Using BDDs with Combinations of Theories *

Pascal Fontaine and E. Pascal Gribomont

University of Liege (Belgium)
fontain,gribomont }@montefiore.ulg.ac.be
P g g

Abstract. A Boolean formula is unsatisfiable if and only if its represent-
ing binary decision diagram (BDD) is reduced to the single leaf “false”.
When BDD variables represent first-order atoms including equalities be-
tween terms, uninterpreted predicates or linear arithmetic constraints, a
path to the “true” leaf in the BDD might not give a model. So BDDs rep-
resenting unsatisfiable quantifier-free first-order logic formulas may not
reduce to the single leaf “false”. Decision procedures for combinations of
theories can be used to eliminate all those unsatisfiable paths. In a naive
approach every path would be considered; this would be very inefficient.
We provide efficient algorithms to find general constraints (connections)
from unsatisfiable paths to “true” in the BDD. Adding those connec-
tions to the BDD will eliminate many paths to “true” at one go. This
procedure also ensures that no unnecessary constraint is added.

In the context of invariant validation, this gives good results when using
BDDs with a rich quantifier-free language.

1 Introduction

Binary decision diagrams (BDDs) [4] have been widely and successfully used
as a powerful technique for representing very large propositional logic formulas.
Unfortunately, their expressive power restricted to propositional logic is often a
problem for using them in various fields, included their native application (hard-
ware verification). In the presence of complex atoms!, containing uninterpreted
predicates, equalities, and uninterpreted functions, the problem is usually first
reduced to propositional logic. A BDD of the result is then built to check for
validity [13].

There were several attempts to extend the expressive power of BDDs towards
quantifier-free first-order logic with equality. Goel et al. [9] allow uninterpreted
functions and equality to be used in BDDs by introducing variables representing
equalities, at the cost of losing canonicity?. Groote [13] refines this method by
having a better integration of the decision diagrams with this new type of vari-
ables. In return the ability to deal with uninterpreted functions is lost. It also

* This work was partially funded by a grant of the “Communauté frangaise de Belgique
- Direction de la recherche scientifique - Actions de recherche concertées”.

! An atom is a quantifier-free first-order logic formula which does not contain Boolean
connectives. A literal is an atom or the negation of an atom.

% In Boolean logic, two logically equivalent Boolean formulas are represented by the
same BDD. A (reduced ordered) binary decision diagram is a canonical representa-
tion of a formula.

implies modifications of BDD handling functions. In a similar way, Mgller et al.
[18] introduce Difference Decision Diagrams which allow to efficiently represent
and manipulate a Boolean logic over inequalities of the form z —y < ¢. Several
BDD based decision procedures have also been given for quantified first-order
logic (without equality) [10, 21].

In the context of formal verification, uninterpreted predicates and functions
are intensively used, but also interpreted predicates, and more particularly linear
arithmetic. Our method combines classical BDD handling with usual first-order
satisfiability procedures, based on the Nelson-Oppen combination framework
[19,24] and algorithm [20]. This will not only allow to deal with equality and
non-interpreted functions, but also with interpreted terms for some important
decidable theories (e.g. linear arithmetic). This technique relies on two efficient
procedures to find very general constraints on variables in the BDD. One applies
to quantifier-free logic with uninterpreted predicates and functions. The other
is a general minimalization method for any incremental decision procedure for
interpreted predicates and functions.

In the next section, binary decision diagrams are briefly introduced, as well as
the context in which we use them. It will also be shown why the problem of using
BDDs with atomic formulas as variables is related to the problem of extracting
small unsatisfiable subsets from large sets of literals. After a brief presentation
of the main decision procedures for combinations of theories, a modified ver-
sion of the Nelson-Oppen congruence closure algorithm is introduced. Besides
deciding unsatisfiability of conjunctions of first-order literals (with equality), our
algorithm also provides a small unsatisfiable subset. Finally, we give a procedure
to minimalize unsatisfiable sets of constraints (remove unnecessary constraints)
for other decidable theories. This general method is suitable for any incremental
decision procedure; more particularly, we present our method to deal with linear
arithmetic. Some results will be given before we conclude.

