Lecture 6
 Estimation

- Outline and Motivations
- Prior readings
- Gaussian random vectors
- minimum mean-square estimation (MMSE)
- MMSE with linear measurements
- relation to least-squares, pseudo-inverse

Outline and Motivations

The abstract statement of the problem that we want to solve is:

Given a model of a system $y=f(x)$ and some measurements of y corrupted by noise, determine a good estimate of x.

This problem covers a huge number of engineering applications,e.g.:

- System identification: determine de values of system parameters (masses, spring constants, resistances, volumes) from elementary measurements on the system (positions, speeds, currents, voltages).
- State estimation: determine internal state of system (position, speed, voltages, temperature) from external measurements (GPS signals, surface temperatures, terminal voltages and currents)
- Time series forecasting: given past measurements determine likely future values

The general approach developed in this course comprizes three steps:

- Model the quantities of interest as random variables x, y
- Determine joint probability distribution $p(x, y)$ from prior knowledge aubout the problem
- Use mathematics to construct an algorithm to compute $p(x \mid y)$ and extract estimate $\hat{x}(y)$ from it.

The main assumptions that we will make:

- Physical relationships among quantities of interest can be approximated by linear equations
- Prior uncertainties and measurement errors can be approximated by Gaussian distributions

These assumptions are often acceptable and make life much simpler.

Prior (and complementary) readings

To prepare the coming courses, you absolutely need to read the following material (see web-site):

- Section B. 9 (and review of B.5,B.6, B.8) of 'Appendices communs...'
- The Humble Gaussian Distribution, David J.C. MacKay

Some explanations on this material will however be given during this and the subsequent lectures and repetitions.

Gaussian random variable (short reminder)

- Notion of real-valued random variable (rvrv): $P(x<v)=F_{x}(v)$.
- Notion of continuous rvrv (crv): $p_{x}(v)=\left.\frac{\partial F_{x}(x)}{\partial x}\right|_{x=v}$.
- We use the term probability density function (pdf) of a crv for $p_{x}(\cdot)$.
- x is Gaussian (i.e. "normally distributed"), denoted by $x \sim \mathcal{N}\left(\bar{x}, \sigma^{2}\right)$, if
$-p_{x}(v)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(v-\bar{x})^{2}}{2 \sigma^{2}}\right)$, where
$-\bar{x}=\mathbf{E} x=\int v p_{x}(v) d v$ is the mean
- $\sigma^{2}=\mathbf{E}(x-\bar{x})^{2}=\int(v-\bar{x})^{2} p_{x}(v) d v$ is the variance
- Properties:
- Many practical applications: central limit theorem..., preservation of "normality" by linear (affine) transformations...
- Characterization of pdf by the first 2 moments only...

Gaussian random processes

By definition, a (countable) collection $\left\{x_{1}, x_{2}, \ldots\right\}$ of real-valued random variables is a Gaussian process, if any linear combination of a (finite) subset of these variables has a normal distribution (or is a constant).

Implications (the first three are "trivial"):

- $x_{i} \sim \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}-\bar{x}_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)$ where $\bar{x}_{i}=\mathbf{E} x_{i}$ and $\sigma_{i}^{2}=\mathbf{E}\left(x_{i}-\bar{x}_{i}\right)^{2}$;
- any (finite) affine combination $a_{0}+a_{1} x_{i_{1}}+\ldots+a_{n} x_{i_{n}}$ has a normal distribution (or is a constant);
- if $\left\{y_{1}, y_{2}, \ldots\right\}$ are (finite) affine combinations over a Gaussian process $\left\{x_{1}, x_{2}, \ldots\right\}$, then $\left\{x_{1}, x_{2} \ldots\right\} \cup\left\{y_{1}, y_{2}, \ldots\right\}$ is also a Gaussian process;
- a Gaussian process $\left\{x_{1}, x_{2}, \ldots\right\}$ is entirely characterized by the numbers $\bar{x}_{i}=\mathbf{E} x_{i}$ and $\sigma_{i j}=\mathbf{E}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)$.

