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SMT solvers: incremental approach to raise expressivity
@ SAT solvers

[(p=a) = [(-p=0q) =q]]
@ Congruence closure (uninterpreted symbols + equality)
a=bA [f(a) #f(b) V (p() A —p(b))]
@ Some arithmetic
a<bab<a+xAx=0A[f(a) #f(b) Vv (p(@ A-pb+x)]
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Introduction
Bernays-

BSR class:

@ decidable

@ conjunction of 3*v*p formulas

@ ¢ quantifier-free, function-free

@ —, predicates, constants, and Boolean connectives allowed
Examples :

@ VX, y.p(X,y) = p(Y: X)

@ atbra£cAb#AcAVXX=aVXx=bvVvx=c

Combining BSR (decidable) theories with other theories
Using linear arithmetic, uninterpreted symbols,...and
predicates defined by a BSR theory
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@ Sets, relations, ...
a<bAb<a+xAx=0Af(a) e (ANB)A [f(a) € A\BVf(b) &B]
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9 Combining BSR theories

@ Combining disjoint decision procedures
@ Combining non-stably infinite theories
@ BSR theories and cardinalities



Combining BSR theories Combining disjoint decision procedures

A combination of disjoint languages:
L= {x<y,y<x+f(x), P(h(x) - h(y)), -P(0), f(x) = 0}
uninterpreted symbols (P, f, h), and arithmetic (+, —, <, 0).

Combination of disjoint decision procedures

Combination of the empty theory and theory for linear arithmetic (both
stably-infinite)

Separation using new variables:

Li = {X<y,y<x+Vy,vi=0 vo=V3—Vy, V5 =0}
Lo = {P(v2), =P(vs), vi = f(x), v = h(x), va = h(y)}.
L and L; U L2 both satisfiable or both unsatisfiable.



Cooperation by exchanging equalities:
Ly

L, =

X<y, y<x+vi,vi =0,V =V3— Vg, V5 = 0}

{P(Vz), ﬂP(V5)7 Vi = f(X), V3 = h(X), Vg = h<y)}
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Cooperation by exchanging equalities:
Li = {X<y,y<X+4vi,vi=0,Vo =V3— Vg, V5 =0}
I-2 = {P(Vz), ﬂP(V5), Vi = f(X), V3 = h(X), Vg = h(y>}
From Ly, x=vy:
Li = {(X<y,y<x+vy,vi=0,v2=V3— Vs vs =0}
Ly = {P(v), 7P(Vs), vi = f(X), va = h(x), v4 = h(y), x = y}
From L), v3 = v4:
LY = {X<y,y<x+vy, vy =0V, =V3—Vy V5 =0,V3 =y}
LIZ = {P(V2)7 _‘P(VS)v V1 = f(X)7 V3 = h(X), V4 = h(y), X= y}
From L/, vo = vs:
L = {X<Y,y<X+V,vi =0,V =V3— Vg Vs =0,Vg = vy}
Ly = {P(w), =P(vs), vi =f(X), v3 = h(X), va = h(y), X =Yy, V> = v5}

L% is unsatisfiable.
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deduced (disj. of) equality
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Ensurinc

Different frameworks (and capabilities)

@ Nelson-Oppen:
requirement on theories: stably infinite (not suitable for BSR)
if satisfiable, there is an infinite model (FOL theories = Xp)

@ Combining with the empty theory (and some others):
the empty theory does not constraint much the cardinalities

@ BSR theory and theory with only finite models:
check every finite model against BSR theory

We show:
@ possible to know exactly accepted cardinalities for BSR theory

@ thus, combination possible if other theory can say if it accepts
given cardinality



Combining BSR theories BSR theories and cardinalities

Well-known result:

Finite model property

If a BSR theory has a model, it has a finite model
Size: at most the number of ground terms k

Simple property

@ If it has a model with cardinality j, it has a model for every j’ such
thatk <j <j



Combining BSR theories BSR theories and cardinalities

BSR the

Two scenarios for a given BSR theory
@ has infinite model, and accepts models for every cardinality > k
0 k K
Combination? Check if other theory accepts model greater than k
@ has no infinite model, and accepts a finite number of cardinalities,
all cardinalities between k and the max j being accepted
0 k j K
o—eoo0—0o—0o000000000 ———| >
Combination? Finite number of cardinalities to check

How to know which scenario occurs?
Does a BSR theory has an infinite model?
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A BSR-theory has an infinite model if and only if it has a finite model
with some (see paper) symmetry properties

Checking if such a finite model exists is decidable
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For instance:
a=bA({f(a)}UE) CAAf(b)gCAAUB=CND

becomes
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Frc

For instance:
a=bA({f(a)}UE) CAAf(b)gCAAUB=CND

becomes

a=DbAWX(x="f(a)VE(X) = AX)]
A WX [A(X) V B(X)] = [C(X) A D(X)]

with separation variables:

a=bAry=f(a)Arz=1f(b) A
YX[(Xx =y V E(X)) = AX)] A =C(2) A ¥X. [A(X) V B(X)] = [C(X) A D(X)]

Finally: combination of a BSR theory with empty theory
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Concl

@ BSR theory has an infinite model? decidable
@ decidability result on combining BSR theories

@ removing strong requirements from previous combination
frameworks

@ BSR + theories with infinite models
@ BSR + linear arithmetic + uninterpreted symbols + arrays +. ..

@ Adding set (relation,. ..) operators to language of SMT solvers

@ First prototype for the combination with the empty theory

@ Future work: the general case in practice, proof reconstruction
(w.i.p.)
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