2 BDDs beyond the propositional case

BDDs are nested “if-then-else” formulas represented as directed acyclic graphs.
Every BDD has one root and two leaves® labeled by “true” and “false”. Each
node has a high son (“then” case) and a low son (“else” case). A BDD with
proposition p labeling its root corresponds to formula “if p then A else B”, where
A and B are formulas corresponding to the high and low sons respectively.

For instance BDD on Figure 1 represents the formula “if p then (if ¢ then
—r) else ¢”, or in disjunctive normal form (p A ¢ A =) V (=p A ¢). Plain lines
correspond to the high son (“then” case), whereas dotted lines correspond to
the low son (“else” case). We work only with Reduced Ordered BDDs (see [4]
for detailed informations on ROBDD).

We use BDDs for the validation of invariants of concurrent algorithms [11,12].
A formula I is an invariant of a transition system if I initially holds and if every
transition 7 of the system preserves the invariant, i.e. if formula {I}7{I} is valid.
In this context, we are often faced with formulas (called verification conditions)
of the form (hy A ...h,) = C where hy,...h,,C are relatively small quantified

3 Except when BDDs are reduced to one single leaf, in the special cases of unsatisfiable
and valid formulas respectively reduced to the “false” and “true” leaves.

false true false true false true

Fig. 1. Propositional Fig. 2. Unsat. path Fig. 3. Reduced

prenex formulas. The number n of hypotheses may be large. To validate such
verification conditions our system CAVEAT first skolemizes each subformula, then
guesses instances ¢y, .. . ¢, of the conclusion C, and finally tries to refute h; A
...hn A=(e1 V... em) where the formula —(¢; V... ¢p) is quantifier-free.

Here, variables in BDDs can represent any first-order logic atomic formula.
We proceed incrementally using an evolving BDD b. Initially b represents formula
=(c1 V ...¢m). While b is not reduced to the single leaf “false”, formulas are
repeatedly added (that is, anded) to this BDD, i.e., b := bdd_and(b, formula).
Those formulas are either instances of hypotheses hi,...h, or quantifier-free
first-order constraints (for example x # yV f(z) V- f(y)). The set of all formulas
added to b (included the initial formula —(¢1 V ...¢p)) will be noted Sp. If the
procedure manages to reduce b to the single leaf “false”, then Sy is unsatisfiable,
and hi A...hp A=(c1 V.. .cp) has been refuted. Otherwise the procedure gives
up when the total number of formulas in Sp reaches a given limit.

Formulas are added to b as follow. If b is not the single leaf “false” there is
at least one path to “true” in the BDD. Let P be the set of literals in this path.
Either P is satisfiable or it is not. For example consider BDD on Figure 2. There
are two paths to the leaf “true”. One corresponds to = # y A f(z), the other to
z =yA f(z) A—f(y). The first path is satisfiable, the second is not.

If P is satisfiable, it represents a set of first-order models for the conjunctive
set of formulas Sy. The set of literals P is then used as a goal for a hypothesis
instantiation procedure. A new instance is generated from one of the hypotheses
hi,-..hy, and added to b. In our example, the instantiation procedure would be
informed that the next hypothesis instance should help to refute z # y A f(z).

If P is unsatisfiable, there is at least one Boolean model for the BDD which
does not correspond to any first-order model. In our example, formula z =
yAf(x)A—f(y) is unsatisfiable. The BDD can be simplified. A Boolean constraint
which states that P is unsatisfiable has to be added to b. In our example this
constraint is = A ,c p £. Indeed {z =y, f(x), ~f(y)} is a minimal unsatisfiable set
(any proper subset is satisfiable). After adding this constraint we get the BDD
on Figure 3.

