
SMT solvers for Rodin ?

David Déharbe1, Pascal Fontaine2, Yoann Guyot3, and Laurent Voisin3

1 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
david@dimap.ufrn.br

2 University of Nancy and INRIA, Nancy, France
Pascal.Fontaine@inria.fr

3 Systerel, France
{yoann.guyot,laurent.voisin}@systerel.fr

Abstract. Formal development in Event-B generally requires the vali-
dation of a large number of proof obligations. Some automatic tools exist
to automatically discharge a significant part of them, thus augmenting
the efficiency of the formal development. We here investigate the use of
SMT (Satisfiability Modulo Theories) solvers in addition to the tradi-
tional tools, and detail the techniques used for the cooperation between
the Rodin platform and SMT solvers.

Our contribution is the definition of two approaches to use SMT solvers,
their implementation in a Rodin plug-in, and an experimental evaluation
on a large sample of industrial and academic projects. Adding SMT
solvers to Atelier B provers reduces to one fourth the number of sequents
that need to be proved interactively.

1 Introduction

The Rodin platform [7] is an integrated design environment for the formal mod-
eling notation Event-B [1]. Rodin is based on the Eclipse framework [18] and
has an extensible architecture, where new features, or new versions of existing
features, can be integrated by means of plug-ins. It supports the construction of
formal models of systems as well as their refinement using the notation of Event-
B, based on first-order logic, typed set theory and integer arithmetic. Event-B
models should be consistent; for this purpose, Rodin generates proof obligations
that need to be discharged (i.e., proved valid).

The proof obligations are represented internally as sequents, and a sequent
calculus forms the basis of the verification machinery. Proof rules are applied to
a sequent and produce zero, one or more new, usually simpler, sequents. A proof
rule producing no sequent is called a discharging rule. The goal of the verification
is to build a proof tree corresponding to the application of the proof rules, where
all the leaves are discharging rules. In practice, the proof rules are generated by

? This work is partly supported by ANR project DECERT, CNPq/INRIA project
SMT-SAVeS, and CNPq grants 560014/2010-4 and 573964/2008-4 (National Insti-
tute of Science and Technology for Software Engineering—INES, www.ines.org.br).

so-called reasoners. A reasoner is a plug-in that can either be standalone or use
existing verification technologies through third-party tools.

The usability of the Rodin platform, and of formal methods in general, greatly
depends on several aspects of the verification activity:

Automation Ideally, the proof obligations are validated automatically by rea-
soners. If human interaction is required for discharging proof obligations
(using an interactive theorem prover), productivity is negatively impacted.

Information Validation of proof obligations should not be sensitive to irrele-
vant modifications of the model. When modifying the model, large parts of
the proof can be preserved if the precise facts used to validate each proof obli-
gation are recorded. Moreover, similar proof obligations can be discharged
without further need of the reasoner by noticing the same proof applies, even
if the proof obligations differ slightly (on irrelevant parts).

Finally, counter-examples of failed proof obligations can be very valuable to
the user as hints to improve the model and the invariants.

Trust When a prover is used, either the tool itself or its results need to be
certified; otherwise the confidence in the formal development is jeopardized.

In this paper, we address the application of a verification approach that
may potentially fulfill these three requirements: Satisfiability Modulo Theory
(SMT) solvers. SMT solvers can automatically handle large formulas of first-
order logic with respect to some background theories, or a combination thereof,
such as different fragments of arithmetic (linear and non-linear, integer and
real), arrays, bit vectors, etc. They have been employed successfully to handle
proof obligations with tens of thousands of symbols stemming from software and
hardware verification. In this paper, we propose a translation of Event-B sequents
to SMT input, the difficulty lying essentially in the way sets are translated.

The SMT-LIB initiative provides a standard for the input language of SMT
solvers, and, in its last version [4], a command language defining a common in-
terface to interact with SMT solvers. We implemented a Rodin plug-in using this
interface. The plug-in also extracts from the SMT solvers some additional infor-
mation such as the relevant hypothesis. Some solvers (e.g. Z3 [9] and veriT [6])
are able to generate a comprehensive proof for validated formulas, which can be
verified by a trusted proof checker [2]. In the longer term, besides automation,
and information, trust may be obtained using a centralized proof manager.