Gaussian random vectors

random vector $x \in \mathbf{R}^{n}$ is Gaussian if it has density

$$
p_{x}(v)=(2 \pi)^{-n / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(v-\bar{x})^{T} \Sigma^{-1}(v-\bar{x})\right)
$$

for some $\Sigma=\Sigma^{T}>0, \bar{x} \in \mathbf{R}^{n}$

- denoted $x \sim \mathcal{N}(\bar{x}, \Sigma)$
- $\bar{x} \in \mathbf{R}^{n}$ is the mean or expected value of x, i.e.,

$$
\bar{x}=\mathbf{E} x=\int v p_{x}(v) d v
$$

- $\Sigma=\Sigma^{T}>0$ is the covariance matrix of x, i.e.,

$$
\Sigma=\mathbf{E}(x-\bar{x})(x-\bar{x})^{T}
$$

$$
\begin{aligned}
& =\mathbf{E} x x^{T}-\bar{x} \bar{x}^{T} \\
& =\int(v-\bar{x})(v-\bar{x})^{T} p_{x}(v) d v
\end{aligned}
$$

density for $x \sim \mathcal{N}(0,1)$:

- mean and variance of scalar random variable x_{i} are

$$
\mathbf{E} x_{i}=\bar{x}_{i}, \quad \mathbf{E}\left(x_{i}-\bar{x}_{i}\right)^{2}=\Sigma_{i i}
$$

hence standard deviation of x_{i} is $\sqrt{\Sigma_{i i}}$

- covariance between x_{i} and x_{j} is $\mathbf{E}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)=\Sigma_{i j}$
- correlation coefficient between x_{i} and x_{j} is $\rho_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}$
- mean (norm) square deviation of x from \bar{x} is

$$
\mathbf{E}\|x-\bar{x}\|^{2}=\mathbf{E} \operatorname{Tr}(x-\bar{x})(x-\bar{x})^{T}=\operatorname{Tr} \Sigma=\sum_{i=1}^{n} \Sigma_{i i}
$$

(using $\operatorname{Tr} A B=\operatorname{Tr} B A$)
example: $x \sim \mathcal{N}(0, I)$ means x_{i} are independent identically distributed (IID) $\mathcal{N}(0,1)$ random variables

Confidence ellipsoids

$p_{x}(v)$ is constant for $(v-\bar{x})^{T} \Sigma^{-1}(v-\bar{x})=\alpha$, i.e., on the surface of ellipsoid

$$
\mathcal{E}_{\alpha}=\left\{v \mid(v-\bar{x})^{T} \Sigma^{-1}(v-\bar{x}) \leq \alpha\right\}
$$

thus \bar{x} and Σ determine shape of density
can interpret \mathcal{E}_{α} as confidence ellipsoid for x :
the nonnegative random variable $(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})$ has a χ_{n}^{2} distribution, so $\operatorname{Prob}\left(x \in \mathcal{E}_{\alpha}\right)=F_{\chi_{n}^{2}}(\alpha)$ where $F_{\chi_{n}^{2}}$ is the CDF some good approximations:

- \mathcal{E}_{n} gives about 50% probability
- $\mathcal{E}_{n+2 \sqrt{n}}$ gives about 90% probability
geometrically:
- mean \bar{x} gives center of ellipsoid
- semiaxes are $\sqrt{\alpha \lambda_{i}} u_{i}$, where u_{i} are (orthonormal) eigenvectors of Σ with eigenvalues λ_{i}
example: $x \sim \mathcal{N}(\bar{x}, \Sigma)$ with $\bar{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \Sigma=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
- x_{1} has mean 2 , std. dev. $\sqrt{2}$
- x_{2} has mean 1 , std. dev. 1
- correlation coefficient between x_{1} and x_{2} is $\rho=1 / \sqrt{2}$
- $\mathbf{E}\|x-\bar{x}\|^{2}=3$
90% confidence ellipsoid corresponds to $\alpha=4.6$:

(here, 91 out of 100 fall in $\mathcal{E}_{4.6}$)

Affine transformation

suppose $x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$
consider affine transformation of x :

$$
z=A x+b
$$

where $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$
then z is Gaussian, with mean

$$
\mathbf{E} z=\mathbf{E}(A x+b)=A \mathbf{E} x+b=A \bar{x}+b
$$

and covariance

$$
\begin{aligned}
\Sigma_{z} & =\mathbf{E}(z-\bar{z})(z-\bar{z})^{T} \\
& =\mathbf{E} A(x-\bar{x})(x-\bar{x})^{T} A^{T} \\
& =A \Sigma_{x} A^{T}
\end{aligned}
$$

examples:

