# Lecture 6 Estimation

- Outline and Motivations
- Prior readings
- Gaussian random vectors
- minimum mean-square estimation (MMSE)
- MMSE with linear measurements
- relation to least-squares, pseudo-inverse

# **Outline and Motivations**

The abstract statement of the problem that we want to solve is:

Given a model of a system y = f(x) and some measurements of y corrupted by noise, determine a good estimate of x.

This problem covers a huge number of engineering applications, e.g.:

- System identification: determine de values of system parameters (masses, spring constants, resistances, volumes) from elementary measurements on the system (positions, speeds, currents, voltages).
- State estimation: determine internal state of system (position, speed, voltages, temperature) from external measurements (GPS signals, surface temperatures, terminal voltages and currents)
- Time series forecasting: given past measurements determine likely future values

The general approach developed in this course comprizes three steps:

- Model the quantities of interest as random variables x, y
- Determine joint probability distribution  $p(\boldsymbol{x},\boldsymbol{y})$  from prior knowledge aubout the problem
- Use mathematics to construct an algorithm to compute p(x|y) and extract estimate  $\hat{x}(y)$  from it.

The main assumptions that we will make:

- Physical relationships among quantities of interest can be approximated by linear equations
- Prior uncertainties and measurement errors can be approximated by Gaussian distributions

These assumptions are often acceptable and make life much simpler.

# Prior (and complementary) readings

To prepare the coming courses, you **absolutely** need to read the following material (see web-site):

- Section B.9 (and review of B.5, B.6, B.8) of 'Appendices communs...'
- The Humble Gaussian Distribution, David J.C. MacKay

Some explanations on this material will however be given during this and the subsequent lectures and repetitions.

## Gaussian random variable (short reminder)

- Notion of real-valued random variable (rvrv):  $P(x < v) = F_x(v)$ .
- Notion of continuous rvrv (crv):  $p_x(v) = \frac{\partial F_x(x)}{\partial x}\Big|_{x=v}$ .
- We use the term probability density function (pdf) of a crv for  $p_x(\cdot)$ .
- x is Gaussian (i.e. "normally distributed"), denoted by  $x \sim \mathcal{N}(\bar{x}, \sigma^2)$ , if

- 
$$p_x(v) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(v-\bar{x})^2}{2\sigma^2}\right)$$
, where  
-  $\bar{x} = \mathbf{E} x = \int v p_x(v) dv$  is the mean  
-  $\sigma^2 = \mathbf{E}(x-\bar{x})^2 = \int (v-\bar{x})^2 p_x(v) dv$  is the variance

- Properties:
  - Many practical applications: central limit theorem..., preservation of "normality" by linear (affine) transformations...
  - Characterization of pdf by the first 2 moments only...

### Gaussian random processes

By definition, a (countable) collection  $\{x_1, x_2, \ldots\}$  of real-valued random variables is a Gaussian process, if any linear combination of a (finite) subset of these variables has a normal distribution (or is a constant).

Implications (the first three are "trivial"):

• 
$$x_i \sim \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(x_i-\bar{x}_i)^2}{2\sigma_i^2}\right)$$
 where  $\bar{x}_i = \mathbf{E} x_i$  and  $\sigma_i^2 = \mathbf{E}(x_i - \bar{x}_i)^2$ ;

- any (finite) affine combination a<sub>0</sub> + a<sub>1</sub>x<sub>i<sub>1</sub></sub> + ... + a<sub>n</sub>x<sub>i<sub>n</sub></sub> has a normal distribution (or is a constant);
- if  $\{y_1, y_2, \ldots\}$  are (finite) affine combinations over a Gaussian process  $\{x_1, x_2, \ldots\}$ , then  $\{x_1, x_2, \ldots\} \cup \{y_1, y_2, \ldots\}$  is also a Gaussian process;
- a Gaussian process  $\{x_1, x_2, \ldots\}$  is entirely characterized by the numbers  $\bar{x}_i = \mathbf{E} x_i$  and  $\sigma_{ij} = \mathbf{E} (x_i \bar{x}_i)(x_j \bar{x}_j)$ .

#### **Gaussian random vectors**

random vector  $x \in \mathbf{R}^n$  is *Gaussian* if it has density

$$p_x(v) = (2\pi)^{-n/2} (\det \Sigma)^{-1/2} \exp\left(-\frac{1}{2}(v-\bar{x})^T \Sigma^{-1}(v-\bar{x})\right),$$

for some  $\boldsymbol{\Sigma} = \boldsymbol{\Sigma}^T > 0$  ,  $\bar{\boldsymbol{x}} \in \mathbf{R}^n$ 

- denoted  $x \sim \mathcal{N}(\bar{x}, \Sigma)$
- $\bar{x} \in \mathbf{R}^n$  is the *mean* or *expected* value of x, *i.e.*,

$$\bar{x} = \mathbf{E} \, x = \int v p_x(v) dv$$

•  $\Sigma = \Sigma^T > 0$  is the *covariance* matrix of x, *i.e.*,

$$\Sigma = \mathbf{E}(x - \bar{x})(x - \bar{x})^T$$

$$= \mathbf{E} x x^T - \bar{x} \bar{x}^T$$
$$= \int (v - \bar{x}) (v - \bar{x})^T p_x(v) dv$$

density for  $x \sim \mathcal{N}(0, 1)$ :



