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Abstract

Considering a set of points in a multi-dimensional space with an associated real value
for each point, we want to find the box with the maximum sum of the values of the
included points. This problem has applications in data mining and can be formulated
as a mixed-integer linear program. We propose a branch-and-bound algorithm where
the bounding is obtained by combinatorial arguments instead of the traditional linear
relaxation. Computational experiments show that this approach competes with current
state of the art mixed-integer solvers. The algorithm proposed in this paper may be seen
as a simple and dependence-free method to solve the box search problem.
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1. Introduction

Data mining [9] has been a popular field of research recently since it is possible to
generate big databases. It consists in finding relevant information in a large set of data
that is usually automatically generated. The most well-known example is when a company
collects information about its customers in order to provide a better individualized service.
Together with this new trend, companies also try to automatically collect as much data
as possible. An important question is therefore to understand how to handle this new
information correctly. In this paper, we are interested in a particular problem that arises
in this context and that may be of interest for very complex industrial processes. In
particular, we consider a process for which we automatically retrieve a number of variables
that might influence a given output variable. For example, we may consider a line creating
some products and the output variable could be an estimation of the quality of the
product. It is clear that a large number of variables may influence the quality of the
production and we assume that most of them can be retrieved along the way for each
produced item. The question that we ask is to find a set of rules, i.e. intervals on the
variables, for which the average output is maximized. This can be of interest in order to
find a setup that works well in average. On the other hand, if we find a set of rules for
which the average output is minimized, this could also potentially explain why a number
of objects is of bad quality. Both questions are of interest in the context of understanding
an industrial process and we try to address them in this paper.
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More specifically, we assume that each produced item i is represented by aD-dimensional
vector xi of the input variables for which we consider a normalized value in [0,1]. The
output value of the item i is given by ci ∈ R and might be either positive or negative. The
problem addressed in this paper is to find a box, i.e. an interval [lt, ut] for each dimension
t, which maximizes the sum of the values ci of each point i included in the box. We name
this problem the box search. The purpose of a box is its simplicity and robustness.

A way to handle data mining is by using machine learning strategies. In [10], Friedman
et al. introduce the heuristic PRIM (Patient Rule Induction Method) for bump-hunting
in high-dimensional data. The procedure starts with a box including all points. At each
iteration, PRIM peels α points of the box by restricting the box on one dimension. The
procedure stops when the number of points included in the box drops below a fraction β
of the total number of points. Several improvements of this technique have been proposed
as PRIM2 [7] or f-PRIM [5]. Other alternatives in this area are suggested like subgroup
discovery [14] or a genetic algorithm [18].

A common drawback of these approaches is that they give no guarantee on the quality
of the solution. One may however require finding the best box and provide a certificate
of optimality. Unfortunately, this kind of problem is known to be NP-Hard. It can
be trivially solved in MO(D) operations where M is the number of points and D their
dimension [12]. Eckstein et al. introduce in [8] the maximum box problem where we seek
a box maximizing the weighted sum over a set of points with a positive objective value
while not intersecting a set of given points. They prove that the maximum box problem
is NP-Hard in the general case and polynomial if we fix the dimension. The maximum
box problem trivially reduces to the box search which implies that it is NP-hard as well.
This polynomial complexity is particularly interesting for the two-dimensional case where
algorithms of low complexity can be implemented [16, 6].

A classic approach to solve NP-Hard problems to global optimality is the branch-and-
bound algorithm [13]. It has been applied successfully in [11] to find logical patterns
where the branching decision is made on the inclusion or the exclusion of one logical
element. A combinatorial branch-and-bound algorithm has been proposed to solve the
maximum box problem where every child is created by dividing the space along each
dimension to exclude a point which must not be intersected by the box [8]. However the
algorithm proposed in [8] creates 2D branches at each node in the worst case which may
be prohibitive for high dimension. The main difference between the box search and [8]
is that we do not restrict ourselves to homogeneous boxes of positive points. Whereas in
[8], the goal is to find the box with a maximum number of points with a positive value
without any point from an excluded set, we find the box with the maximum weighted
sum of points with any value, positive or negative.

We show that the computation of the box with the maximum sum can be formulated
as a mixed-integer linear program. We propose a combinatorial branch-and-bound ap-
proach to tackle the problem. The branching decision is not made on the variables of the
linear model but on a decision of including or excluding a point from a candidate box.
The bounding is obtained by combinatorial arguments instead of the traditional linear
relaxation. We investigate common branching strategies such as strong branching [3, 15]
and reliability branching [2] as well as one problem specific strategy. Computational ex-
periments show that this approach compete with state of the art mixed-integer linear
programming (MILP) softwares for this particular problem.

The outline is as follows. Section 2 proposes a MILP formulation of the box search
problem. We present our combinatorial branch-and-bound algorithm in Section 3. We
compare the performance of the proposed algorithm with a standard MILP software in
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Section 4 and discuss the performance of the proposed algorithm.

2. Integer programming models

In this section we formulate the box search problem as an integer program. We propose
two formulations for the problem. In the first formulation, we propose to use the bounds
of the box as continuous variables of the problem. The second formulation is purely
binary.

