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Lecture 7

The Kalman filter

• Linear system driven by stochastic process

• Statistical steady-state

• Linear Gauss-Markov model

• Kalman filter

• Steady-state Kalman filter
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Linear system driven by stochastic process

We consider a linear dynamical system x(t + 1) = Ax(t) + Bu(t), with
x(0) and u(0), u(1), . . . random variables

we’ll use notation

x̄(t) = Ex(t), Σx(t) = E(x(t) − x̄(t))(x(t) − x̄(t))T

and similarly for ū(t), Σu(t)

taking expectation of x(t + 1) = Ax(t) + Bu(t) we have

x̄(t + 1) = Ax̄(t) + Bū(t)

i.e., the means propagate by the same linear dynamical system
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now let’s consider the covariance

x(t + 1) − x̄(t + 1) = A(x(t) − x̄(t)) + B(u(t) − ū(t))

and so

Σx(t + 1) = E (A(x(t) − x̄(t)) + B(u(t) − ū(t))) ·

· (A(x(t) − x̄(t)) + B(u(t) − ū(t)))T

= AΣx(t)AT + BΣu(t)BT + AΣxu(t)BT + BΣux(t)AT

where
Σxu(t) = Σux(t)T = E(x(t) − x̄(t))(u(t) − ū(t))T

thus, the covariance Σx(t) satisfies another, Lyapunov-like linear dynamical
system, driven by Σxu and Σu
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consider special case Σxu(t) = 0, i.e., x and u are uncorrelated, so we
have Lyapunov iteration

Σx(t + 1) = AΣx(t)AT + BΣu(t)BT ,

which is stable if and only if A is stable

if A is stable and Σu(t) is constant, Σx(t) converges to Σx, called the
steady-state covariance, which satisfies Lyapunov equation

Σx = AΣxAT + BΣuBT

thus, we can calculate the steady-state covariance of x exactly, by solving
a Lyapunov equation

(useful for starting simulations in statistical steady-state)

Question: Can you imagine situations where Σxu(t) 6= 0 ?
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Example

we consider x(t + 1) = Ax(t) + w(t), with

A =

[

0.6 −0.8
0.7 0.6

]

,

where w(t) are IID N (0, I) : i.e. white (memoryless) noise

eigenvalues of A are 0.6 ± 0.75j, with magnitude 0.96, so A is stable

we solve Lyapunov equation to find steady-state covariance

Σx =

[

13.35 −0.03
−0.03 11.75

]

covariance of x(t) converges to Σx no matter its initial value
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two initial state distributions: Σx(0) = 0, Σx(0) = 102I

plot shows Σ11(t) for the two cases

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

t

Σ
1
1
(t

)

The Kalman filter 7–6



x1(t) for one realization from each case:
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Graphical representation

Consider x(t + 1) = Ax(t) + w(t), and w(t) is white noise.

⇒ we can represent the process (x(t), w(t)) by the following graph:

+

w(0) w(1) w(t − 1) w(t) w(t + 1)

x(0) x(1) x(t − 1) x(t) x(t + 1)
×A

+ +

×A ×A ×A ×A

+ + +

×A

Hence, the state process (x(t)) is Markovian: x(t − j) ⊥ x(t + k)|x(t)

NB: The Markov property holds also if w(t) and x(0) are not Gaussian. It
is a consequence of the assumption that the random variables w(t) are
independent of the previous states x(t − j).
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Other consequences

Under the assumption that x(0), w(0), w(1), . . . are jointly Gaussian,
x(0), x(1), x(2), . . . are also jointly Gaussian.

Suppose now that the noise process is time-invariant, Gaussian and white.
I.e. it is completely described by Σw(t) = Σw and w̄(t) = w̄.

Suppose, also that x(0) ∼ N (x̄(0), Σx(0)). Then, x̄(t + 1) = Ax̄(t) + w̄

and Σx(t + 1) = AΣx(t)AT + Σw.

Consequently, the process x(t) is stationary if its initial state distribution
satisfies both

x̄(0) = Ax̄(0) + w̄

Σx(0) = AΣx(0)AT + Σw (1)

If A is stable, the process converges over time towards stationarity, even if
its initial state distribution is not ’stationary’.
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Linear Gauss-Markov model

we consider linear dynamical system

x(t + 1) = Ax(t) + w(t), y(t) = Cx(t) + v(t)

• x(t) ∈ Rn is the state; y(t) ∈ Rp is the observed output

• w(t) ∈ Rn is called process noise or state noise

• v(t) ∈ Rp is called measurement noise
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Statistical assumptions

• x(0), w(0), w(1), . . ., and v(0), v(1), . . . are jointly Gaussian and
independent

