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Lecture 6
Estimation

• Outline and Motivations

• Prior readings

• Gaussian random vectors

• minimum mean-square estimation (MMSE)

• MMSE with linear measurements

• relation to least-squares, pseudo-inverse
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Outline and Motivations

The abstract statement of the problem that we want to solve is:

Given a model of a system y = f(x) and some measurements of y
corrupted by noise, determine a good estimate of x.

This problem covers a huge number of engineering applications,e.g.:

• System identification: determine de values of system parameters
(masses, spring constants, resistances, volumes) from elementary
measurements on the system (positions, speeds, currents, voltages).

• State estimation: determine internal state of system (position, speed,
voltages, temperature) from external measurements (GPS signals,
surface temperatures, terminal voltages and currents)

• Time series forecasting: given past measurements determine likely
future values
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The general approach developed in this course comprizes three steps:

• Model the quantities of interest as random variables x, y

• Determine joint probability distribution p(x, y) from prior knowledge
aubout the problem

• Use mathematics to construct an algorithm to compute p(x|y) and
extract estimate x̂(y) from it.

The main assumptions that we will make:

• Physical relationships among quantities of interest can be approximated
by linear equations

• Prior uncertainties and measurement errors can be approximated by
Gaussian distributions

These assumptions are often acceptable and make life much simpler.
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Prior (and complementary) readings

To prepare the coming courses, you absolutely need to read the following
material (see web-site):

• Section B.9 (and review of B.5,B.6, B.8) of ’Appendices communs...’

• The Humble Gaussian Distribution, David J.C. MacKay

Some explanations on this material will however be given during this and
the subsequent lectures and repetitions.
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Gaussian random variable (short reminder)

• Notion of real-valued random variable (rvrv): P (x < v) = Fx(v).

• Notion of continuous rvrv (crv): px(v) = ∂Fx(x)
∂x

∣

∣

∣

x=v
.

• We use the term probability density function (pdf) of a crv for px(·).

• x is Gaussian (i.e. “normally distributed”), denoted by x ∼ N (x̄, σ2), if

– px(v) = 1√
2πσ2

exp
(

−(v−x̄)2

2σ2

)

, where

– x̄ = Ex =
∫

vpx(v)dv is the mean
– σ2 = E(x − x̄)2 =

∫

(v − x̄)2px(v)dv is the variance

• Properties:

– Many practical applications: central limit theorem..., preservation of
“normality” by linear (affine) transformations...

– Characterization of pdf by the first 2 moments only...
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Gaussian random processes

By definition, a (countable) collection {x1, x2, . . .} of real-valued random
variables is a Gaussian process, if any linear combination of a (finite)
subset of these variables has a normal distribution (or is a constant).

Implications (the first three are “trivial”):

• xi ∼ 1√
2πσ2

i

exp
(

−(xi−x̄i)
2

2σ2
i

)

where x̄i = Exi and σ2
i = E(xi − x̄i)

2;

• any (finite) affine combination a0 + a1xi1 + . . . + anxin has a normal
distribution (or is a constant);

• if {y1, y2, . . .} are (finite) affine combinations over a Gaussian process
{x1, x2, . . .}, then {x1, x2 . . .} ∪ {y1, y2, . . .} is also a Gaussian process;

• a Gaussian process {x1, x2, . . .} is entirely characterized by the numbers
x̄i = Exi and σij = E(xi − x̄i)(xj − x̄j).
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Gaussian random vectors

random vector x ∈ Rn is Gaussian if it has density

px(v) = (2π)−n/2(detΣ)−1/2 exp

(

−1

2
(v − x̄)TΣ−1(v − x̄)

)

,

for some Σ = ΣT > 0, x̄ ∈ Rn

• denoted x ∼ N (x̄, Σ)

• x̄ ∈ Rn is the mean or expected value of x, i.e.,

x̄ = Ex =

∫

vpx(v)dv

• Σ = ΣT > 0 is the covariance matrix of x, i.e.,

Σ = E(x − x̄)(x − x̄)T
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= ExxT − x̄x̄T