We explore a D-dimensional space with M points normalized with linear scaling trans-
form [17]. The coordinates of a point i are denoted xi with xi ∈ [0, 1]D. The value of
a point i is ci ∈ R. Those points are partitioned in two sets: the set of positive points
P = {i ∈ {1, ...,M}|ci > 0} and the set of negative points N = {i ∈ {1, ...,M}|ci < 0}.
Points such that ci = 0 can be ignored.

To improve the robustness of the models, we apply the following transformation to the
coordinates of the points. For each dimension t ∈ {0, ..., D}, the points are sorted with
respect to their coordinate {xit,∀i ∈ {1, ...,M}}. Due to some points having the same
coordinates on dimension t, we observe in this sorted list Kt distinct values, Kt ≤ M .
We replace the coordinate of the point i, xit by its order in the sorted list of points divided
by the number of elements Kt. The index of i in this sorted list is denoted rit.

2.1. Continuous box bounds

In this formulation, a box is defined by its two opposite corners: l ∈ [0, 1]D and
u ∈ [0, 1]D. We introduce one binary variable zi per point where zi = 1 if the point i is
included in the box and 0 otherwise. The box search can be formulated as the following
optimization problem:

max f =
M∑
i=1

cizi (1)

subject to:
∀t ∈ {1, ..., D}:

lt ≤ ut (2)

∀i ∈ P , t ∈ {1, ..., D}:
lt ≤ xitz

i + (1− zi) (3)

xitz
i ≤ ut (4)

∀i ∈ N , t ∈ {1, ..., D}:
(vit + ηt) ≥ (xit − lt) + ηt (5)

(wi
t + ηt) ≥ (ut − xit) + ηt (6)

∀i ∈ N :

zi ≥
D∑
t=1

(vit + wi
t)− 2D + 1 (7)

with ∀i ∈ {1, ...,M} : zi, vid, w
i
d ∈ {0, 1} and ∀t ∈ {1, ..., D} : lt, ut ∈ [0, 1] and ηt = 1

2Kt
.

Aside from (1) which computes the objective function of the box and the obvious con-
straint (2), the formulation can be divided in two main parts: (3)-(4) determine whether
positive points are in the box or not and (5)-(7) determine whether negative points are
in the box.
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We first explain (3)-(4). Observe that if zi = 1, the inequalities imply that lt ≤ xit ≤ ut.
On the other hand if zi = 0, the constraints are always trivially satisfied. This set of
constraints works only for the positive points. Indeed if the coefficient of the objective is
negative, this set of constraints would imply that zi = 0 even if all coordinates are in the
box. It is therefore needed to work differently for points with values ci < 0.

We now explain (5)-(7). Inequality (5) defines an auxiliary binary variable vit for
every negative point i in dimension t which is equal to 1 if xit ≥ lt. Similarly, the auxiliary
variable wi

t is equal to 1 if xit ≤ ut. A negative point i is included in the box if all
corresponding auxiliary variables are equal to one, i.e. ∀t ∈ {1, ..., D}, lt ≤ xit ≤ ut or
∀t ∈ {1, ..., D}, vit = 1 and wi

t = 1. This condition is given by (7).
Formulation (1)-(7) is compact with its M + 2D + 2|N |D variables and (2P + 1)D +

N (1+2D) constraints. Unfortunately, this formulation is weak. If we relax the integrality
constraints, we are likely to obtain as an optimal solution zi = 1 ∀i ∈ P and zi = 0 ∀i ∈ N ,
using fractional values for vit and wi

t. The 1 in equation (7) is easily compensated by
the relaxed auxiliary variables vit and wi

t which deactivate the constraint. In a linear
programming based branch-and-bound algorithm, we would branch on variables vit and
wi

t, the other variables already being integral, until one zi is constrained to be strictly
greater than zero. The objective value drops only when we finally branch on these variables
zi.

To avoid as much as possible numerical errors, the final box should be built from the
variables zi. The box is computed in each dimension t by its upper and lower bound, lt
and ut such that lt = mini∈{1,...,M}:zi=1 x

i
t and ut = maxi∈{1,...,M}:zi=1 x

i
t.

2.2. Pure discrete formulation

This formulation introduces for each dimension t, a set of binary variables yt ∈
{0, 1}Kt , ymt equals one if value m is part of the projection of the candidate box onto
coordinate t. This formulation uses as data rit, the index of point i in the sorted list of
points in dimension t. The alternative MILP formulation is the following:

max f =
M∑
i=1

cizi (8)

subject to:
∀i ∈ P , t ∈ {1, ..., D} :

zi ≤ y
rit
t (9)

∀i ∈ N :

zi +
D∑
t=1

(1− yr
i
t

t ) ≥ 1 (10)

∀t ∈ {1, ..., D}, k ∈ {1, ..., Kt}:
ykt = pkt − qkt (11)

∀t ∈ {1, ..., D}, k ∈ {1, ..., Kt − 1}:

pkt ≤ pk+1
t (12)

qkt ≤ qk+1
t (13)

Inequality (9) expresses that a positive point may be selected if, for all dimension,
its coordinates lies in the projection of the box on this dimension. (10) defines that a
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negative point may be excluded if at least one of its coordinates is outside of the box’s
projection. The variables ykt must represent the projection of a box on the dimension t.
This consecutivity property is modeled by (11)-(13) with auxiliary variables pkt and qkt .
Once again, the solution box can be built from the variables zi.