• w(t) are IID with Ew(t) = 0, Ew(t)w(t)T = W

• v(t) are IID with E v(t) = 0, E v(t)v(t)T = V

• Ex(0) = x̄0, E(x(0) − x̄0)(x(0) − x̄0)
T = Σ0

(it’s not hard to extend to case where w(t), v(t) are not zero mean)

we’ll denote X(t) = (x(0), . . . , x(t)), etc.

since X(t) and Y (t) are linear functions of x(0), W (t), and V (t), we
conclude they are all jointly Gaussian (i.e., the process x, w, v, y is
Gaussian)
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Statistical properties

• sensor noise v independent of x

• w(t) is independent of x(0), . . . , x(t) and y(0), . . . , y(t)

• Markov property: the process x is Markov, i.e.,

x(t)|x(0), . . . , x(t − 1) = x(t)|x(t − 1)

roughly speaking: if you know x(t − 1), then knowledge of
x(t − 2), . . . , x(0) doesn’t give any more information about x(t)

NB: the process y is Hidden Markov.

Can you prove this ?

Draw factor graph of x(0), w(0), y(0), v(0), . . . , x(t), w(t), y(t), v(t).
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Mean and covariance of Gauss-Markov process

mean satisfies x̄(t + 1) = Ax̄(t), x̄(0) = x̄0, so x̄(t) = Atx̄0

covariance satisfies

Σx(t + 1) = AΣx(t)AT + W

if A is stable, Σx(t) converges to steady-state covariance Σx, which
satisfies Lyapunov equation

Σx = AΣxAT + W
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Conditioning on observed output

we use the notation

x̂(t|s) = E(x(t)|y(0), . . . y(s)),

Σt|s = E(x(t) − x̂(t|s))(x(t) − x̂(t|s))T

• the random variable x(t)|y(0), . . . , y(s) is Gaussian, with mean x̂(t|s)
and covariance Σt|s

• x̂(t|s) is the minimum mean-square error estimate of x(t), based on
y(0), . . . , y(s)

• Σt|s is the covariance of the error of the estimate x̂(t|s)
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State estimation

we focus on two state estimation problems:

• finding x̂(t|t), i.e., estimating the current state, based on the current
and past observed outputs

• finding x̂(t + 1|t), i.e., predicting the next state, based on the current
and past observed outputs

since x(t), Y (t) are jointly Gaussian, we can use the standard formula to
find x̂(t|t) (and similarly for x̂(t + 1|t))

x̂(t|t) = x̄(t) + Σx(t)Y (t)Σ
−1
Y (t)(Y (t) − Ȳ (t))

the inverse in the formula, Σ−1
Y (t), is size pt × pt, which grows with t

the Kalman filter is a clever method for computing x̂(t|t) and x̂(t + 1|t)
recursively
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Measurement update

let’s find x̂(t|t) and Σt|t in terms of x̂(t|t − 1) and Σt|t−1

start with y(t) = Cx(t) + v(t), and condition on Y (t − 1):

y(t)|Y (t − 1) = Cx(t)|Y (t − 1) + v(t)|Y (t − 1) = Cx(t)|Y (t − 1) + v(t)

since v(t) and Y (t − 1) are independent

so x(t)|Y (t − 1) and y(t)|Y (t − 1) are jointly Gaussian with mean and
covariance

[

x̂(t|t − 1)
Cx̂(t|t − 1)

]

,

[

Σt|t−1 Σt|t−1C
T

CΣt|t−1 CΣt|t−1C
T + V

]
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now use standard formula to get mean and covariance of

(x(t)|Y (t − 1))|(y(t)|Y (t − 1)),

which is exactly the same as x(t)|Y (t):

x̂(t|t) = x̂(t|t − 1) + Σt|t−1C
T

(

CΣt|t−1C
T + V

)−1
(y(t) − Cx̂(t|t − 1))

Σt|t = Σt|t−1 − Σt|t−1C
T

(

CΣt|t−1C
T + V

)−1
CΣt|t−1

this gives us x̂(t|t) and Σt|t in terms of x̂(t|t − 1) and Σt|t−1

this is called the measurement update since it gives our updated estimate
of x(t) based on the measurement y(t) becoming available
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Time update

now let’s increment time, using x(t + 1) = Ax(t) + w(t)

condition on Y (t) to get

x(t + 1)|Y (t) = Ax(t)|Y (t) + w(t)|Y (t)

= Ax(t)|Y (t) + w(t)

since w(t) is independent of Y (t)

therefore we have and

x̂(t + 1|t) = Ax̂(t|t)

Σt+1|t = AΣt|tA
T + W
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Kalman filter

measurement and time updates together give a recursive solution

start with prior mean and covariance, x̂(0| − 1) = x̄0, Σ(0| − 1) = Σ0

apply the measurement update

x̂(t|t) = x̂(t|t − 1) + Σt|t−1C
T

(

CΣt|t−1C
T + V

)−1
(y(t) − Cx̂(t|t − 1))

Σt|t = Σt|t−1 − Σt|t−1C
T

(

CΣt|t−1C
T + V

)−1
CΣt|t−1

to get x̂(0|0) and Σ0|0; then apply time update

x̂(t + 1|t) = Ax̂(t|t), Σt+1|t = AΣt|tA
T + W

to get x̂(1|0) and Σ1|0

now, repeat measurement and time updates . . .