Overview. Section 2 presents two approaches to translate Rodin sequents to
the SMT-LIB notation. Section 3 illustrates both approaches through a simple
example. Section 4 gives some insights on the techniques employed in SMT
solvers to handle Rodin sequents and section 5 presents experimental results,
based on the verification activities carried out for a variety of Event-B projects.
We conclude by discussing future work.

Throughout the paper, formulas are expressed using the Event- B syntax [14],
and sentences in SMT-LIB are typeset using a typewriter font.

2

2 Translating Event-B to SMT

Figure 1 gives a schematic view of the cooperation framework between Rodin
and the SMT solver. For each Event-B sequent representing a proof obligation
to be validated in Rodin, an SMT formula is built. SMT solvers answer the
satisfiability question, so that it is necessary to take the negation of the sequent
(to be validated) in order to build a formula to be refuted by the SMT solver.
On success a proof and an unsatisfiable core — i.e., the set of facts necessary
to prove that the formula is unsatisfiable — may be supplied to Rodin, which
will extract a new Event-B proof rule out of it. If the SMT solver does not
implement unsatisfiable core generation, the proof rule will assert that the full
Event-B sequent is valid (and will only be useful for that specific sequent).

Fig. 1. Schematic view of the in-
teraction between Rodin and SMT
solvers.

The SMT-LIB standard proposes several
“logics” that specify the interpreted symbols
that may be used in the formulas. Currently,
however, none of those logics fits exactly the
language of the proof obligations generated
by Rodin. There exists a proposal for such
a logic [13], but the existing SMT solvers
do not yet implement corresponding reason-
ing procedures. Our pragmatic approach is
thus to identify subsets of the Event-B logics
that may be handled by the current tools, ei-
ther directly or through some simple transfor-
mations. Translating Boolean and arithmetic
constructs is mostly straightforward, since a
direct syntactic translation may be under-
taken for some symbols: Boolean operators
and constants, relational operators, and most
of arithmetic (division and exponentiation op-
erators are currently translated as uninterpreted symbols). As an example of
transformation of an Event-B sequent to an SMT formula, consider the sequent
with goal 0 < n+1 under the hypothesis n ∈ N; the type environment is {n ◦◦ Z}
and the generated SMT-LIB formula is:

(set-logic AUFLIA)

(declare-fun n () Int)

(assert (>= n 0))

(assert (not (< 0 (+ n 1))))

(check-sat)

The main issue in the translation of proof obligations to SMT-LIB is the
representation of the set-theoretic constructs. We present successively two ap-
proaches. The simplest one, presented shortly in the next section, is based on
the representation of sets as characteristic predicates [10]. Since SMT solvers
handle first-order logic, this approach does not make it possible to reason about
sets of sets. The second approach removes this restriction. It uses the ppTrans

3

translator, already available in the Rodin platform; this translator removes most
set-theoretic constructs from proof obligations by systematically expanding their
definitions.

2.1 The λ-based approach

This approach implements and extends the principles proposed in [10] to handle
simple sets. Essentially, a set is identified with its characteristic function. For
instance the singleton {1} is identified with (λx ◦◦ Z | x = 1) and the empty set
is identified with the polymorphic λ-expression (λx ◦◦ X | FALSE), where X is
a type variable. The union of (two) sets is a polymorphic higher-order function
(λ(S1

◦◦ X → BOOL) 7→ (S2
◦◦ X → BOOL) | (λx ◦◦ X | S1(x) ∨ S2(x))), etc.