If we take Kt = M ∀t ∈ {1, ...,M}, formulation (8)-(13) introduces (3D+ 1)M binary
variables and |P|D+|N |+3DM−2D constraints which is of the same order of magnitude
as the mixed-integer formulation. Section 4 shows a comparison of the performance of
both formulations.

3. Combinatorial branch-and-bound

We now propose a specific algorithm for this problem based on a branch-and-bound
approach. We do not branch on variables. The branching decision is made on the inclusion
or exclusion of each point from the box. We first introduce some notations.

Definition 1. Let {1, ...,M} be the set of points in the database. Each node of the
branch-and-bound is denoted by n(I, E) indicating the status of fixing during the branch-
and-bound. I ⊆ {1, ..,M} is the set of points fixed or inferred to belong to the box and
E ⊆ {1, ..,M} is the set of points fixed or inferred to be out of the box. Note that I∩E = ∅.
The set of unfixed points is denoted U and is defined as U = {1, ...,M} \ (I ∪ E).

In the root node, every point from the database is unfixed : I = ∅, E = ∅ and
U = {1, ...,M}. For each branching decision, we select one unfixed point i ∈ U and create
two branches: n(I ∪ {i}, E) with i included and n(I, E ∪ {i}) with i excluded.

Observe that it is possible to base the branching process either on the list of positive
points or on the whole set of points. In the first case, the negative points are included only
if the included positive points force the negative points to be included. The algorithm
explained in this article can be applied to both cases. For the sake of conciseness, we
explain the case where we branch on the whole set of points. The computational results
will later show a comparison of the performances of both choices.

Figure 1: Representation of the operational box for a node in 2 dimensions.

A fixing n(I, E) defines a box B(I) including all the fixed included points as illustrated
in Figure 1 for a two dimensional database. This operational box B(I) gives a primal
solution f(I) and therefore a lower bound on the optimal value.

Definition 2. Consider an arbitrary node n(I, E) of the branch-and-bound search tree
with I 6= ∅. We define the operational box B(I) as the box

B(I) =
{
x ∈ [0, 1]D : xt ∈ [lt, ut] ∀t ∈ {1, ..., D}

}
(14)

where lt = mini∈I x
i
t and ut = maxi∈I x

i
t. The projection of B(I) on the dimension t is

denoted Bt(I) and corresponds to the range Bt(I) = [lt, ut].
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Observation 1. Consider a node n(I, E), a primal solution f(I) is given by

f(I) =
∑

i:xi∈B(I)

ci (15)

We can also infer an upper bound f(I, E) on the best possible box considering the
fixing information. This is explained in detail in Section 3.2. The values f(I) and f(I, E)
allow us to implement a branch-and-bound algorithm. This combinatorial branch-and-
bound approach is described in Algorithm 1. In the very generic Algorithm 1, there are
four important subprocedures that we need to explain in more details:

1. the inference process,

2. the computation of the primal solution f(I),

3. the computation of the upper bound f(I, E),

4. the branching strategy i.e, the selection of the index i ∈ U to branch on.

Theses subprocedures are explained in details in Sections 3.1, 3.2 and 3.3.

Algorithm 1 Branch on points

Initialize the global lower bound f
g
← 0, and the workpile W ← {n(∅, ∅)}

while W 6= ∅ do
Select one node n(I, E) from W and remove it from W .
if f(I, E) ≤ f

g
then

continue
end if
Select a point i ∈ U to branch on

I+, E+ ← inference(I ∪ {i}, E)
Compute f(I+, E+)
f
g
← max{f

g
, f(I+)}

W ← W ∪ {n(I+, E+)}

E− ← inference(I, E ∪ {i})
Compute f(I, E−)
W ← W ∪ {n(I, E−)}

end while

3.1. Inference of inclusion or exclusion of a point

In this section, we discuss how to exploit the information gathered by including or
excluding a point i. We consider one node n(I, E), the corresponding operational box
B(I) and the primal solution f(I). In this section, we study the possibility to infer the
fixing of some points in U , the set of unfixed points.

First, we investigate the case where the algorithm excludes the point i to obtain
the node n(I, E ∪ {i}). As no new points are included, the primal solution f(I) is left
unchanged. Excluding a point might fix some unfixed points as illustrated in Figure 2
where the last unfixed point can be excluded.

6



Figure 2: Considering a node, the last unfixed point must be excluded.

Observation 2. Consider a fixing n(I, E), I 6= ∅. An unfixed point i ∈ U is inferred to
be out of the box if there exists an excluded point j ∈ E such that j ∈ B(I ∪ {i}).

To check efficiently the inference of the exclusion, the following criteria can be used.