- if $w \sim \mathcal{N}(0, I)$ then $x=\Sigma^{1 / 2} w+\bar{x}$ is $\mathcal{N}(\bar{x}, \Sigma)$
useful for simulating vectors with given mean and covariance
- conversely, if $x \sim \mathcal{N}(\bar{x}, \Sigma)$ then $z=\Sigma^{-1 / 2}(x-\bar{x})$ is $\mathcal{N}(0, I)$ (normalizes \& decorrelates)
suppose $x \sim \mathcal{N}(\bar{x}, \Sigma)$ and $c \in \mathbf{R}^{n}$
scalar $c^{T} x$ has mean $c^{T} \bar{x}$ and variance $c^{T} \Sigma c$
thus (unit length) direction of minimum variability for x is u, where

$$
\Sigma u=\lambda_{\min } u, \quad\|u\|=1
$$

standard deviation of $u_{n}^{T} x$ is $\sqrt{\lambda_{\text {min }}}$
(similarly for maximum variability)

Degenerate Gaussian vectors

it is convenient to allow Σ to be singular (but still $\Sigma=\Sigma^{T} \geq 0$)
(in this case density formula obviously does not hold)
meaning: in some directions x is not random at all
write Σ as

$$
\Sigma=\left[Q_{+} Q_{0}\right]\left[\begin{array}{cc}
\Sigma_{+} & 0 \\
0 & 0
\end{array}\right]\left[Q_{+} Q_{0}\right]^{T}
$$

where $Q=\left[Q_{+} Q_{0}\right]$ is orthogonal, $\Sigma_{+}>0$

- columns of Q_{0} are orthonormal basis for $\mathcal{N}(\Sigma)$
- columns of Q_{+}are orthonormal basis for range (Σ)
then $Q^{T} x=\left[\begin{array}{ll}z^{T} & w^{T}\end{array}\right]^{T}$, where
- $z \sim \mathcal{N}\left(Q_{+}^{T} \bar{x}, \Sigma_{+}\right)$is (nondegenerate) Gaussian (hence, density formula holds)
- $w=Q_{0}^{T} \bar{x} \in \mathbf{R}^{n}$ is not random
($Q_{0}^{T} x$ is called deterministic component of x)

Linear measurements

linear measurements with noise:

$$
y=A x+v
$$

- $x \in \mathbf{R}^{n}$ is what we want to measure or estimate
- $y \in \mathbf{R}^{m}$ is measurement
- $A \in \mathbf{R}^{m \times n}$ characterizes sensors or measurements
- v is sensor noise
common assumptions:
- $x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$
- $v \sim \mathcal{N}\left(\bar{v}, \Sigma_{v}\right)$
- x and v are independent
- $\mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$ is the prior distribution of x (describes initial uncertainty about x)
- \bar{v} is noise bias or offset (and is usually 0)
- Σ_{v} is noise covariance
thus

$$
\left[\begin{array}{l}
x \\
v
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\bar{x} \\
\bar{v}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{x} & 0 \\
0 & \Sigma_{v}
\end{array}\right]\right)
$$

using

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]
$$

we can write

$$
\mathbf{E}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\bar{x} \\
A \bar{x}+\bar{v}
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{E}\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]^{T} & =\left[\begin{array}{cc}
I & 0 \\
A & I
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{x} & 0 \\
0 & \Sigma_{v}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
A & I
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
\Sigma_{x} & \Sigma_{x} A^{T} \\
A \Sigma_{x} & A \Sigma_{x} A^{T}+\Sigma_{v}
\end{array}\right]
\end{aligned}
$$

covariance of measurement y is $A \Sigma_{x} A^{T}+\Sigma_{v}$

- $A \Sigma_{x} A^{T}$ is 'signal covariance'
- Σ_{v} is 'noise covariance'

Minimum mean-square estimation

suppose $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ are random vectors (not necessarily Gaussian) we seek to estimate x given y
thus we seek a function $\phi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ such that $\hat{x}=\phi(y)$ is near x one common measure of nearness: mean-square error,

$$
\mathbf{E}\|\phi(y)-x\|^{2}
$$

minimum mean-square estimator (MMSE) $\phi_{\text {mmse }}$ minimizes this quantity general solution: $\phi_{\text {mmse }}(y)=\mathbf{E}(x \mid y)$, i.e., the conditional expectation of x given y

