118.4 112.1

Algorithm A2 with simplified Step 1
negeig

ncond 0 10 50 90 100
0 21.2 28.5 32.6 42.1 36.6
3 91.6 22.8 28.1 22.8 24.6
6 31.2 19.6 23.4 20.3 24.0
9 33.6 30.0 33.8 37.4 34.8
12 31.9 35.6 40.0 42.3 43.9

Algorithm A1
negeig

ncond 0 10 50 90 100
0 22.0 74.4 89.8 96.9 89.7
3 29.9 72.3 81.9 85.3 81.1
6 34.4 91.0 92.1 90.1 98.3
9 42.1 117.2 104.7 107.3 107.5
12 47.0 111.1 130.5 138.6 120.4

Algorithm A2
negeig

ncond 0 10 50 90 100
0 21.2 26.5 33.9 37.8 38.1
3 91.6 25.8 29.9 24.8 27.0
6 31.2 23.1 25.8 27.4 27.4
9 33.6 39.4 35.6 42.2 36.2
12 31.9 47.7 45.4 45.3 47.2

spsolqp-stp-ineq
negeig

ncond 0 10 50 90 100
0 53.7 117.7 91.0 181.3 153.8
3 69.8 79.1 111.1 114.3 126.4
6 75.3 81.8 83.3 112.0 102.7
9 76.8 93.3 88.8 124.5 86.9
12 66.5 83.8 79.5 113.5 77.7

exact-TR
negeig

ncond 0 10 50 90 100
0 52.5 113.0 113.1 184.8 136.6
3 88.1 80.5 123.1 116.6 147.6
6 92.4 80.8 83.9 109.7 110.3
9 64.4 92.4 82.7 127.9 86.8
12 42.9 75.1 77.7 112.2 82.6

Table 1: Comparison of the various algorithms in terms of the mean number
of iterations over 10 problems randomly selected as explained in the text.

38

Number of eigensolves per problem

Algorithm A1 with simplified Step 1
negeig

ncond 0 10 50 90 100
0 1.0 72.4 87.1 103.2 90.7
3 1.0 62.3 80.2 83.6 82.6
6 1.0 74.7 87.5 82.8 90.1
9 1.0 96.6 87.8 99.5 100.7
12 1.0 96.6 111.4 119.4 113.1

Algorithm A2 with simplified Step 1
negeig

ncond 0 10 50 90 100
0 1.0 29.5 33.6 43.1 37.6
3 1.0 23.8 29.1 23.8 25.6
6 1.0 20.6 24.4 21.3 25.0
9 1.0 31.0 34.8 38.4 35.8
12 1.0 36.6 41.0 43.3 44.9

Algorithm A1
negeig

ncond 0 10 50 90 100
0 1.0 18.6 20.9 29.0 28.9
3 1.0 30.5 38.4 35.3 39.5
6 1.0 42.1 42.9 48.2 50.1
9 1.0 58.3 59.6 63.1 61.8
12 1.0 61.3 80.4 89.6 73.9

Algorithm A2
negeig

ncond 0 10 50 90 100
0 1.0 8.0 9.9 10.7 11.9
3 1.0 13.6 16.6 14.5 14.7
6 1.0 13.3 16.3 16.4 16.9
9 1.0 23.7 29.0 36.2 29.3
12 1.0 27.4 37.9 40.1 38.5

spsolqp-stp-ineq
negeig

ncond 0 10 50 90 100
0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0

exact-TR
negeig

ncond 0 10 50 90 100
0 52.5 113.0 113.1 184.8 136.6
3 88.1 80.5 123.1 116.6 147.6
6 92.4 80.8 83.9 109.7 110.3
9 64.4 92.4 82.7 127.9 86.8
12 42.9 75.1 77.7 112.2 82.6

Table 2: Comparison of the various algorithms in terms of the mean number
of times the leftmost eigenvalue of an n×n matrix had to be computed. The
mean is computed over 10 problems randomly selected as explained in the
text.