Lemma 1. Consider a fixing n(I, E). An unfixed point i ∈ U is inferred to be out of the
box by an excluded point j ∈ E if ∀t ∈ {1, ...D},

if lt > xjt then
xit ≤ xjt

else if ut < xjt then
xit ≥ xjt

end if

where [lt, ut] is the projection of B(I) as in Definition 2.

Proof. From Observation 2, a point i is inferred to be excluded by a point j ∈ E if
j ∈ B(I ∪ {i}). The point j must be excluded in at least one dimension for every box
B(I ′) : I ⊆ I ′ ⊆ I ∪ U and in particular for the box I ∪ {i}. For every dimension
t ∈ {1, ..., D}, there are three cases to consider:

1. xjt < lt: If xit ≥ xjt , a box excluding the point j by the dimension t and including
the points I ∪ {i} can exist.

2. xjt > ut: If xit ≤ xjt , a box excluding the point j by the dimension t and including
the points I ∪ {i} can exist.

3. xjt ∈ [lt, ut]: In this case, j can not be excluded by the dimension t by any box
B(I ′) : I ⊆ I ′ ⊆ I ∪ U and no condition on the coordinate xit is needed.

Algorithm 2 summarizes the steps to check efficiently if a point i is inferred to be
excluded if the point j is excluded. Note that the complexity of this algorithm is a linear
function of the dimension D.

Now, we investigate the consequences of including a point i to obtain the node n(I ∪
{i}, E) and the corresponding operational box B(I∪{i}). As the operational box changes,
the primal solution f(I ∪ {i}) needs to be computed. One way to compute the primal
solution f(I ∪ {i}) is for each point to check if it is included in B(I ∪ {i}) directly
following Definition 1. This conducts to a complexity of order DM . The computation
can be carried out more efficiently by retaining for each dimension t and each point j ∈ U
if xjt ∈ Bt(I ∪ {i}) \ Bt(I). Note that Bt(I ∪ {i}) \ Bt(I) is an interval. Computing the
score this way has still a worst case complexity of DM but in practice only a few points
need to be checked for each dimension.

In the same time, other points can be inferred to be in the box as shown in Figure 3
where the last unfixed point must be included.
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Algorithm 2 Inference of the exclusion of a point i by an excluded point j

for all t = 1, ...D do
if lt > xjt then

if xit ≥ xjt then return i /∈ E
else if ut < xjt then

if xit ≤ xjt then return i /∈ E
end if

end for
return i ∈ E

Figure 3: Considering a node, the last unfixed point must be included.

Observation 3. Consider a node n(I, E) and an unfixed point j ∈ U . Point j is inferred
to be in the box if xj ∈ B(I).

Figure 4: Including the point on the top implies that the last unfixed point must be excluded.

If a point is included, some other points may be inferred to be excluded as illustrated
in Figure 4. The initial operational box is shown in gray. If we include the point on
the top, the operational box becomes the one represented by the dashed strokes. In this
case, the last unfixed point must be excluded. Therefore, if we include one new point, we
should apply Algorithm 2 for every previously excluded point. Note that we can forget
the inferred excluded points as stated by the next lemma.

Lemma 2. Consider a node n(I, E) and a point i ∈ E inferred to be excluded by a point
j ∈ E. If a point k is inferred to be excluded by the point i then the point k is inferred to
be excluded by the point j.

Proof. The proof is based on Lemma 1. If xjt < lt then

• xjt ≥ xit because point i is inferred to be excluded by the point j.

• xit ≥ xkt because point k is inferred to be excluded by the point i.

Therefore, we have lt > xjt ≥ xit ≥ xkt and point k is inferred to be excluded by the point
j. The proof for the case where xjt > ut is similar.
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3.2. Finding an upper bound

The performance of branch-and-bound algorithms is highly dependent on the quality
of the upper bound used. This section presents methods to obtain good upper bounds for
this problem. We consider one node n(I, E) and we compute an upper bound f(I, E).

Definition 3. Consider a node n(I, E), we define the value of the best box that can be
built in the subtree of root n(I, E) as f ∗(I, E):

f ∗(I, E) = max
J∈V

f(I ∪ J ) (16)

where V is the set of feasible combination of unfixed points that may be included:

V =
{
J ⊆ U|@k ∈ E : xk ∈ B(I ∪ J )

}
. (17)

A first approximation of the upper bound is given by the next lemma.

Lemma 3. Consider a node n(I, E) and that the inference process of included points is
perfect: I = {i ∈ {1, ...,M}|xi ∈ B(I)}. Then,

f ∗(I, E) ≤ f(I) +
∑

i∈U∩P

ci. (18)

Proof. For every node of the subtree of root n(I, E), the maximum score that can be
achieved is given by summing up the values of all the unfixed positive points:

f ∗(I, E) ≤
∑
i∈I

ci +
∑

i∈U∩P

ci = f(I) +
∑

i∈U∩P

ci. (19)

In the example given by Figure 5a, we have five points where three are fixed. Let
us assume that they are all positive except point 5 which is excluded. As there are two
unfixed points, the simple upper bound of Lemma 3 would be the sum of the point 1, 2,
3 and 4.

(a) Exemple with 5 points where the point
5 is excluded.