SMT-LIB does not provide a facility for λ-expressions, and has limited sup-
port for polymorphism. This approach requires several extensions to SMT-LIB:
λ-expressions, a polymorphic sort system, and macro-definitions. Those exten-
sions are actually implemented in the veriT parser. Consider the sequent A ◦◦

P(Z) ` A∪∅ = A, the translator to this extended SMT-LIB language produces:

(declare-fun A (Int) Bool)

(define-fun (par (X) (union ((S1 (X Bool)) (S2 (X Bool))) (X Bool)

(lambda ((x X)) (or (S1 x) (S2 x))))))

(define-fun (par (X) (emptyset () (X Bool) (lambda ((x X)) false))))

(assert (not (= (union A emptyset) A)))

(check-sat)

where X denotes a sort variable. The function definitions union and emptyset

are inserted by the translator and are part of a corpus of definitions for most of
the set-theoretic constructs (see [10, 11] for details). They are divided into a list
of sorted parameters, the sort of the result, and the body expressing the value
of the result. The macro processor implemented in veriT transforms the goal to

(not (forall ((x Int)) (iff (or (A x) false) (A x))))

i.e., a first-order formula that may then be handled using usual SMT solving
techniques. It is also possible to use veriT only as a pre-processor to produce
plain SMT-LIB formulas that are amenable to verification using any SMT-LIB
compliant solver.

As already mentioned, the main drawback of this approach is that sets of sets
cannot be handled. It is thus restricted to simple sets and relations. Furthermore
its reliance on extensions of the SMT-LIB format creates a dependence on veriT
as a macro processor. The next approach lifts these restrictions.

2.2 The ppTrans approach

Our second approach uses the translator ppTrans provided by the Predicate
Prover available in Rodin in order to obtain first-order logic formulas which are
almost free of set-theoretic elements [12]. It also separates arithmetic, Boolean
and set-theoretic constructs from each other and performs simplifications. This

4

approach makes the plug-in independent from veriT, and is more robust with
respect to the translation of relations and functions. On formulas suitable for
the previous approach, the translator would however produce very similar results
compared to this previous simple approach.

Besides the straightforward translations mentioned earlier, the translation
from the ppTrans output to SMT-LIB provides some specific rules for the trans-
lation of set-theoretic constructs such as the membership operator. For instance
assume the input has the following typing environment and formulas:

Typing environment Formulas
a ◦◦ S
b ◦◦ T
c ◦◦ U
A ◦◦ P(S)
r ◦◦ P(S × T)
s ◦◦ P(S × T × U)

a ∈ A
a 7→ b ∈ r

a 7→ b 7→ c ∈ s

First, for each basic set found in the proof obligation, the translation produces
a sort declaration in SMT-LIB. In addition, for each combination of basic sets
(either through powerset or Cartesian product), an additional sort declaration
is produced. Translating the typing environment produces a sort declaration for
each basic set, and combination thereof found in the input:

S (declare-sort S 0)

T (declare-sort T 0)

U (declare-sort U 0)

P(S) (declare-sort PS 0)

P(S × T) (declare-sort PST 0)

P(S × T × U) (declare-sort PSTU 0)

Second, the translation produces a function declaration for each constant:

a ◦◦ S (declare-fun a () S)

b ◦◦ T (declare-fun b () T)

c ◦◦ U (declare-fun c () U)

A ◦◦ P(S) (declare-fun A () PS)

r ◦◦ P(S × T) (declare-fun r () PST)

s ◦◦ P(S × T × U) (declare-fun s () PSTU)

Third, for each type occurring at the right-hand side of a membership pred-
icate, the translation produces fresh SMT function symbols:

(declare-fun (MS0 (S PS) Bool))

(declare-fun (MS1 (S T PST) Bool))

(declare-fun (MS2 (S T U PSTU)) Bool)

The Event-B atoms can then be translated as follows:

a ∈ A (MS0 a A)

a 7→ b ∈ r (MS1 a b r)

a 7→ b 7→ c ∈ s (MS2 a b c s)

5

Finally, the Event-B formula where all non-membership set operators have
been expanded to their definition is translated to SMT-LIB. For instance, the
formula A ∪∅ = A would be translated to ∀x·(x ∈ A ∨ x ∈ ∅)⇔ x ∈ A, which
ppTrans simplifies to ∀x·(x ∈ A ∨ ⊥)⇔ x ∈ A, would be translated to