=

∫

(v − x̄)(v − x̄)Tpx(v)dv

density for x ∼ N (0, 1):
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• mean and variance of scalar random variable xi are

Exi = x̄i, E(xi − x̄i)
2 = Σii

hence standard deviation of xi is
√

Σii

• covariance between xi and xj is E(xi − x̄i)(xj − x̄j) = Σij

• correlation coefficient between xi and xj is ρij =
Σij

√

ΣiiΣjj

• mean (norm) square deviation of x from x̄ is

E ‖x − x̄‖2 = ETr(x − x̄)(x − x̄)T = TrΣ =
n

∑

i=1

Σii

(using TrAB = TrBA)

example: x ∼ N (0, I) means xi are independent identically distributed
(IID) N (0, 1) random variables
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Confidence ellipsoids

px(v) is constant for (v − x̄)TΣ−1(v − x̄) = α, i.e., on the surface of
ellipsoid

Eα = {v | (v − x̄)TΣ−1(v − x̄) ≤ α}

thus x̄ and Σ determine shape of density

can interpret Eα as confidence ellipsoid for x:

the nonnegative random variable (x − x̄)TΣ−1(x − x̄) has a χ2
n

distribution, so Prob(x ∈ Eα) = Fχ2
n
(α) where Fχ2

n
is the CDF

some good approximations:

• En gives about 50% probability

• En+2
√

n gives about 90% probability
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geometrically:

• mean x̄ gives center of ellipsoid

• semiaxes are
√

αλiui, where ui are (orthonormal) eigenvectors of Σ
with eigenvalues λi
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example: x ∼ N (x̄,Σ) with x̄ =

[

2
1

]

, Σ =

[

2 1
1 1

]

• x1 has mean 2, std. dev.
√

2

• x2 has mean 1, std. dev. 1

• correlation coefficient between x1 and x2 is ρ = 1/
√

2

• E ‖x − x̄‖2 = 3

90% confidence ellipsoid corresponds to α = 4.6:
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(here, 91 out of 100 fall in E4.6)
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Affine transformation

suppose x ∼ N (x̄,Σx)

consider affine transformation of x:

z = Ax + b,

where A ∈ Rm×n, b ∈ Rm

then z is Gaussian, with mean

E z = E(Ax + b) = AEx + b = Ax̄ + b

and covariance

Σz = E(z − z̄)(z − z̄)T

= EA(x − x̄)(x − x̄)TAT

= AΣxAT
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examples:

• if w ∼ N (0, I) then x = Σ1/2w + x̄ is N (x̄,Σ)

useful for simulating vectors with given mean and covariance

• conversely, if x ∼ N (x̄, Σ) then z = Σ−1/2(x − x̄) is N (0, I)

(normalizes & decorrelates)
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suppose x ∼ N (x̄,Σ) and c ∈ Rn

scalar cTx has mean cT x̄ and variance cTΣc

thus (unit length) direction of minimum variability for x is u, where

Σu = λminu, ‖u‖ = 1

standard deviation of uT
nx is

√
λmin

(similarly for maximum variability)
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Degenerate Gaussian vectors

it is convenient to allow Σ to be singular (but still Σ = ΣT ≥ 0)

(in this case density formula obviously does not hold)

meaning: in some directions x is not random at all

write Σ as

Σ = [Q+ Q0]

[

Σ+ 0
0 0

]

[Q+ Q0]
T

where Q = [Q+ Q0] is orthogonal, Σ+ > 0

• columns of Q0 are orthonormal basis for N (Σ)

• columns of Q+ are orthonormal basis for range(Σ)
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then QTx = [zT wT ]T , where

• z ∼ N (QT
+x̄,Σ+) is (nondegenerate) Gaussian (hence, density formula

holds)