(b) The points are sorted along the two dimen-
sions x1 and x2. Two set of points excluding
the point 5 can be defined.

Figure 5: Example of a node where the points are sorted along each dimension.

A tighter upper bound can be inferred. We first explain how it works in the example
of Figure 5. First we sort the points by their coordinates for each dimension as illustrated
in Figure 5b. If we consider the excluded point 5, it is obvious that we can further include
3 or 4 but not both of them. There must be at least one dimension t where the excluded
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point is not included in Bt(I). In the example, this means that the upper bound is given
by the sum of 1, 2 and 3 in the first dimension, and by the sum of 4, 2 and 1 in the second
dimension. To take into account both cases, we consider the maximum over these two
sums.

We now define a quantity which corresponds to the sum of the positive points that
can be included if the point i is excluded in the dimension t.

Definition 4. Consider a node n(I, E). For each excluded point i ∈ E and dimension
t ∈ {1, ..., D}, we define the value ∆i

t which depends of the fixing.

• If I 6= ∅,

1. If lt > xit then

∆i
t =

∑
j∈U∩P:xj

t>xi
t

cj (20)

2. If ut < xit then

∆i
t =

∑
j∈U∩P:xj

t<xi
t

cj (21)

3. If xit ∈ [lt, ut] then
∆i

t = 0 (22)

• If I = ∅,

∆i
t = max

 ∑
j∈U∩P:xj

t<xi
t

cj,
∑

j∈U∩P:xj
t>xi

t

cj

 . (23)

Lemma 4. Consider a node n(I, E). For each excluded point i ∈ E and dimension t, ∆i
t

is the maximum sum of the positive points that can further be included if the point i ∈ E
is excluded in the dimension t ∈ {1, ..., D}.

Proof. If I 6= ∅, an operational box exists. In the dimension t, the operational box defines
a range [lt, ut]. If the coordinate xit is in the range [lt, ut], the point i can not be excluded
in the dimension t because it is already included by the operational box in this dimension.
In this case, we choose to set ∆i

t = 0.
On the other hand, if the coordinate xit is on one side of the range [lt, ut]: x

i
t < lt or

xit > ut, every point on the same side of the range can be included. In these cases, the
value of ∆i

t is given respectively by (20) and (21).
If I = ∅ no operational box is defined. The point i could be excluded in the dimension

t either by including only points with coordinates less than xit or by including only points
with coordinates greater than xit. The maximum sum of the positive points in this case
must consider the two possibilities as in (23).

The values ∆i
t provides a tighter upper bound which is given by Lemma 5. The

complete procedure to obtain a tighter upper bound is summarized in Algorithm 3.

Lemma 5. Consider a node n(I, E) and that the inference process of included points is
perfect: I = {i ∈ {1, ...,M}|xi ∈ B(I)}. Then,

f ∗(I, E) ≤ f(I) + min
i∈E

{
max

t∈{1,...,D}
∆i

t

}
. (24)
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Proof. Consider an excluded point i ∈ E , there must be at least one dimension t such
that the point i is excluded in this dimension. In particular, the point i may be excluded
in a way that includes a maximum of positive points. By Lemma 4, the maximum sum of
points that can further be included if the point i is excluded is given by maxt∈{1,...,D}∆i

t.
As every excluded point i ∈ E defines a maximum sum of points that can be included

if i is excluded, an upper bound is given by the sum of the current score and the smallest
maximum sum of points.

Algorithm 3 Upper bound computation

∆←
∑

i∈U∩P c
i

for all j ∈ E and j is not inferred to be excluded do
∆j ← 0
for all t = 1, ...D do

if I = ∅ or lt > xjt then
∆j ← max{∆j,

∑
i∈U∩P:xi

t>xj
t
ci}

if ∆j ≥ ∆ then break
end if
if I = ∅ or ut < xjt then

∆j ← max{∆j,=
∑

i∈U∩P:xi
t<xj

t
ci}

if ∆j ≥ ∆ then break
end if

end for
∆← min{∆,∆j}

end for
f ← f + ∆

∆i
t can be computed quickly by sorting each point in each dimension by their coor-

dinates as a pre-calculation. As a result, the algorithmic complexity of computing the
upper bound at each node in the search tree is proportional to D|E|. To reduce the com-
putational cost of computing the upper bound, the following lemma can be exploited,
which is already included in Algorithm 3.

Lemma 6. Consider a node n(I, E) and I 6= ∅ . Points inferred to be excluded can be
ignored to compute the upper bound of Lemma 5.

Proof. Consider a point i inferred to be excluded by an excluded point j ∈ E : j ∈
B(I ∪{i}). Note that this inference implies that I 6= ∅. In the upper bound given by the
Lemma 5, the inferred excluded point i can be ignored if

f(I) + max
t∈{1,...,D}

∆j
t ≤ f(I) + max

t∈{1,...,D}
∆i

t. (25)

We now prove that ∀t ∈ {1, ..., D},
∆i

t ≥ ∆j
t . (26)

Following Definition 4, there are three cases to consider as I 6= ∅.
1. If lt > xjt , ∆j

t =
∑

k∈U∩P:xk
t>xj

t
ck. Point i is inferred to be excluded by j and lt > xjt

implies that xit < xjt ≤ lt by Lemma 1. Therefore,

∆i
t =

∑
k∈U∩P:xk

t>xi
t

ck ≥ ∆j
t (27)
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2. Similarly if ut < xjt , ∆i
t ≥ ∆j

t .