(forall ((x S)) (= (or (MS0 A x) false) (MS0 A x)))

While the approach presented here covers the whole Event-B mathematical
language and does not require polymorphic types or specific extensions to the
SMT-LIB language, the semantics of some Event-B constructs is approximated
because some operators become uninterpreted in SMT-LIB (chiefly membership
but also some arithmetic operators such as division and exponentiation). How-
ever, we can recover their interpretation by adding axioms to the SMT-LIB
benchmark, at the risk of decreasing the performance of the SMT-solvers. Some
experimentation is thus needed to find a good balance between efficiency and
completeness.

Indeed, it appears experimentally that including some axioms of set theory
to constrain the possible interpretations of the membership predicate greatly
improves the number of proof obligations discharged. In particular, the axiom of
elementary set (singleton part) is necessary for many Rodin proof obligations.
The translator directly instantiates the axiom for all membership predicates.
Assuming MS is the membership predicate associated with sorts S and PS, the
translation introduces thus the following assertion:

(assert (forall ((x S))

(exists ((X PS)) (and (MS x X)

(forall ((y S)) (=> (MS y X) (= y x)))))))

More implementation and optimization details are available in [12]. It is note-
worthy that the plug-in based on ppTrans detects sequents with only simple sets
(i.e., no sets of sets) and uses a translation similar to the λ-based approach in
that case. Therefore, the ppTrans approach subsumes the λ-based approach.

3 A small Event-B example

As a concrete example of translation, this section presents the model of a simple
job processing system consisting of a queue and a processor. The basic sets are
JOBS (the jobs) and STATUS (the possible states of the processor), such that
axm1 : STATUS = {RUN, IDLE}, and axm2 : RUN 6= IDLE. The state of the
model has three variables: proc (the current status of the processor) queue (the
jobs currently queued) and active (the job being processed, if any). This state
is constrained by the following invariants:

inv1 : proc ∈ STATUS (typing)
inv2 : active ∈ JOBS (typing)
inv3 : queue ∈ P(JOBS) (typing)
inv4 : proc = RUN ⇒ active /∈ queue

6

One of the events of the system describes that the processor takes on a new
job. It is specified as follows:

Event SCHEDULE =̂ (the processor takes on a new job)
any

j
where

grd1 : proc = IDLE (the processor must be idle)
grd2 : j ∈ queue (the job j is in the queue)

then
act1 : queue := queue \ {j}
act2 : active := j
act3 : proc := RUN

end

To verify that the invariant labeled inv4 is preserved by the SCHEDULE
event, the following sequent must be proved valid:

axm1, axm2, inv1, inv2, inv3, inv4, grd1, grd2
` RUN︸ ︷︷ ︸

proc

= RUN⇒ j︸︷︷︸
active

/∈ queue \ {j}︸ ︷︷ ︸
queue

. (1)

The generated proof obligations thus aim to show that the following formula is
unsatisfiable:

STATUS = {RUN, IDLE} ∧ RUN 6= IDLE ∧
proc ∈ STATUS ∧ active ∈ JOBS ∧ queue ∈ P(JOBS) ∧
proc = RUN⇒ active /∈ queue ∧
proc = IDLE ∧ j ∈ queue ∧
¬(RUN = RUN⇒ j /∈ queue \ {j}).

This proof obligation does not contain sets of sets and the approach described
in section 2.1 may be applied resulting in the SMT-LIB input presented in Fig-
ure 2. Lines 2 and 3 contain the declarations of the sorts corresponding to the
basic sets introduced in the context. Lines 4–9 contain the declarations of the
function symbols corresponding to the free variables of the proof obligation, and
are produced using the typing environment. Note that set queue is represented
by a unary predicate symbol. Next, the definitions of the macros corresponding
to set operators ∈ and \ are included on lines 10–13. Line 14 is the definition of
a macro that represents the singleton set {j}. Lines 15–21 are the result of the
translation of the proof obligation itself.