MMSE for Gaussian vectors

now suppose $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ are jointly Gaussian:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
\bar{x} \\
\bar{y}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{x} & \Sigma_{x y} \\
\Sigma_{x y}^{T} & \Sigma_{y}
\end{array}\right]\right)
$$

(after alot of algebra) the conditional density is

$$
p_{x \mid y}(v \mid y)=(2 \pi)^{-n / 2}(\operatorname{det} \Lambda)^{-1 / 2} \exp \left(-\frac{1}{2}(v-w)^{T} \Lambda^{-1}(v-w)\right)
$$

where

$$
\Lambda=\Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{x y}^{T}, \quad w=\bar{x}+\Sigma_{x y} \Sigma_{y}^{-1}(y-\bar{y})
$$

hence MMSE estimator (i.e., conditional expectation) is

$$
\hat{x}=\phi_{\mathrm{mmse}}(y)=\mathbf{E}(x \mid y)=\bar{x}+\Sigma_{x y} \Sigma_{y}^{-1}(y-\bar{y})
$$

$\phi_{\text {mmse }}$ is an affine function
MMSE estimation error, $\hat{x}-x$, is a Gaussian random vector

$$
\hat{x}-x \sim \mathcal{N}\left(0, \Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{x y}^{T}\right)
$$

note that

$$
\Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{x y}^{T} \leq \Sigma_{x}
$$

i.e., covariance of estimation error is always less than prior covariance of x

Best linear unbiased estimator

estimator

$$
\hat{x}=\phi_{\mathrm{blu}}(y)=\bar{x}+\Sigma_{x y} \Sigma_{y}^{-1}(y-\bar{y})
$$

makes sense when x, y aren't jointly Gaussian
this estimator

- is unbiased, i.e., $\mathbf{E} \hat{x}=\mathbf{E} x$
- often works well
- is widely used
- has minimum mean square error among all affine estimators
sometimes called best linear unbiased estimator

MMSE with linear measurements

consider specific case

$$
y=A x+v, \quad x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right), \quad v \sim \mathcal{N}\left(\bar{v}, \Sigma_{v}\right)
$$

x, v independent
MMSE of x given y is affine function

$$
\hat{x}=\bar{x}+B(y-\bar{y})
$$

where $B=\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1}, \bar{y}=A \bar{x}+\bar{v}$

intepretation:

- \bar{x} is our best prior guess of x (before measurement)
- $y-\bar{y}$ is the discrepancy between what we actually measure (y) and the expected value of what we measure (\bar{y})
- estimator modifies prior guess by B times this discrepancy
- estimator blends prior information with measurement
- B gives gain from observed discrepancy to estimate
- B is small if noise term Σ_{v} in 'denominator' is large

MMSE error with linear measurements

MMSE estimation error, $\tilde{x}=\hat{x}-x$, is Gaussian with zero mean and covariance

$$
\Sigma_{\text {est }}=\Sigma_{x}-\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1} A \Sigma_{x}
$$

- $\Sigma_{\text {est }} \leq \Sigma_{x}$, i.e., measurement always decreases uncertainty about x
- difference $\Sigma_{x}-\Sigma_{\text {est }}$ gives value of measurement y in estimating x
- e.g., $\left(\Sigma_{\text {est } i i} / \Sigma_{x i i}\right)^{1 / 2}$ gives fractional decrease in uncertainty of x_{i} due to measurement
note: error covariance $\Sigma_{\text {est }}$ can be determined before measurement y is made!
to evaluate $\Sigma_{\text {est }}$, only need to know
- A (which characterizes sensors)
- prior covariance of x (i.e., Σ_{x})
- noise covariance (i.e., Σ_{v})
you do not need to know the measurement y (or the means \bar{x}, \bar{v}) useful for experiment design or sensor selection

Information matrix formulas

we can write estimator gain matrix as

$$
\begin{aligned}
B & =\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1} \\
& =\left(A^{T} \Sigma_{v}^{-1} A+\Sigma_{x}^{-1}\right)^{-1} A^{T} \Sigma_{v}^{-1}
\end{aligned}
$$