Taking as a constraint the (negation of the) full conjunction of literals from
an unsatisfiable path to the leaf “true” eliminates this path only. Every path
would have to be examined. In practice the problem would be intractable with
large BDDs, as the number of paths explodes with the size of the BDD. For
example, if in a BDD there are two paths to the leaf “true” corresponding to

z=yAf(@)A-f(y)Ag(z) and z = y A f(x) A= f(y) Ah(x), both paths could be
suppressed by the general constraint —(z =y A f(z) A —f(y)). In our context,
practical cases (see Figure 7) show that the same unsatisfiable subpath is often
shared by hundreds of paths.

Our methods allow to efficiently extract from a large unsatisfiable set of
literals a general connection, containing few literals which could be removed
keeping it unsatisfiable. In that sense, a most general connection is a minimal
unsatisfiable set. A minimal connection will suppress all paths to “true” which
are unsatisfiable because of the same unsatisfiable subpath.

Several different minimal unsatisfiable subsets for the same path may exist.
In practice, this occurs rarely: a path to “true” is examined every time a hy-
pothesis is added. Hypotheses are small formulas so they rarely introduce enough
information in the BDD for a path to get several different minimal unsatisfiable
subsets. If even a path contains two minimal unsatisfiable subpaths S; and S5,
there is no strong reason to prefer one or the other?: it is very unlikely that every
path which contains S; also contains Ss. If some path exists which contains Sy
and not Ss, it is useful to give S; as a constraint to the BDD.

In our context, generating general constraints enables to use BDDs with vari-
ables representing complex atomic formulas, as the number of such constraints
to be added to the BDD remains small.

3 Decision procedures for combinations of theories

Before considering the problem of finding small connections in unsatisfiable con-
junctive sets, it is useful to remind some facts about the somewhat simpler
problem of deciding whether a conjunctive set of literals is satisfiable or not.

In 1954 Ackermann [1] showed that quantifier-free first-order logic with equal-
ity is decidable, but did not give a practical algorithm. It is only in the late
seventies that this problem has been better understood and that a usable deci-
sion procedure has been found by Nelson, Oppen, Downey, Sethi, and Tarjan. It
is known as the Nelson-Oppen algorithm (See [20] for the algorithm and early
references). This decision procedure and those mentioned below are restricted to
conjunctive sets of literals. General quantifier-free formulas have first to be put
in conjunctive normal forms.

In the meantime, Nelson and Oppen also managed [19] to combine (some)
decidable theories with the decision procedures for quantifier-free first-order logic
with equality. This allows linear arithmetic to be used together with functions
symbols from some other decidable theories and with uninterpreted predicates
and functions. This is known as the Nelson-Oppen combination framework.

Shostak [23] improved the Nelson-Oppen algorithm. His new algorithm also
internally combined the decision procedure for uninterpreted predicates and
functions with some frequently met decidable theories, i. e., theories which have
both a canonizer and a solver. Although worst case complexity is not better
for Shostak’s algorithm than for the Nelson-Oppen algorithm and combination
framework, it is agreed that Shostak’s algorithm gives better results in practice
[7]. But Shostak’s algorithm has also got drawbacks. Some theories cannot be

4 A heuristic could be to take the smallest of both constraints but this would only be
a (costly) heuristic.

combined with Shostak’s algorithm (although they can be in the Nelson-Oppen
framework); for example it is not suitable for linear arithmetic on integers with
inequalities. In Shostak’s original implementation linear arithmetic inequalities
were treated externally in the Nelson-Oppen style. Recent validation tools (for
example the Stanford Validity Checker, SVC [16]) try to take the best of both
Nelson-Oppen’s and Shostak’s worlds, and actual works tend to find a better inte-
gration between Shostak’s algorithm and the Nelson-Oppen combination frame-
work [2, 8]. Finally, it should be noted that completeness of Shostak’s algorithm
is not trivial. Subtle mistakes in the original algorithm motivated several new
versions until very recently [22].