Of course, this proof obligation is also amenable to translation using the
approach described in section 2.2, and the corresponding SMT-LIB input is given
in Figure 3. Since the proof obligation includes sets of JOBS, a corresponding
sort PJOBS and membership predicate MJOBS are declared in lines 4–5. Then,
the function symbols corresponding to free identifiers of the sequent are declared
at lines 6–11. Finally, the hypothesis and the goal of the sequent are translated
to named assertions (lines 12–18).

7

1 (set-logic AUFLIA)

2 (declare-sort STATUS 0)

3 (declare-sort JOBS 0)

4 (declare-fun RUN () STATUS)

5 (declare-fun IDLE () STATUS)

6 (declare-fun proc () STATUS)

7 (declare-fun active () JOBS)

8 (declare-fun j () JOBS)

9 (declare-fun queue (JOBS) Bool)

10 (define-fun (par (X) (in ((x X) (s (X Bool))) Bool (s x))))

11 (define-fun (par (X)

12 (setminus ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

13 (lambda ((x X)) (and (s1 x) (not (s2 x)))))))

14 (define-fun set1 ((x JOBS)) Bool (= x j))

15 (assert (and (forall ((x STATUS)) (or (= x RUN) (= x IDLE)))

16 (not (= RUN IDLE))

17 (=> (= proc RUN) (not (in active queue)))

18 (= proc IDLE)

19 (in j queue)

20 (not (=> (= RUN RUN)

21 (not (in j (setminus queue set1)))))))

22 (check-sat)

Fig. 2. SMT-LIB input produced using the λ-based approach.

The sequent described in this section is very simple and is easily verified by
both Atelier-B provers and SMT-solvers. Section 5 reports experiments with a
large number of proof obligations and establishes a better basis to compare the
effectiveness of these different verification techniques.

4 Solving SMT formulas

In this section, we provide some insight about the internals of SMT solvers, in
order to give to the reader an idea on the kind of formulas that can successfully
be handled by SMT solvers. A very schematic view of an SMT solver is presented
on Figure 4. Basically it is a decision procedure for quantifier-free formulas in a
rich language coupled with an instantiation module that handles the quantifiers
in the formulas by grounding the problem. For quantified logic, SMT solvers are
of course not decision procedures anymore, but they work well in practice if the
necessary instances are easy to find and not too numerous.

4.1 Unquantified formulas

Historically, the first goal of SMT solvers was to provide efficient decision pro-
cedures for expressive languages, beyond pure propositional logic. Those solvers

8

1 (set-logic AUFLIA)

2 (declare-sort STATUS 0)

3 (declare-sort JOBS 0)

4 (declare-sort PJOBS 0)

5 (declare-fun MJOBS (JOBS PJOBS) Bool)

6 (declare-fun RUN () STATUS)

7 (declare-fun IDLE () STATUS)

8 (declare-fun proc () STATUS)

9 (declare-fun active () JOBS)

10 (declare-fun queue () PJOBS)

11 (declare-fun j () JOBS)

12 (assert (! (forall ((x STATUS)) (or (= x RUN) (= x IDLE))) :named axm1))

13 (assert (! (not (= RUN IDLE)) :named axm2))

14 (assert (! (= proc IDLE) :named grd1))

15 (assert (! (MJOBS j queue) :named grd2))

16 (assert (! (not (=> (= RUN RUN)

17 (not (and (MJOBS j queue)

18 (not (= j j)))))) :named goal))

19 (check-sat)

Fig. 3. SMT-LIB input produced using the ppTrans approach.

have always been based on a cooperation of a Boolean engine, nowadays typi-
cally a SAT solver (See [5] for more information on SAT solver techniques and
tools), and a theory reasoner to check the satisfiability of a set of literals in
the considered language. The Boolean engine generates models for the Boolean
abstraction of the input formula, whereas the theory reasoner refutes the sets
of literals corresponding to these abstract models by adding conjunctively con-
flict clauses to the propositional abstraction. This exchange runs until either
the Boolean abstraction is sufficiently refined for the Boolean reasoner to con-
clude that the formula is unsatisfiable, or the theory reasoner concludes that the
abstract model indeed corresponds to a model of the formula.