3. If xjt ∈ [lt, ut], ∆j
t = 0. If xit ∈ [lt, ut], ∆i

t = 0 = ∆j
t . If xit /∈ [lt, ut], ∆i

t ≥ 0 and
∆i

t ≥ ∆j
t .

In all three cases, ∆i
t ≥ ∆j

t and (25) holds.

3.3. Branching strategy

We now consider the branching strategy which determines which point to branch
on at every iteration of Algorithm 1. Two factors need to be taken into account: the
number of nodes resulting from a strategy and the computation burden to take a branching
decision. In this paper, we investigate three strategies, two classical coming from standard
techniques for linear programming based branch-and-bound and one designed for our
problem.

1. Full strong branching

2. Reliability branching

3. Least local branching.

Strong branching [3, 15] is a well known mixed integer programming technique. The
idea is to test a subset of all possible branching and to select the one leading to the best
decrease of the upper bound. Full strong branching [2] refers to the case were we inves-
tigate the whole set of possibility of branching. This strategy works very well in practice
with respect to the number of nodes computed but not enough to compensate the high
computation time per node. Applying this method to our formulation is straightforward
and is summarized in Algorithm 4.

Algorithm 4 Strong branching for a node n(I, E)

∀j ∈ U , compute sj = score
(∑

k∈P c
k − f(I ∪ {j}, E),

∑
k∈P c

k − f(I, E ∪ {j})
)
.

Branch on the variable j ∈ U with the highest score sj

Branching candidates are compared thanks to a single value. This value is a score
which captures the results of including or excluding a point.

Definition 5. The predicate score used in this paper, suggested by [1], is defined as:

score(a, b) = (a+ ε)(b+ ε). (28)

We adapt the reliability branching introduced by Achterberg, Koch and Martin in [2].
This branching rule is a combination between strong branching and pseudocost branching
[4]. Pseudocost branching keeps a history of branching decisions. The cost of branching
on a variable i is calculated as score(P+

i , P
−
i ) where P+

i and P−i are the per-unit changes
in the objective function value [15]. In mixed integer programming, the fractional part of
the variable is used to compute P+

i and P−i . In our case, the upper bound is not computed
through a linear relaxation. Therefore, we need to define a version of P+

i and P−i for the
algorithm presented in this paper.

12



Definition 6. Consider a point i ∈ {1, ...,M}, we define the per-unit changes in the
objective function value as

P+
i =

∑
k∈P

ck − F+
i

ηi
and P−i =

∑
k∈P

ck − F−i
ηi

(29)

where ηi is the number of problems where the algorithm branched on i and F+
i (F−i ) is

the sum of the ηi upper bounds of these problems where i is set to be included(excluded).

Reliability branching branches on the variable i with the highest pseudocost if the size
of the historic ηi is large enough. If the historic is too small, the cost of branching on this
variable is not reliable enough and strong branching is used to update the score of the
variable. We use ηrel = 10 as a minimal historic size to be reliable. To limit the number
of strong branching, a look ahead strategy [2] can be used. If no new best candidate point
was found for λ successive strong branching, the best candidate is kept as a final choice.
In our implementation, we use λ = 16.

Algorithm 5 Reliability branching for a node n(I, E)

∀j ∈ U , compute sj = score(F+
j , F

−
j ).

Sort s in decreasing order
n← 0
maxS ← 0
for all j ∈ U : ηj < ηrel and n < λ do

Try branching on j
Update ηj, F

+
j , F−j and sj

if sj > maxS then
maxS ← sj, n← −1

end if
n← n+ 1

end for
Branch on the variable j ∈ U with the highest score sj

Finally, we introduce our least local branching strategy. We compute an approximation
of the upper bound. In the case of the inclusion of a point i, the strategy only computes
the score of the new box. In the case of the exclusion of i, we only compute the values
∆i

t ∀t ∈ {1, ..., D} defined in Section 3.2 to obtain an approximation of the new upper
bound. Based on this information, the same technique as strong branching is applied: the
strategy computes a score and selects the one with the highest score. The branching can
be slightly improved if we consider the following observation:

Observation 4. Consider a node n(I, E), f
g

the global lower bound and a point i ∈ U .

If f(I ∪ {i}, E), f(I, E ∪ {i}) ≤ f
g

the branch can be pruned. If f(I ∪ {i}, E) ≤ f
g

and

f(I, E ∪ {i}) > f
g
, we can branch on this point and exclude it.