Our decision procedure is based on the Nelson-Oppen framework and algo-
rithm. Inequalities are very often used in the context of program verification,
and the Nelson-Oppen framework is the classical way to treat them. The ar-
guments in favour of the Nelson-Oppen congruence algorithm (that is, against
the Shostak’s algorithm) are more practical. Our problem is more general than
deciding satisfiability of a conjunctive set of literals. Slight modifications to the
Nelson-Oppen algorithm make it very useful to extract small connections from
the set of literals given to the decision procedure. The algorithm we present next
is the key to find general constraints in unsatisfiable paths in the BDD, and so
avoid exploration of a very large number of paths.

4 An enhanced congruence closure algorithm

Congruence closure algorithm is the cornerstone for a decision procedure for
conjunctions of first-order literals (with equality). Given a conjunctive set S of
atomic formulas, the algorithm partitions terms and atomic formulas into classes
such that two terms (or atomic formulas) are in the same class if and only if the
equalities in S entail the equality of the two terms. Once this has been done, S
is unsatisfiable if it contains a strict inequality with both members in the same
class, or if it contains a pair of complementary literals, that is a positive literal
and a negative one with both atoms in the same class.

The congruence algorithm provides one information; two terms are equal
according to the equalities in S if and only if they are put in the same class by
the algorithm. Changes we propose aim to provide one more information; given
two terms in the same class, our version of the algorithm also provides a subset
of all equalities which is enough to entail the equality of the two terms.

The technique main procedure, MERGE (see Figure 4), is called in sequence
with every equation® in S and builds the congruence. It implicitly makes use of
an evolving partition P of all terms. The algorithm interacts with partition P
through function FIND and procedure UNION. FIND (u) returns the class of u,
i.e. the set in P which contains u. A call to procedure UNION with v and v as
arguments merges the classes for u and v in P.

Before the first call to function MERGE, P contains a set {t} for every
term t. Every term has its own class. After function MERGE has been called
successively with equations FEi,...E,, two terms t;,t> are in the same class
if and only if Ey,...E, E t; = ts. This is quite straightforward. Partition

5 MERGE is said to be called with equation ¢; = ¢2 as argument, if MERGE is called
with ¢; as first argument, t2 as second argument, and set {¢t1 = ¢2} as third argument.

P determines a reflexive, symmetric and transitive relation between terms. A
call to UNION with both members of an equality puts them in the same set
in P. Equality propagates also to parents (if they are not already in the same
class, FIND(z) # FIND(y)) through the recursive call to MERGE (on line 8);
P, = PREDECESSORS(u) is simply the set of all terms which have a direct
subterm in the class of u. The call to CONGRUENT(z,y) ensures z and y can
be said equal, that is they have the same top function symbol (A(z) = A(y)) with
the same arity (6(z) = §(y)), and for every 4, the (corresponding) i-th terms z[4]
and y[i] belong to the same class.

procedure MERGE(u, v, Se);
1: begin

if FIND(u)=FIND(v) then return;
P, := PREDECESSORS(u);
P, := PREDECESSORS(v);
UNION(u, v) || Re := Re U {(u,v,Se)};
for each x € P, do for each y € P, do
if FIND(z) # FIND(y) A CONGRUENT(z,y) then
MERGE(z, y, CONDITIONS(z, y)):

end

Fig. 4. Procedure MERGE

Our version of the Nelson-Oppen congruence algorithm differs from the orig-
inal by a new third argument to procedure MERGE, as well as the use of supple-
mentary relation R, and the new procedure CONDITIONS. In the Nelson-Oppen
original congruence closure there is no structure to memorize the given equali-
ties. Beside maintaining the partition P of terms, our version of the algorithm
will also maintain the ternary relation R,. This relation has some properties use-
ful to obtain a small set of equations which entails equality between two given
terms in the same class.