The theory reasoners are themselves based on a combination of decision pro-
cedures for various fragments. In our context, the relevant decision procedures
are congruence closure — to handle uninterpreted predicates and functions —
decision procedure for arrays (typically reduced to some kind of congruence clo-
sure), and linear arithmetic. It is possible, using the Nelson-Oppen combination
method [15, 19], to build a decision procedure for the union of the languages.
The theory reasoner used in most SMT solvers is thus able to decide the sat-
isfiability of literals on a language containing a mix of uninterpreted symbols,
linear arithmetic symbols, and array operators.

For the theory reasoner and the SAT solver to cooperate successfully, some
techniques are necessary. Among these techniques, if a set of literals is found
unsatisfiable, it is most valuable to generate small conflict clauses, in order to
refine the Boolean abstraction as strongly as possible. Also, theory propagation,

9

Fig. 4. Schematic view of an SMT solver.

that allows to control the decisions taken inside the SAT solver, has proved to
be very worthwhile in practice (more can be found about these techniques and
SMT solving in general in [3]).

4.2 Instantiation techniques

Automatically finding the right instances of quantified formulas is a key issue for
the verification of sequents (as well as proof obligations produced in the context
of a number of software verification tools). The quantifier instantiation module
is responsible for producing lemmas of the form ¬ϕ(t)∨∃xϕ(x). Generating too
many instances may overload the solver with useless information and exhaust
computing resources. Generating too few instances will result in an “unknown”,
and useless, verdict. We report here how veriT copes with such quantified formu-
las. Several instantiation techniques are applied in turn: trigger-based, sort-based
and superposition techniques.

In a quantified formula Qxϕ(x), a trigger is a set of terms T = {t1, · · · tn}
such that the free variables in T are the quantified variables x and each ti is a sub-
term of the matrix ϕ(x) of the quantified formula. Trigger-based instantiation
consists in finding, in the formula, sets of ground terms T ′ that match T , i.e.,
such that there is a substitution σ on x, where the homomorphic extension
of σ over T yields T ′. Each such substitution defines an instantiation of the
original quantified formula. Some verification systems allow the user to specify
instantiation triggers. This is not the case in Rodin, and veriT applies heuristics
to annotate quantified formulas with triggers.

If the trigger-based approach does not yield any new instance, veriT resorts
to sort-based instantiation. In that case, each quantified variable is instantiated
with the ground terms of the formula that have the same sort.

10

Finally, veriT also features a module to communicate with a superposition-
based first-order logic automated theorem prover, namely the E prover [17]. It
is built upon automated deduction techniques such as rewriting, subsumption,
and superposition and is capable of identifying the unsatisfiability of a set of
quantified and non-quantified formulas. When such a set is found satisfiable,
lemmas are extracted from its output and communicated to the other reasoning
modules of veriT. The E prover, like many saturation-based first-order provers,
is complete for first-order logic with equality.

4.3 Unsat core extraction

Additionally to the satisfiability response, it is possible, in case the proof obliga-
tion is validated (i.e., when the formula given to the SMT solver is unsatisfiable),
to ask for an unsatisfiable core. For instance, the sequent (1) discussed in Sec-
tion 3 and translated into the SMT input on Figure 3 is valid independently of
any hypothesis. The SMT input associates labels to the hypotheses and goal,
using the reserved SMT-LIB annotation operator !. A solver implementing the
SMT-LIB unsatisfiable core feature could thus return the list of hypotheses used
to validate the goal. In the present case, it would only return the goal since
no named hypothesis was used. The plug-in transmits this information to the
platform through a rule stating that the goal is unsatisfiable by itself.

Once this rule has been produced, the Rodin platform uses it to discharge any
similar proof objective. In particular, if we modify the current sequent without
modifying any predicate of the rule (in this case for instance, by changing any
irrelevant invariant), the SMT solver rule will still be applicable and the SMT
solver will not need to be run again. This is very important for the end user
experience: when the user modifies his model, most proofs get reused and the
user does not have to wait for the solvers to run again.