39

Number of system solves per problem

Algorithm A1 with simplified Step 1
negeig

ncond 0 10 50 90 100
0 22.0 71.4 86.1 102.2 89.7
3 29.9 61.3 79.2 82.6 81.6
6 34.4 73.7 86.5 81.8 89.1
9 42.1 95.6 86.8 98.5 99.7
12 47.0 95.6 110.4 118.4 112.1

Algorithm A2 with simplified Step 1
negeig

ncond 0 10 50 90 100
0 42.4 57.0 65.2 84.2 73.2
3 183.2 45.6 56.2 45.6 49.2
6 62.4 39.2 46.8 40.6 48.0
9 67.2 60.0 67.6 74.8 69.6
12 63.8 71.2 80.0 84.6 87.8

Algorithm A1
negeig

ncond 0 10 50 90 100
0 22.0 74.4 89.8 96.9 89.7
3 29.9 72.3 81.9 85.3 81.1
6 34.4 91.0 92.1 90.1 98.3
9 42.1 117.2 104.7 107.3 107.5
12 47.0 111.1 130.5 138.6 120.4

Algorithm A2
negeig

ncond 0 10 50 90 100
0 42.4 53.0 67.8 75.6 76.2
3 183.2 51.6 59.8 49.6 54.0
6 62.4 46.2 51.6 54.8 54.8
9 67.2 78.8 71.2 84.4 72.4
12 63.8 95.4 90.8 90.6 94.4

spsolqp-stp-ineq
negeig

ncond 0 10 50 90 100
0 54.9 156.0 122.9 243.7 206.1
3 74.3 103.6 149.9 153.5 169.5
6 81.3 108.1 112.1 151.7 136.9
9 79.6 119.0 120.5 168.9 117.0
12 67.5 109.6 107.0 153.2 103.9

exact-TR
negeig

ncond 0 10 50 90 100
0 568.6 881.9 825.9 1332.5 999.9
3 936.5 641.1 901.2 870.4 1111.0
6 1052.8 645.8 644.2 810.6 808.4
9 757.0 823.6 615.8 944.2 630.0
12 528.6 608.8 572.0 804.8 607.6

Table 3: Comparison of the various algorithms in terms of the mean number
of times an n × n linear system had to be solved. The mean is computed
over 10 problems randomly selected as explained in the text.

40

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

20

40

60

80

log10(f − f
ref

)

O
cc

ur
en

ce
s

spsolqp−stp−ineq; ref: Algorithm A2

f>f
ref

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

20

40

60

80

log10(f
ref

 − f)

O
cc

ur
en

ce
s

f<f
ref

Figure 1: Comparison of the quality of solutions obtained by Algorithms A2
(fref) and spsolqp-std-ineq (f). The top histogram tallies instances where
A2 reached a lower-cost solution than spsolqp-std-ineq, and vice-versa for
the bottom histogram. The figure shows a strong tendency of Algorithm A2
to produce lower-cost solutions than spsolqp-std-ineq. The data comes
from the 250 tests reported on in the tables.

barrier parameter or not) produce results of comparable quality.
Finally, we observed that the numerical behaviour of Algorithm A2 is

further improved10 when, in Step 2(ii), µk is assigned the value ϕk(‖∆xk‖ν +
‖ζk

−‖
ν)zk

min instead of ϕk‖∆xk‖νzk
min (with (‖∆xk‖ν + ‖ζk

−‖
ν) also replacing

‖∆xk‖ν in (27)). This is likely due to the modified µk being bounded away
from zero near non-KKT stationary points, unlike the original µk. The the-
oretical properties of this modified algorithm are under investigation.

10In particular, the large number of iterations for ncond=3 and negeig=0 became much
smaller.

41

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

log10(f − f
ref

)

O
cc

ur
en

ce
s

exact−TR; ref: Algorithm A2

f>f
ref

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

log10(f
ref

 − f)

O
cc

ur
en

ce
s

f<f
ref

Figure 2: Comparison of the quality of solutions obtained by Algorithms A2
(fref) and exact-TR (f).

42

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

log10(f − f
ref

)

O
cc

ur
en

ce
s

Algorithm A1; ref: Algorithm A2

f>f
ref

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

30

log10(f
ref

 − f)

O
cc

ur
en

ce
s

f<f
ref

Figure 3: Comparison of the quality of solutions obtained by Algorithms A2
(fref) and A1 (f).