We suppose every call to MERGE(u, v, S,) is such that S, = u = v (the third
argument is a set of equations which entails equality between the first two argu-
ments). Relation R, keeps track of those sets. The new function CONDITIONS
(see Figure 4) is used to compute such a set for the recursive call to MERGE.
Given two terms t; and t; such that CONGRUENT(ty,%2) is true, a call to
CONDITIONS(ty,t2) will return a small set of formulas making t; = t2 true
(Notation P, , is defined below).

Those basic notations are used in the following. The relation R} is the re-
flexive, symmetric and transitive closure of the relation R, =ger {(u,v)|3S :
(u,v,5) € R.}. A path from a; to a, in R, is a sequence of nodes aq,...an
such that for every i € {1..n — 1}, either (a;,a;y1) € R, or (ait1,a;) € RL. A

function CONGRUENT(z, y) : Boolean;
1: wvar i: integer;

2: begin
3: return A(z) = A(y) Ad(z) = d(y)A

Vi[l <4 < d(x) = FIND(z[¢]) = FIND(y[é])];
4: end

Fig. 5. Function CONGRUENT

function CONDITIONS(z,y) : set of equations;
1: wvari: integer;

begin

2
3: return Ulgigé(m) Pyt
4: end

Fig. 6. Function CONDITIONS

non-looping path is a path as, . . . a, which does not contains twice (or more) the
same node.

Theorem 1. The following property is an invariant of the algorithm; given two
nodes a and b, (a,b) € R} if and only if a and b are in the same class.

Proof. Partition P of all terms and relation R, are both changed during the parallel
statement of line 5 in MERGE. If terms a and b are in the same class before execution
of this statement, they remain in the same class after (as a call to UNION only merges
sets in P). Similarly if (a,b) € R} before execution of the statement, (a,) also belongs
to R} after, as no element is removed in R..

If the classes of a and b are the same after the union statement but not before, it
means that @ and b belonged to the class of u or the class of v. Suppose that a and u
belonged to the same class (and similarly for b and v). Then (a,u) and (v,b) belonged
to R} before the union statement. As (u,v,S.) is added to R, (a,b) belongs to R}
after this statement. O

Theorem 2. Given two nodes a and b, there is a path in R, from a to b if and
only if a and b are in the same class. There is at most one non-looping path in
Re going from a to b.

Proof. The first part is trivial using Theorem 1 and the definitions of class, path, and
R}. The second part is easily verified by induction: thanks to condition on line 2 in
MERGE, u and v are not in the same class before statement on line 5. So there is no
path between 4 and v. The statement adds a unique direct path between u and v. If it
merges classes of a and b, then it adds a unique non-looping path from a to b which is
the concatenation of the unique non-looping paths from a to u, from u to v, and from
v to b (we supposed a was in the same class as u). O

Given two nodes a; and a,, in the same class there is a unique path as, ... a,
from a; to a,. For each ¢ € {1..n — 1}, there exists a set .S; such that either
(ai,aH_l, Sz) € R, or (aH_l,a,-, Sz) € R..

Definition 1. Given a relation R., the set of labels from a; to a, is defined as
P, ., =def U1<i<nSi-

Theorem 3. Given two nodes a and b in the same class, P, = a=b.

Proof. This is easily verified by induction. O
Definition 2. An unsatisfiable set is minimal if every proper subset is satisfiable

Theorem 4. In the function-free case, P, U{a # b} is a minimal unsatisfiable
set.

Proof. In the function-free case, no recursive call is done to function MERGE. Every
element in R, is a triplet of the form (u,v, {u = v}). To each element u = v in Py,
corresponds an element (u,v, {u = v}) in Re. Let RZ = R, \ {(u,v,{u = v})}. As the
path from a to b in R, is unique, there is no path in R? from a to b. It follows from
Theorem 1 that for any u = v in P, s, Pop \ {u=v} Ea =0 O

This last theorem states that the changes made to the original algorithm
are more than heuristics; if two elements a and b are found equal, the newly
introduced relation R, allows to find a small set S of equations such that S |
a = b. In the function-free case, the set S is minimal. But when functions are
used, this is not necessarily the case anymore. Suppose function MERGE is
successively called with equations f(a) = f(b), a = b, f(b) = b as arguments.
Elements f(a) and a are then found equal, and the path from a to f(a) in R, is
labeled by all three equations, although f(a) = f(b) is not necessary to conclude
equality between f(a) and a. Anyway it is not mandatory to get a minimal
connection as long as the connection does not include too many unnecessary
equations. In practice, the connections obtained contain very few elements. The
overhead implied by further computation to minimalize them using the following
general minimalization algorithm would decrease the overall performance.