The Kalman filter 7–19



Riccati recursion

to lighten notation, we’ll use x̂(t) = x̂(t|t − 1) and Σ̂t = Σt|t−1

we can express measurement and time updates for Σ̂ as

Σ̂t+1 = AΣ̂tA
T + W − AΣ̂tC

T (CΣ̂tC
T + V )−1CΣ̂tA

T

which is a Riccati recursion, with initial condition Σ̂0 = Σ0

• Σ̂t can be computed before any observations are made

• thus, we can calculate the estimation error covariance before we get any
observed data
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Observer form

we can express KF as

x̂(t + 1) = Ax̂(t) + AΣ̂tC
T (CΣ̂tC

T + V )−1(y(t) − Cx̂(t))

= Ax̂(t) + Lt(y(t) − ŷ(t))

where Lt = AΣ̂tC
T (CΣ̂tC

T + V )−1 is the observer gain, and ŷ(t) is
ŷ(t|t − 1)

• ŷ(t) is our output prediction, i.e., our estimate of y(t) based on
y(0), . . . , y(t − 1)

• e(t) = y(t) − ŷ(t) is our output prediction error

• Ax̂(t) is our prediction of x(t + 1) based on y(0), . . . , y(t − 1)

• our estimate of x(t + 1) is the prediction based on y(0), . . . , y(t − 1),
plus a linear function of the output prediction error
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Kalman filter block diagram

w(t) x(t) y(t)
v(t)

z−1

z−1

A

A

C

C

Lt

e(t)

x̂(t)

x̂(t) ŷ(t)
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Steady-state Kalman filter

as in LQR, Riccati recursion for Σ̂t converges to steady-state value Σ̂,
provided (C, A) is observable and (A, W ) is controllable

Σ̂ gives steady-state error covariance for estimating x(t + 1) given
y(0), . . . , y(t)

note that state prediction error covariance converges, even if system is
unstable

Σ̂ satisfies ARE

Σ̂ = AΣ̂AT + W − AΣ̂CT (CΣ̂CT + V )−1CΣ̂AT

(which can be solved directly)
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steady-state filter is a time-invariant observer:

x̂(t + 1) = Ax̂(t) + L(y(t) − ŷ(t)), ŷ(t) = Cx̂(t)

where L = AΣ̂CT (CΣ̂CT + V )−1

define state estimation error x̃(t) = x(t) − x̂(t), so

y(t) − ŷ(t) = Cx(t) + v(t) − Cx̂(t) = Cx̃(t) + v(t)

and

x̃(t + 1) = x(t + 1) − x̂(t + 1)

= Ax(t) + w(t) − Ax̂(t) − L(Cx̃(t) + v(t))

= (A − LC)x̃(t) + w(t) − Lv(t)
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thus, the estimation error propagates according to a linear system, with
closed-loop dynamics A−LC, driven by the process w(t)−LCv(t), which
is IID zero mean and covariance W + LV LT

provided A, W is controllable and C, A is observable, A − LC is stable
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Example

system is

x(t + 1) = Ax(t) + w(t), y(t) = Cx(t) + v(t)

with x(t) ∈ R6, y(t) ∈ R

we’ll take Ex(0) = 0, Ex(0)x(0)T = Σ0 = 52I; W = (1.5)2I, V = 1

eigenvalues of A:

0.9973 ± 0.0730j, 0.9995 ± 0.0324j, 0.9941 ± 0.1081j

(which have magnitude one)

goal: predict y(t + 1) based on y(0), . . . , y(t)
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first let’s find variance of y(t) versus t, using Lyapunov recursion

E y(t)2 = CΣx(t)CT +V, Σx(t+1) = AΣx(t)AT +W, Σx(0) = Σ0
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now, let’s plot the prediction error variance versus t,

E e(t)2 = E(ŷ(t) − y(t))2 = CΣ̂tC
T + V,

where Σ̂t satisfies Riccati recursion

Σ̂t+1 = AΣ̂tA
T + W − AΣ̂tC

T (CΣ̂tC
T + V )−1CΣ̂tA

T , Σ̂−1 = Σ0
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prediction error variance converges to steady-state value 18.7
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now let’s try the Kalman filter on a realization y(t)

top plot shows y(t); bottom plot shows e(t) (on different vertical scale)
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