The complete procedure is summarized in Algorithm 6. The performance of the dif-
ferent branching strategies are demonstrated in Section 4.
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Algorithm 6 Least local branching for a node n(I, E)

candidate ← ∅, candidate score ← −1
for all i ∈ U do

Let ∆j
t the minimum value computed for the upper bound in Algorithm 3 for one

excluded point j ∈ E in dimension t.
if ci > 0 and

(
(xjt < lt and xjt < xit) or (ut > xjt and xit < xjt)

)
then

∆j
t ← ∆j

t − ci
end if
s+ ← f(I ∪ {i}) + ∆j

t

s− ← f(I) + min{∆j
t ,maxt∈{1,...,D}{∆i

t}}.
if s+ ≤ f

g
and s− ≤ f

g
then

→ Prune by bound
else if s+ ≤ f

g
then

E ← E ∪ {i}
end if
s← score(

∑
k∈P c

k − s+,
∑

k∈P c
k − s−)

if s > candidate score then
candidate ← i, candidate score ← s

end if
end for

4. Computational Results

The algorithm is tested on 300 databases. The points are uniformly generated with
coordinates between 0.0 and 1.0. Their values ci are uniformly assigned between 1.0
and −1.0. We compare our combinatorial algorithm with CPLEX 12.6 with default
parameters (including presolve, cutting planes, ...) and limited to one core only. We
refer to the first MILP formulation of Section 2.1 by C-MILP and to the pure binary
one of Section 2.2 by B-MILP. We observed that using C-MILP or B-MILP on a single
core lead to lower running time than allowing it to run on the eight available cores of
the computer. Our algorithm is also implemented to run on a single core. We consider
branching either on the list of positive points or on the whole set of points. We refer to
the first case by the abbreviation BoPP and to the second case by BoP. To denote the
different branching strategies discussed in Section 3.3, we use St for strong branching, R
for reliability branching and LL for least local branching. Concerning the node to pop
from the workpile at each iteration, our implementation chooses the node with the highest
primal solution f . It can be empirically observed that this method quickly finds a good
lower bound which results in the lowest computation time.

Table 1 reports the final gap, the time taken and the number of nodes processed for
the tests. These results have been obtained on an Intel Core i7 with a clock rate of
3.47 GHz and 24 GB of RAM. Each line gives the geometric mean of 10 tests. Each of
these tests has limit running time of one hour. The final gap is computed with respect to
the upper bound f provided by each algorithm:

gap =
f − f
f

. (30)

At the end of the table are reported the total number of problems solved, the relative
geometric mean time and the relative geometric mean number of nodes processed.
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D M

BoPP - St BoPP - R BoPP - LL BoP - R BoP - LL C-MILP B-MILP
Gap [%] Gap [%] Gap [%] Gap [%] Gap [%] Gap [%] Gap [%]
Time [s] Time [s] Time [s] Time [s] Time [s] Time [s] Time [s]
Nodes Nodes Nodes Nodes Nodes Nodes Nodes

10 100
− − − − − − −

5.93 1.13 1.48 2.18 4.48 21.00 8.65
12728 49811 23019 41302 11442 5847 608

10 125
− − − − − − −

79.04 22.52 17.87 31.66 58.74 183.63 20.91
104088 653296 188315 407871 113933 43147 1583

10 150
− − − − − − −

379.15 97.45 53.98 109.93 242.12 710.48 51.73
298859 2472799 419301 1129545 330304 141960 3763

10 175
0.12 − − − 0.05 1.30 −

1976.49 677.89 344.44 1094.68 1785.22 3266.15 198.39
1340387 12352777 2548846 8305828 2073103 629511 13855

10 200
20.55 0.06 0.06 0.30 9.14 16.55 −

3354.09 1855.21 1198.39 2646.13 2977.74 3605.57 176.39
2054754 34419637 6797263 20214041 2901915 477170 9523

12 100
− − − − − − −

10.16 2.47 2.59 3.21 8.60 34.73 10.37
22990 109076 37449 59464 19401 8451 905

12 125
− − − − − − −

84.78 21.70 25.38 31.11 68.47 163.61 41.20
119299 736356 280719 453429 110884 27217 2825

12 150
0.02 − − 0.02 0.02 0.07 −

574.75 188.61 129.48 300.37 615.20 1121.90 94.91
544395 5212430 1112644 3291999 719104 146968 5828

12 175
1.61 0.68 − 0.69 0.71 1.80 −

2833.94 1540.73 1028.95 2042.74 2936.84 2734.06 296.74
1821636 31246739 6286113 16700693 2910439 329483 19193

12 200
22.04 21.45 1.68 21.59 22.27 22.75 −

3561.28 3291.81 2545.31 3260.21 3547.70 3604.35 761.72
1810123 57928659 14448348 22870067 2845269 423166 37094

14 100
− − − − − − −

29.99 4.05 4.97 7.14 19.53 54.13 17.92
50719 178603 72655 128712 33230 9342 1517

14 125
− − − − − − −

117.31 39.45 23.11 39.87 101.04 272.22 56.19
149336 1247202 242070 551635 128381 29856 3800

14 150
0.60 0.05 − 0.05 0.12 0.31 −

1399.21 612.48 409.34 762.66 1267.84 1452.77 151.23
1201436 15100459 3028122 7956344 1442966 145623 9290

14 175
3.35 0.66 0.29 1.57 0.68 1.49 −

3060.28 1975.16 1346.73 2543.84 3218.04 3139.37 386.65
1865464 38630100 7792205 20596769 2823951 314093 17647