43

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

log10(f − f
ref

)

O
cc

ur
en

ce
s

Algorithm A2 with simplified Step 1; ref: Algorithm A2

f>f
ref

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

log10(f
ref

 − f)

O
cc

ur
en

ce
s

f<f
ref

Figure 4: Comparison of the quality of solutions obtained by Algorithm A2
(fref) and Algorithm A2 with simplified Step 1 (f).

44

7 Conclusion

Two “Newton-KKT” interior point algorithms for indefinite quadratic pro-
gramming were proposed and analyzed, one of the affine-scaling type, the
other barrier-based. Both were proved to converge globally and locally
quadratically under nondegeneracy assumptions. Numerical results on ran-
domly generated problems were reported that suggest that the proposed al-
gorithms hold promise, even for degenerate problems.

Acknowledgements

The authors wish to thank Paul Tseng and Yinyu Ye for making available to
them their Matlab codes, and for valuable advice. Further they wish to thank
two anonymous referees and the anonymous associate editor for their careful
reading of the manuscript and their many helpful comments; in particular,
for uncovering a flow in the analysis in the original version of the paper and
for making the authors aware of the spsolqp code.

References

[ABG04] P.-A. Absil, C. G. Baker, and K. A. Gallivan, A truncated-CG style method
for symmetric generalized eigenvalue problems, accepted for publication in
J. Comput. Appl. Math., special issue on ICCAM 2004 Conference, 2004.

[BB95] J.F. Bonnans and M. Bouhtou, The trust region affine interior point algo-
rithm for convex and nonconvex quadratic programming, RAIRO Rech. Opér.
29 (1995), 195–217.

[BDD+00] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (eds.), Tem-
plates for the solution of algebraic eigenvalue problems: A practical guide,
Society for Industrial and Applied Mathematics, Philadelphia, 2000.

[BGN00] R.H. Byrd, J.C. Gilbert, and J. Nocedal, A trust region method based on in-
terior point techniques for nonlinear programming, Mathematical Program-
ming 89 (2000), 149–185.

[BP97] J. Frédéric Bonnans and Cecilia Pola, A trust region interior point algorithm
for linearly constrained optimization, SIAM J. Optim. 7 (1997), no. 3, 717–
731.

[BT03] S. Bakhtiari and A.L. Tits, A simple primal-dual feasible interior-point
method for nonlinear programming with monotone descent, Comput. Optim.
Appl. 25 (2003), 17–38.

45

[CGT00] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, Trust-region methods,
MPS/SIAM Series on Optimization, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, and Mathematical Programming
Society (MPS), Philadelphia, PA, 2000.

[CL99] T.F. Coleman and J. Liu, An interior Newton method for quadratic program-
ming, Math. Programming 85 (1999), 491–523.

[Dik67] I.I. Dikin, Iterative solution of problems of linear and quadratic programming,
Soviet Math. Dokl. 8 (1967), 674–675.

[DX00] Chuangyin Dang and Lei Xu, A barrier function method for the nonconvex
quadratic programming problem with box constraints, J. Global Optim. 18

(2000), no. 2, 165–188.

[ETTZ96] A.S. El-Bakry, R.A. Tapia, T. Tsuchiya, and Y. Zhang, On the formulation
and theory of the Newton interior-point method for nonlinear programming,
J. Opt. Theory Appl. 89 (1996), 507–541.

[FG98] A. Forsgren and P.E. Gill, Primal-dual interior methods for nonconvex non-
linear programming, SIAM J. on Optimization 8 (1998), no. 4, 1132–1152.

[FGW02] A. Forsgren, P. E. Gill, and M. H. Wright, Interior methods for nonlinear
optimization, SIAM Rev. 44 (2002), no. 4, 525–597.

[FM68] A.V. Fiacco and G.P. McCormick, Nonlinear programming: Sequential un-
constrained minimization techniques, Wiley, New-York, 1968.

[GOW98] D. M. Gay, M. L. Overton, and M. H. Wright, A primal-dual interior method
for nonconvex nonlinear programming, Advances in Nonlinear Programming
(Y. Yuan, ed.), Kluwer Academic Publisher, 1998, pp. 31–56.

[GZ05] C. Grossmann and M. Zadlo, A general class of penalty/barrier path-
following Newton methods for nonlinear programming, Optimization 54

(2005), no. 2, 161–190.