The unsat core production for the veriT solver is related to the proof produc-
tion feature. The solver is indeed able to produce a proof, and it has moreover a
facility to prune the proof of unnecessary proof steps and hypotheses. It suffices
thus to check the pruned proof and collect all hypotheses in that proof to obtain
a superset of the unsat core. Although not minimal in theory, this superset often
corresponds to a minimal unsat core, and thus provides the plug-in with high
quality information.

5 Experimental results

We collected a library of proof obligations from several academic (i.e., case stud-
ies from books, academic publications, tutorials,. . .) and industrial projects. The
SMT solvers are used with a timeout of 3 seconds4, on a dual-core Intel Core 2
Duo, cadenced at 2.93GHz, with 4GB of RAM, and running Linux Ubuntu 10.04.

4 This timeout is unusually small for SMT solvers. Larger timeouts would provide
better results, but also altering the responsiveness of the Rodin interactive platform.

11

N
u
m

b
er

o
f

p
ro

o
f

o
b
li
g
a
ti

o
n
s

A
te

li
er

B

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

S
M

T
P

o
rt

fo
li
o

(O
p

en
)

S
M

T
P

o
rt

fo
li
o

P
o
rt

fo
li
o

Academic 2786 474 660 434 646 553 490 271 231 136
Industrial 855 126 212 178 192 177 160 83 62 8

Total 3641 600 872 612 838 730 650 354 293 144

Fig. 5. Experimental results (number of proof obligation not discharged by the tools).

Figure 5 presents a summary of the results.5 The results are detailed separately
for academic and industrial projects. The second column gives the number of
proof obligations, the next columns the number of them not validated by the
tool heading the column, i.e., the number of proof obligations requiring human
interaction after automatic application of only this tool.

The column “Atelier B” gives the number of proof obligations that were
not discharged by the prover from Atelier B. The five following columns give,
for several SMT solvers, the number of proof obligations that the solvers were
not able to validate. The “SMT Portfolio” column relates the number of proof
obligations unproved after trying all considered SMT solvers, whereas the “SMT
Portfolio (Open)” column only consider the solvers with a permissive license,
(i.e., distributed with the plug-in). The “Portfolio” column gives the remaining
sequents after running both the SMT solvers and the prover from Atelier B.

On Figure 6 only the proof obligations undischarged by the prover from
Atelier B are considered, and we detail for each solver (or group of solvers) the
number of validated formulas.

It is worth noticing that SMT solvers altogether validate more proof obliga-
tions than the Atelier B prover. But the important and strong conclusion that
can be deduced from these tables is that SMT solvers complement the Ate-
lierb B prover. From 600 proof obligations that are not validated by the prover
from Atelier B — and that required human interaction — around 75% are dis-
charged automatically by SMT solvers. It thus divides by four the amount of
verification conditions requiring human interaction.

Besides this complementarity, the tools have different features that justify
having a portfolio of solvers: veriT has a permissive license and produces proofs,
from which it is easy to extract unsatisfiable cores; cvc3 is quite efficient, but
extracting unsatisfiable cores from its output is not trivial; z3 is certainly very
powerful, but has a restrictive license.

5 Notice that the z3 solver was not used at its full power since its Model Based Quan-
tifier Instantiation feature (MBQI) was not fully functional on the latest currently
available version for our system.

12

U
n
d
is

ch
a
rg

ed
b
y

A
te

li
er

B

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

S
M

T
P

o
rt

fo
li
o

(O
p

en
)

S
M

T
P

o
rt

fo
li
o

Academic 474 121 259 106 155 227 313 338
Industrial 126 91 99 110 105 68 118 118

Total 600 212 358 216 260 295 431 456

Fig. 6. Improvement over Atelier B (number of validated proof obligations)

6 Conclusion

SMT solving is a formal verification technique successfully applied to various
domains including verification. SMT solvers do not have built-in support for
set-theoretic constructs found in Rodin sequents, but different translation ap-
proaches may be applied to map such constructs to a logic they handle. We
presented two such approaches: a basic one that tackles simple sets, and another
one that is furthermore able to handle more elaborate structures.