14 200
39.10 7.73 3.42 17.87 42.46 3.54 −

3600.02 3237.75 3274.80 3406.47 3600.01 3289.68 477.40
1687939 56737957 15358677 21995182 2794774 228352 15849

16 100
− − − − − − −

5.76 1.71 2.98 1.34 6.76 16.85 12.23
13432 74957 36897 23301 10507 3341 729

16 125
− − − − − − −

97.85 23.02 29.10 33.97 102.61 174.73 61.48
136704 768937 317596 484505 118167 21009 3581

16 150
0.12 0.02 − 0.02 0.12 0.15 −

1440.51 904.25 544.76 624.73 1510.89 1304.95 247.73
1100314 16728707 3713333 6723082 1490820 99414 10053
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D M

BoPP - St BoPP - R BoPP - LL BoP - R BoP - LL C-MILP B-MILP
Gap [%] Gap [%] Gap [%] Gap [%] Gap [%] Gap [%] Gap [%]
Time [s] Time [s] Time [s] Time [s] Time [s] Time [s] Time [s]
Nodes Nodes Nodes Nodes Nodes Nodes Nodes

16 175
15.04 3.22 1.46 1.45 17.61 2.70 −

3385.32 2882.24 2298.37 2661.95 3420.72 3322.80 503.22
2244577 59320468 13190269 21831692 2837793 208126 21820

16 200
46.52 44.92 20.50 47.17 46.53 21.95 0.04

3600.02 3600.02 3502.60 3600.01 3600.01 3603.99 1437.08
1625834 63138068 17062590 22705446 2615809 225811 60286

18 100
− − − − − − −

6.36 1.58 3.85 2.05 8.52 24.87 16.95
14025 68800 47521 36501 14121 3186 1015

18 125
− − − − − − −

174.87 42.88 64.32 35.69 104.35 207.00 67.95
222788 1280361 483770 495022 115341 20197 3236

18 150
0.25 0.05 0.02 0.05 0.12 0.04 −

2391.84 878.76 1045.15 1379.46 2042.90 1561.50 312.26
1921759 21252578 7029154 13884012 1761012 113233 11869

18 175
14.69 3.24 17.27 7.70 17.42 5.96 −

3211.44 2723.00 3186.22 2808.95 3289.46 3132.31 774.62
2049049 54091394 16042225 21928761 2574547 140577 26493

18 200
40.38 38.58 42.25 41.66 41.62 17.02 0.04

3600.02 3600.02 3600.02 3600.01 3600.01 3603.89 1554.10
1750244 63511756 15682977 22579255 2574981 152513 54359

20 100
− − − − − − −

18.14 3.84 10.36 3.68 15.33 48.70 40.16
41515 165125 117307 62440 19485 7569 2124

20 125
0.02 − − − − − −

931.63 310.91 341.76 290.03 651.67 687.12 184.01
1026276 8886256 2774937 3489913 680707 49355 9469

20 150
0.24 − − − 0.26 0.03 −

1529.21 720.49 652.79 824.56 1702.51 1096.03 287.83
1227191 17438179 4091615 8541028 1411501 68994 10664

20 175
35.17 37.39 39.05 39.50 37.79 9.48 0.02

3600.01 3600.02 3600.02 3600.01 3600.01 3603.51 1258.91
2374808 69571096 18419495 23894124 2753152 157941 50818

20 200
35.78 35.57 17.56 37.16 38.60 7.05 0.02

3600.01 3600.01 3511.04 3600.01 3600.01 3556.24 1638.34
1575877 62549797 14502356 23657342 2411663 113486 51131

Solved
180 212 227 207 189 179 294

/300
Mean

3.21 1.36 1.32 1.60 2.93 4.50 1.00
time
Mean

57.39 669.91 193.00 321.64 62.16 9.00 1.00
nodes

Table 1: Results table in function of the number of dimensions D and the number of points M .

In the results of Table 1, the pure binary MILP formulation clearly outperforms the
other methods. The B-MILP method solves 294 instances out of the 300 given, processes
less nodes than the others and takes the least amount of time. The pure binary MILP
formulation is taken as comparison reference for the others.

Second in line comes the branching on positive points with the least local branching
strategy. This method solves 227 problems. The geometric mean time is 32% greater
than pure binary MILP formulation even though the number of nodes processed is 193
times higher. Using the reliability branching strategy increases a little the computation
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time and multiplies the number of nodes to process by three. Using the strong branching
strategy decreases the number of nodes processed drastically. Still, the number of nodes
processed is more than 50 times higher than the number processed by CPLEX with the
B-MILP formulation.

Branching on the whole set of points leads to processing on average half the number
of nodes but with an increased computation time. The increase can be explained by the
complexity to compute the upper bound which is proportional to the number of excluded
points. If the algorithm branches on the whole set of points, the number of excluded points
is potentially bigger as well as the theoretical maximal depth of the branch-and-bound
tree.

To conclude, the binary formulation is the best exact method to solve the box search
problem. However, the algorithm that we propose in this paper is a simple and dependency-
free alternative that may be implemented quickly.
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