• w = QT
0 x̄ ∈ Rn is not random

(QT
0 x is called deterministic component of x)
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Linear measurements

linear measurements with noise:

y = Ax + v

• x ∈ Rn is what we want to measure or estimate

• y ∈ Rm is measurement

• A ∈ Rm×n characterizes sensors or measurements

• v is sensor noise
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common assumptions:

• x ∼ N (x̄,Σx)

• v ∼ N (v̄, Σv)

• x and v are independent

• N (x̄,Σx) is the prior distribution of x (describes initial uncertainty
about x)

• v̄ is noise bias or offset (and is usually 0)

• Σv is noise covariance
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thus
[

x
v

]

∼ N
([

x̄
v̄

]

,

[

Σx 0
0 Σv

])

using
[

x
y

]

=

[

I 0
A I

] [

x
v

]

we can write

E

[

x
y

]

=

[

x̄
Ax̄ + v̄

]

and

E

[

x − x̄
y − ȳ

] [

x − x̄
y − ȳ

]T

=

[

I 0
A I

] [

Σx 0
0 Σv

] [

I 0
A I

]T

=

[

Σx ΣxAT

AΣx AΣxAT + Σv

]
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covariance of measurement y is AΣxAT + Σv

• AΣxAT is ‘signal covariance’

• Σv is ‘noise covariance’
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Minimum mean-square estimation

suppose x ∈ Rn and y ∈ Rm are random vectors (not necessarily Gaussian)

we seek to estimate x given y

thus we seek a function φ : Rm → Rn such that x̂ = φ(y) is near x

one common measure of nearness: mean-square error,

E ‖φ(y) − x‖2

minimum mean-square estimator (MMSE) φmmse minimizes this quantity

general solution: φmmse(y) = E(x|y), i.e., the conditional expectation of x
given y
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MMSE for Gaussian vectors

now suppose x ∈ Rn and y ∈ Rm are jointly Gaussian:

[

x
y

]

∼ N
( [

x̄
ȳ

]

,

[

Σx Σxy

ΣT
xy Σy

] )

(after alot of algebra) the conditional density is

px|y(v|y) = (2π)−n/2(detΛ)−1/2 exp

(

−1

2
(v − w)TΛ−1(v − w)

)

,

where
Λ = Σx − ΣxyΣ

−1
y ΣT

xy, w = x̄ + ΣxyΣ
−1
y (y − ȳ)

hence MMSE estimator (i.e., conditional expectation) is

x̂ = φmmse(y) = E(x|y) = x̄ + ΣxyΣ
−1
y (y − ȳ)
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φmmse is an affine function

MMSE estimation error, x̂ − x, is a Gaussian random vector

x̂ − x ∼ N (0, Σx − ΣxyΣ
−1
y ΣT

xy)

note that
Σx − ΣxyΣ

−1
y ΣT

xy ≤ Σx

i.e., covariance of estimation error is always less than prior covariance of x
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Best linear unbiased estimator

estimator
x̂ = φblu(y) = x̄ + ΣxyΣ

−1
y (y − ȳ)

makes sense when x, y aren’t jointly Gaussian

this estimator

• is unbiased, i.e., E x̂ = Ex

• often works well

• is widely used

• has minimum mean square error among all affine estimators

sometimes called best linear unbiased estimator
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MMSE with linear measurements

consider specific case

y = Ax + v, x ∼ N (x̄, Σx), v ∼ N (v̄, Σv),

x, v independent

MMSE of x given y is affine function

x̂ = x̄ + B(y − ȳ)

where B = ΣxAT (AΣxAT + Σv)
−1, ȳ = Ax̄ + v̄

intepretation:

• x̄ is our best prior guess of x (before measurement)

• y − ȳ is the discrepancy between what we actually measure (y) and the
expected value of what we measure (ȳ)
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• estimator modifies prior guess by B times this discrepancy