[Her82] J.N. Herskovits, Développement d’une méthode numérique pour
l’optimization non-linéaire, Ph.D. thesis, Université Paris IX - Dauphine,
Paris, France, January 1982.

[Her86] , A two-stage feasible directions algorithm for nonlinear constrained
optimization, Math. Programming 36 (1986), no. 1, 19–38.

[MA89] R.D.C. Monteiro and I. Adler, Interior path following primal-dual algo-
rithms. Part ii: Convex quadratic programming, Mathematical Programming
44 (1989), 43–66.

[MT89] Jorge J. Moré and Gerardo Toraldo, Algorithms for bound constrained
quadratic programming problems, Numer. Math. 55 (1989), no. 4, 377–400.

[MT98] Renato D. C. Monteiro and Takashi Tsuchiya, Global convergence of the
affine scaling algorithm for convex quadratic programming, SIAM J. Optim.
8 (1998), no. 1, 26–58 (electronic).

[NW99] J. Nocedal and S. Wright, Numerical optimization, Springer Series in Oper-
ations Research, Springer-Verlag, New York, 1999.

46

[PTH88] E.R. Panier, A.L. Tits, and J.N. Herskovits, A QP-free, globally conver-
gent, locally superlinearly convergent algorithm for inequality constrained
optimization, SIAM J. Contr. and Optim. 26 (1988), no. 4, 788–811.

[QQ00] Hou-Duo Qi and Liqun Qi, A new QP-free, globally convergent, locally super-
linearly convergent algorithm for inequality constrained optimization, SIAM
J. Optim. 11 (2000), no. 1, 113–132 (electronic).

[Tse04] P. Tseng, Convergence properties of Dikin’s affine scaling algorithm for non-
convex quadratic minimization, J. Global Optim. 30 (2004), no. 2, 285–300.

[TWB+03] A.L. Tits, A. Wächter, S. Bakhtiari, T.J. Urban, and C.T. Lawrence, A
primal-dual interior-point method for nonlinear programming with strong
global and local convergence properties, SIAM J. on Optimization 14 (2003),
no. 1, 173–199.

[TY02] Paul Tseng and Yinyu Ye, On some interior-point algorithms for nonconvex
quadratic optimization, Math. Program. 93 (2002), no. 2, Ser. A, 217–225.

[TZ94] A.L. Tits and J.L. Zhou, A simple, quadratically convergent algorithm for
linear and convex quadratic programming, Large Scale Optimization: State
of the Art (W.W. Hager, D.W. Hearn, and P.M. Pardalos, eds.), Kluwer
Academic Publishers, 1994, pp. 411–427.

[VS99] R.J. Vanderbei and D.F. Shanno, An interior-point algorithm for nonconvex
nonlinear programming, Computational Optimization and Applications 13

(1999), 231–252.

[Wri98] M. H. Wright, Ill-conditioning and computational error in interior methods
for nonlinear programming, SIAM J. Optim. 0 (1998), no. 1, 84–111.

[Yam98] H. Yamashita, A globally convergent primal-dual interior point method for
constrained optimization, Optimization Methods and Software 10 (1998),
443–469.

[Ye87] Y. Ye, Interior algorithms for linear, quadratic, and linearly constrained
convex programming, Ph.D. thesis, Stanford University, 1987.

[Ye89] Yinyu Ye, An extension of Karmarkar’s algorithm and the trust region
method for quadratic programming, Progress in mathematical programming
(Pacific Grove, CA, 1987), Springer, New York, 1989, pp. 49–63.

[Ye92] Y. Ye, On affine scaling algorithms for nonconvex quadratic programming,
Mathematical Programming 56 (1992), 285–300.

[Ye98] , On the complexity of approximating a KKT point of quadratic pro-
gramming, Mathematical Programming 80 (1998), 195–211.

[YLQ03] Yu-Fei Yang, Dong-Hui Li, and Liqun Qi, A feasible sequential linear equa-
tion method for inequality constrained optimization, SIAM J. Optim. 13

(2003), no. 4, 1222–1244 (electronic).

[YT89] Yinyu Ye and Edison Tse, An extension of Karmarkar’s projective algorithm
for convex quadratic programming, Math. Programming 44 (1989), no. 2,
(Ser. A), 157–179.

47