We evaluated experimentally the efficiency of SMT-solvers against proof obli-
gations resulting from the translation of Rodin sequents. In our sample of in-
dustrial and academic projects, the use of SMT solvers on top of Atelier B
provers reduces to one fourth the number of unverified sequents. This plug-in
is available through the integrated software updater of Rodin (instructions at
http://wiki.event-b.org/index.php/SMT_Plug-in).

The results are very encouraging and motivate us to progress further by
implementing and evaluating new translation approaches, such as representing
functions using arrays in the line of [8]. Also, as SMT solvers can provide models
when a formula is satisfiable, it would be possible, with additional engineering
effort, to use such models to report counter-examples in Rodin.

Cooperation of deduction tools is very error-prone, not only because it relies
on the correctness of many large and complex tools, but also because of the
translations. Certification of proofs in a centralized trusted proof manager would
be the answer to this problem. Preliminary works in this direction exist [16].

Acknowledgement : we would like to thank the anonymous reviewers for their
remarks.

References

1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. M. Armand, G. Faure, B. Grégoire, L. Théry, and B. Werner. A Modular In-
tegration of SAT/SMT Solvers to Coq through Proof Witnesses. In First Int’l

13

Conference on Certified Programs and Proofs, CPP 2011, volume 7086 of LNCS,
pages 135–150. Springer, 2011.

3. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, Feb. 2009.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version 2.0, 2010.
5. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiabil-

ity, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

6. T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An Open,
Trustable and Efficient SMT-Solver. In Automated Deduction - CADE-22, volume
5663 of LNCS, pages 151–156. Springer, 2009.

7. J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. RODIN
(Rigorous open Development Environment for Complex Systems). In Fifth Eu-
ropean Dependable Computing Conference: EDCC-5 supplementary volume, pages
23–26, 2005.

8. J.-F. Couchot, D. Déharbe, A. Giorgetti, and S. Ranise. Scalable Automated Prov-
ing and Debugging of Set-Based Specifications. Journal of the Brazilian Computer
Society, 9:17–36, 2003.

9. L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakrishnan
and J. Rehof, editors, Proc. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 4963 of LNCS, pages 337–340. Springer,
2008.

10. D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In M. Frappier, G. Uwe, K. Sarfraz, R. Laleau, and S. Reeves, editors,
Proceedings 2nd Int’l Conf. Abstract State Machines, Alloy, B and Z, ABZ 2010,
volume 5977 of LNCS, pages 217–230. Springer, 2010.

11. D. Déharbe. Integration of SMT-solvers in B and Event-B development environ-
ments. Science of Computer Programming, Mar. 2011.

12. M. Konrad and L. Voisin. Translation from Set-Theory to Predicate Calculus.
Technical report, ETH Zurich, 2011.

13. D. Kröning, P. Rümmer, and G. Weissenbacher. A Proposal for a Theory of Finite
Sets, Lists, and Maps for the SMT-LIB Standard. In Informal proceedings, 7th
Int’l Workshop on Satisfiability Modulo Theories (SMT) at CADE 22, 2009.

14. C. Métayer and L. Voisin. The Event-B mathematical language, 2009. http:

//deploy-eprints.ecs.soton.ac.uk/11/4/kernel_lang.pdf.
15. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems, 1(2):245–257, Oct.
1979.

16. M. Schmalz. The logic of Event-B, 2011. Technical report 698, ETH Zürich,
Information Security.

17. S. Schulz. E - A Brainiac Theorem Prover. AI Communications, 15(2/3):111–126,
2002.

18. The Eclipse Foundation. Eclipse SDK, 2009.
19. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen combi-

nation procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining
Systems (FroCoS), Applied Logic, pages 103–120. Kluwer Academic Publishers,
Mar. 1996.

14