• estimator blends prior information with measurement

• B gives gain from observed discrepancy to estimate

• B is small if noise term Σv in ‘denominator’ is large
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MMSE error with linear measurements

MMSE estimation error, x̃ = x̂ − x, is Gaussian with zero mean and
covariance

Σest = Σx − ΣxAT (AΣxAT + Σv)
−1AΣx

• Σest ≤ Σx, i.e., measurement always decreases uncertainty about x

• difference Σx − Σest gives value of measurement y in estimating x

• e.g., (Σest ii/Σx ii)
1/2 gives fractional decrease in uncertainty of xi due

to measurement

note: error covariance Σest can be determined before measurement y is
made!
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to evaluate Σest, only need to know

• A (which characterizes sensors)

• prior covariance of x (i.e., Σx)

• noise covariance (i.e., Σv)

you do not need to know the measurement y (or the means x̄, v̄)

useful for experiment design or sensor selection
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Information matrix formulas

we can write estimator gain matrix as

B = ΣxAT (AΣxAT + Σv)
−1

=
(

ATΣ−1
v A + Σ−1

x

)−1
ATΣ−1

v

• n × n inverse instead of m × m

• Σ−1
x , Σ−1

v sometimes called information matrices

corresponding formula for estimator error covariance:

Σest = Σx − ΣxAT (AΣxAT + Σv)
−1AΣx

=
(

ATΣ−1
v A + Σ−1

x

)−1

Estimation 6–30



can interpret Σ−1
est = Σ−1

x + ATΣ−1
v A as:

posterior information matrix (Σ−1
est)

= prior information matrix (Σ−1
x )

+ information added by measurement (ATΣ−1
v A)
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proof: multiply

ΣxAT (AΣxAT + Σv)
−1 ?

=
(

ATΣ−1
v A + Σ−1

x

)−1
ATΣ−1

v

on left by (ATΣ−1
v A + Σ−1

x ) and on right by (AΣxAT + Σv) to get

(ATΣ−1
v A + Σ−1

x )ΣxAT ?
= ATΣ−1

v (AΣxAT + Σv)

which is true
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Relation to regularized least-squares

suppose x̄ = 0, v̄ = 0, Σx = α2I, Σv = β2I

estimator is x̂ = By where

B =
(

ATΣ−1
v A + Σ−1

x

)−1
ATΣ−1

v

= (ATA + (β/α)2I)−1AT

. . . which corresponds to regularized least-squares

MMSE estimate x̂ minimizes

‖Az − y‖2 + (β/α)2‖z‖2

over z
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Example

navigation using range measurements to distant beacons

y = Ax + v

• x ∈ R2 is location

• yi is range measurement to ith beacon

• vi is range measurement error, IID N (0, 1)

• ith row of A is unit vector in direction of ith beacon

prior distribution:

x ∼ N (x̄, Σx), x̄ =

[

1
1

]

, Σx =

[

22 0
0 0.52

]

x1 has std. dev. 2; x2 has std. dev. 0.5
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90% confidence ellipsoid for prior distribution
{ x | (x − x̄)TΣ−1

x (x − x̄) ≤ 4.6 }:
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Case 1: one measurement, with beacon at angle 30◦

fewer measurements than variables, so combining prior information with
measurement is critical

resulting estimation error covariance:

Σest =

[

1.046 −0.107
−0.107 0.246

]
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90% confidence ellipsoid for estimate x̂: (and 90% confidence ellipsoid for
x)
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interpretation: measurement

• yields essentially no reduction in uncertainty in x2

• reduces uncertainty in x1 by a factor about two
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Case 2: 4 measurements, with beacon angles 80◦, 85◦, 90◦, 95◦

resulting estimation error covariance:

Σest =

[

3.429 −0.074
−0.074 0.127

]
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90% confidence ellipsoid for estimate x̂: (and 90% confidence ellipsoid for
x)
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interpretation: measurement yields

• little reduction in uncertainty in x1

• small reduction in uncertainty in x2
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