5 Finding minimal unsatisfiable sets

Preceding section introduces an enhanced congruence closure algorithm which
allows to extract a subset (from a given set of literals) sufficient to prove a given
equality. This is one part of a decision procedure for combination of theories
which not only decides unsatisfiability of a conjunctive set of literals, but also
gives an small unsatisfiable subset. The second part is a method to find small
unsatisfiable subsets of literals containing interpreted predicates and functions
from a given decidable theory.

The following method applies on any incremental decision procedure for a
given theory. For instance, for integer linear arithmetic, we use the LASH tool
[15] based on the results in [25]. It provides an incremental decision procedure;
to decide if a conjunctive set of linear arithmetic constraints is unsatisfiable,
constraints are included one by one to an automaton representing the set of
vectors of integers which satisfy already included constraints. This is quite similar
to the way a conjunctive set of Boolean formulas is validated using BDDs.

The fact that this decision procedure is incremental gives us a direct method
to find a minimal unsatisfiable set of constraints. Let H = {hy,...h,} be the
unsatisfiable set of linear arithmetic constraints from which we would like to ex-
tract a minimal unsatisfiable set. Let Hy = (). For all 4 > 0, let k; be the smallest
j such that H;U{h, : 1 <r < j} is unsatisfiable. An incremental decision proce-
dure directly provides this information; all constraints in H; are first added, then
hi,...h, are added one by one until the set of all added constraints is found
unsatisfiable. The last added constraint is thus hg,. Let H;11 be H; U {hy,}.

Theorem 5. For all 7,

— H; contains i elements;

— H;U{h,:1 <71 <k;} is unsatisfiable;

— Hi11 U{h,: 1 <r <k;} is unsatisfiable;

for every h € H;y1, the set (Hip1 \ {h}) U {h, : 1 <r < k;} is satisfiable.
— the sequence kg, k1, ... is strictly decreasing.

Proof. If H = {ha,...hy} is unsatisfiable, the theorem is true for ¢ = 0. Indeed from
the definition of ko, {hr : 1 < r < ko} is unsatisfiable. As H1 = {hg,}, the set
H, U{h, : 1 <7 < ko} is also unsatisfiable. Finally, {h, : 1 < r < ko} is satisfiable,
otherwise ko is not the smallest j such that {h, : 1 <r < j} is unsatisfiable.

By induction, the theorem is also true for ¢ > 0. The inductive hypothesis states
that H; U{h, : 1 <r < k;_1} is unsatisfiable, so k; exists and is strictly smaller than
ki—1. The definition of k; states that H; U{h, : 1 < r < k;} is unsatisfiable. The sets
H;U{h, :1<r <k} and Hiy1 U{h, : 1 <r < k;} are equal.

Finally, given h € H;y1, either h € H; or h = hy,;. If h € H;, the set Hi1 \{h}U{h, :
1 < r < k;} is satisfiable as it is included in H; \ {h} U {h, : 1 < r < k;—1} which is
satisfiable. If h = hg,;, then H;y1 \ {h} = H;, and Hi11 \{h} U {h, : 1 <7 < k;} is
satisfiable from the definition of k;. O

Corollary 1. Let Hy be the last element of the sequence of sets H;. Hy is a
minimal unsatisfiable set and it contains f elements.