- $n \times n$ inverse instead of $m \times m$
- $\Sigma_{x}^{-1}, \Sigma_{v}^{-1}$ sometimes called information matrices
corresponding formula for estimator error covariance:

$$
\begin{aligned}
\Sigma_{\text {est }} & =\Sigma_{x}-\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1} A \Sigma_{x} \\
& =\left(A^{T} \Sigma_{v}^{-1} A+\Sigma_{x}^{-1}\right)^{-1}
\end{aligned}
$$

can interpret $\Sigma_{\text {est }}^{-1}=\Sigma_{x}^{-1}+A^{T} \Sigma_{v}^{-1} A$ as:
posterior information matrix $\left(\Sigma_{\text {est }}^{-1}\right)$
$=$ prior information matrix $\left(\Sigma_{x}^{-1}\right)$

+ information added by measurement $\left(A^{T} \Sigma_{v}^{-1} A\right)$
proof: multiply

$$
\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1} \stackrel{?}{=}\left(A^{T} \Sigma_{v}^{-1} A+\Sigma_{x}^{-1}\right)^{-1} A^{T} \Sigma_{v}^{-1}
$$

on left by $\left(A^{T} \Sigma_{v}^{-1} A+\Sigma_{x}^{-1}\right)$ and on right by $\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)$ to get

$$
\left(A^{T} \Sigma_{v}^{-1} A+\Sigma_{x}^{-1}\right) \Sigma_{x} A^{T} \stackrel{?}{=} A^{T} \Sigma_{v}^{-1}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)
$$

which is true

Relation to regularized least-squares

suppose $\bar{x}=0, \bar{v}=0, \Sigma_{x}=\alpha^{2} I, \Sigma_{v}=\beta^{2} I$
estimator is $\hat{x}=B y$ where

$$
\begin{aligned}
B & =\left(A^{T} \Sigma_{v}^{-1} A+\Sigma_{x}^{-1}\right)^{-1} A^{T} \Sigma_{v}^{-1} \\
& =\left(A^{T} A+(\beta / \alpha)^{2} I\right)^{-1} A^{T}
\end{aligned}
$$

. . . which corresponds to regularized least-squares
MMSE estimate \hat{x} minimizes

$$
\|A z-y\|^{2}+(\beta / \alpha)^{2}\|z\|^{2}
$$

over z

Example

navigation using range measurements to distant beacons

$$
y=A x+v
$$

- $x \in \mathbf{R}^{2}$ is location
- y_{i} is range measurement to i th beacon
- v_{i} is range measurement error, IID $\mathcal{N}(0,1)$
- i th row of A is unit vector in direction of i th beacon
prior distribution:

$$
x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right), \quad \bar{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \Sigma_{x}=\left[\begin{array}{cc}
2^{2} & 0 \\
0 & 0.5^{2}
\end{array}\right]
$$

x_{1} has std. dev. 2; x_{2} has std. dev. 0.5

90\% confidence ellipsoid for prior distribution

$\left\{x \mid(x-\bar{x})^{T} \Sigma_{x}^{-1}(x-\bar{x}) \leq 4.6\right\}:$

Case 1: one measurement, with beacon at angle 30°
fewer measurements than variables, so combining prior information with measurement is critical
resulting estimation error covariance:

$$
\Sigma_{\text {est }}=\left[\begin{array}{rr}
1.046 & -0.107 \\
-0.107 & 0.246
\end{array}\right]
$$

90% confidence ellipsoid for estimate \hat{x} : (and 90% confidence ellipsoid for $x)$

interpretation: measurement

- yields essentially no reduction in uncertainty in x_{2}
- reduces uncertainty in x_{1} by a factor about two

Case 2: 4 measurements, with beacon angles $80^{\circ}, 85^{\circ}, 90^{\circ}, 95^{\circ}$ resulting estimation error covariance:

$$
\Sigma_{\mathrm{est}}=\left[\begin{array}{rr}
3.429 & -0.074 \\
-0.074 & 0.127
\end{array}\right]
$$

90% confidence ellipsoid for estimate \hat{x} : (and 90% confidence ellipsoid for x)

interpretation: measurement yields

- little reduction in uncertainty in x_{1}
- small reduction in uncertainty in x_{2}