The practical success of this procedure is due to the fact that, in our case,
minimal unsatisfiable sets do contain very few constraints. If m is the maximum
number of those necessary constraints in a set H, and if ¢ is the time to decide
if H is unsatisfiable, then the time to get minimal set from H is m X t in the
worst case®. As m is small, this remains acceptable.

6 Results

Figure 7 presents some results’ for the validation of formulas coming from the
verification of some algorithms. Burns, Dijkstra, Fisher, Ricart & Agrawala, Szy-
manski are parameterized mutual exclusion algorithms often used as benchmarks
for verification tools (See [6, 17] for more information on those algorithms). GRC
is a generalized railroad crossing example [14] which has been widely used as
benchmark for formal systems (See for example [3]). t1 and t2 are total verifica-
tion times (in seconds) without using our procedures to find small connections,

5 The procedure is order-sensitive. The worst case corresponds to all necessary con-
straints being added late.
" We used a Pentium 1 GHz running Linux.

and using them respectively (connections are the full unsatisfiable sets in the
first case). The verification of one of those algorithm (R & A) is possible in a
reasonable time only with our enhancements. The time gain ¢; /t2 is not really
representative of the progress brought by our methods, as ¢, also (and mainly)
contains instantiation and formula transformation times. The ratio of the number
of calls to the decision procedure (n; /n2) is a better measure of the improvement;
each “minimalized” connection eliminates between 30 and 600 paths to “true” in
BDDs. The average number of literals (77;) in one path is around 20, with peaks
(m4,max) to 55 literals. In these sets of literals, the selected unsatisfiable subset
is very small, i.e., 3 elements in average (77,), the largest connections (Mo max)
contain 5 literals. Those results show that in the case of invariant validation, our
method leads to significant improvements.

|Algorithm | t1 (S)|t2(S)| t1 /t2| n1 | n2 |n1 /n2| m@| mo|m¢,max|mo,max|
Burns 21 4| 5.25| 5607| 40| 140|19.65| 3 29 4
Dijkstra 75| 20| 3.75|46651|289| 161(15.75(2.79 51 4
Fisher 60 4| 15(12033| 23| 523|10.34|2.95 15 4
R&A ?7(>1h)| 23 ? 71276 ?126.00{2.68 55 5
Szymanski 13| 10| 1.3| 840| 25 33|30.40(2.96 47 4
GRC 980 94(10.42|{11149| 18| 619| 9.66|3.05 25 4

Fig. 7. Some practical results

7 Conclusion

The success of binary decision diagrams often seems restricted to Boolean logic,
or nearly Boolean logic. Indeed, when variables in BDDs represent first-order
atomic formulas (and not only Boolean propositions), there can be paths to the
“true” leaf which are unsatisfiable. To inspect all those paths may be a huge
task, as the number of paths explodes with respect to the size of the BDDs.
We provide methods to extract very general constraints from given (large)
unsatisfiable conjunctive sets of literals with equalities, non-interpreted and in-
terpreted predicates and functions. A first procedure presented here is based on
an extension of the Nelson-Oppen congruence closure algorithm. It applies on
sets of literals containing equalities and uninterpreted predicates and functions.
A second procedure is a general minimalization algorithm which applies on any
incremental decision procedure. Used together in the Nelson-Oppen combination
framework, they provide a simple efficient way to extract small unsatisfiable sub-
sets out of large unsatisfiable sets of literals as easily as checking the (large) set
for unsatisfiability. When added to the BDD, those general constraints elimi-
nate many unsatisfiable paths to the “true” leaf at one go. This ensures that a
small number of constraints is needed. It also ensures that every constraint found
is necessary (as constraints are found from the unsatisfiable paths). And so it
provides an efficient way to deal with BDDs on a rich quantifier-free language.
This method has been implemented in our verification tool CAVEAT. Our
results clearly show that it is particularly suitable for invariant verification.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the
Foundations of Mathematics. North-Holland, Amsterdam, 1954.

C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s method for
combining decision procedures. In Frontiers of Combining Systems (FROCOS),
volume 2309 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

N. S. Bjgrner, Z. Manna, H. B. Sipma, and T. E. Uribe. Deductive verification of
real-time systems using STeP. T'CS: Theoretical Computer Science, 253, 2001.

. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677-691, Aug. 1986.

W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint solving
and symbolic model checking for a class of systems with non-linear constraints.
In Proc. 9th Conf. Computer Aided Verification, volume 1254 of Lecture Notes in
Computer Science, pages 316-327. Springer-Verlag, 1997.

K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Reading,
Massachusetts, 1988.

D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s decision procedure for com-
binations of theories. In Proc. 13th Int. Conf. on Automated Deduction, volume
1104 of Lecture Notes in Computer Science, pages 463-477, New Brunswick, NJ,
1996. Springer-Verlag.

J.-C. Fillidtre, S. Owre, H. Ruef}, and N. Shankar. ICS: integrated canonizer and
solver. In Proc. 13th Conf. Computer Aided Verification, volume 2102 of Lecture
Notes in Computer Science, pages 246—249. Springer-Verlag, 2001.

A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD based procedures for
a theory of equality with uninterpreted functions. In Proc. 10th Conf. Computer
Aided Verification, volume 1427 of Lecture Notes in Computer Science, pages 244—
255. Springer-Verlag, 1998.

J. Goubault. Proving with BDDs and control of information. In Proc. 12th Conf.
on Automated Deduction, volume 814 of Lecture Notes in Computer Science, pages
499-513. Springer-Verlag, 1994.

E. P. Gribomont and D. Rossetto. CAVEAT : technique and tool for Computer
Aided VErification And Transformation. In Proc. 7th Conf. on Computer Aided
Verification, volume 939 of Lecture Notes in Computer Science, pages 70-83, Liege,
Belgium, 1995. Springer-Verlag.

E. P. Gribomont and N. Salloum. Using OBDD’s for the validation of Skolem
verification conditions. In Proc. 16th Int. Conf. on Automated Deduction, volume
1632 of Lecture Notes in Computer Science, pages 222-226, Trento, Italy, 1999.
Springer-Verlag.

J. F. Groote and J. van de Pol. Equational binary decision diagrams. In Logic Pro-
gramming and Automated Reasoning, volume 1955 of Lecture Notes in Computer
Science, pages 161-178. Springer-Verlag, 2000.

C. Heitmeyer and N. A. Lynch. The generalized railroad crossing — a case study
in formal verification of real-time systems. In Proceedings 15th IEEE Real-Time
Systems Symposium, San Juan, Puerto Rico, pages 120-131, Dec. 1994.

The Liége Automata-based Symbolic Handler (LASH).

Available at http://www.montefiore.ulg.ac.be/ boigelot/research/lash/.

J. R. Levitt. Formal Verification Techniques for Digital Systems. PhD thesis,
Stanford University, December 1998.

N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, CS, 1996.
J. Mgller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision
diagrams. In Computer Science Logic, volume 1683 of Lecture Notes in Computer
Science, pages 111-125. Springer-Verlag, 1999.

19

20.

21.

22.

23.

24.

25.

G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245-257, Oct.
1979.

G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356-364, 1980.

J. Posegga and P. H. Schmitt. Automated deduction with shannon graphs. Journal
of Logic and Computation, 5(6):697-729, Dec. 1995.

H. Ruefl and N. Shankar. Deconstructing shostak. In Proceedings of the 16th
Annual IEEE Symposium on Logic in Computer Science (LICS-01), pages 19-28,
Los Alamitos, CA, 2001. IEEE Computer Society.

R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1-12,
Jan. 1984.

C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson—-Oppen com-
bination procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop (Munich, Germany), pages
103-120. Kluwer Academic Publishers, 1996.

P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In Proc. 6th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, volume 1785 of Lecture Notes in Computer Science, pages
1-19, Berlin, March 2000. Springer-Verlag.