• mean and variance of scalar random variable  $x_i$  are

$$\mathbf{E} x_i = \bar{x}_i, \quad \mathbf{E} (x_i - \bar{x}_i)^2 = \Sigma_{ii}$$

hence standard deviation of  $x_i$  is  $\sqrt{\Sigma_{ii}}$ 

- covariance between  $x_i$  and  $x_j$  is  $\mathbf{E}(x_i \bar{x}_i)(x_j \bar{x}_j) = \Sigma_{ij}$
- correlation coefficient between  $x_i$  and  $x_j$  is  $\rho_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$
- mean (norm) square deviation of x from  $\bar{x}$  is

$$\mathbf{E} \| x - \bar{x} \|^2 = \mathbf{E} \operatorname{Tr}(x - \bar{x})(x - \bar{x})^T = \operatorname{Tr} \Sigma = \sum_{i=1}^n \Sigma_{ii}$$

(using  $\operatorname{Tr} AB = \operatorname{Tr} BA$ )

**example:**  $x \sim \mathcal{N}(0, I)$  means  $x_i$  are independent identically distributed (IID)  $\mathcal{N}(0, 1)$  random variables

#### **Confidence ellipsoids**

 $p_x(v)$  is constant for  $(v - \bar{x})^T \Sigma^{-1} (v - \bar{x}) = \alpha$ , *i.e.*, on the surface of ellipsoid

$$\mathcal{E}_{\alpha} = \{ v \mid (v - \bar{x})^T \Sigma^{-1} (v - \bar{x}) \le \alpha \}$$

thus  $\bar{x}$  and  $\Sigma$  determine shape of density

can interpret  $\mathcal{E}_{\alpha}$  as *confidence ellipsoid* for x:

the nonnegative random variable  $(x - \bar{x})^T \Sigma^{-1} (x - \bar{x})$  has a  $\chi_n^2$  distribution, so  $\operatorname{\mathbf{Prob}}(x \in \mathcal{E}_\alpha) = F_{\chi_n^2}(\alpha)$  where  $F_{\chi_n^2}$  is the CDF

some good approximations:

- $\mathcal{E}_n$  gives about 50% probability
- $\mathcal{E}_{n+2\sqrt{n}}$  gives about 90% probability

#### geometrically:

- mean  $\bar{x}$  gives center of ellipsoid
- semiaxes are  $\sqrt{\alpha \lambda_i} u_i$ , where  $u_i$  are (orthonormal) eigenvectors of  $\Sigma$  with eigenvalues  $\lambda_i$

example: 
$$x \sim \mathcal{N}(\bar{x}, \Sigma)$$
 with  $\bar{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ ,  $\Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ 

- $x_1$  has mean 2, std. dev.  $\sqrt{2}$
- $x_2$  has mean 1, std. dev. 1
- correlation coefficient between  $x_1$  and  $x_2$  is  $\rho = 1/\sqrt{2}$
- $\mathbf{E} \| x \bar{x} \|^2 = 3$

90% confidence ellipsoid corresponds to  $\alpha = 4.6$ :



(here, 91 out of 100 fall in  $\mathcal{E}_{4.6}$ )

#### **Affine transformation**

suppose  $x \sim \mathcal{N}(\bar{x}, \Sigma_x)$ 

consider affine transformation of x:

$$z = Ax + b,$$

where  $A \in \mathbf{R}^{m \times n}$ ,  $b \in \mathbf{R}^m$ 

then z is Gaussian, with mean

$$\mathbf{E} z = \mathbf{E}(Ax+b) = A \mathbf{E} x + b = A\bar{x} + b$$

and covariance

$$\Sigma_z = \mathbf{E}(z - \bar{z})(z - \bar{z})^T$$
$$= \mathbf{E}A(x - \bar{x})(x - \bar{x})^T A^T$$
$$= A\Sigma_x A^T$$

#### examples:

• if  $w \sim \mathcal{N}(0, I)$  then  $x = \Sigma^{1/2} w + \bar{x}$  is  $\mathcal{N}(\bar{x}, \Sigma)$ 

useful for simulating vectors with given mean and covariance

• conversely, if  $x \sim \mathcal{N}(\bar{x}, \Sigma)$  then  $z = \Sigma^{-1/2}(x - \bar{x})$  is  $\mathcal{N}(0, I)$ (normalizes & decorrelates) suppose  $x \sim \mathcal{N}(\bar{x}, \Sigma)$  and  $c \in \mathbf{R}^n$ scalar  $c^T x$  has mean  $c^T \bar{x}$  and variance  $c^T \Sigma c$ thus (unit length) direction of minimum variability for x is u, where

$$\Sigma u = \lambda_{\min} u, \quad \|u\| = 1$$

standard deviation of  $u_n^T x$  is  $\sqrt{\lambda_{\min}}$ (similarly for maximum variability)

#### **Degenerate Gaussian vectors**

it is convenient to allow  $\Sigma$  to be singular (but still  $\Sigma = \Sigma^T \ge 0$ )

(in this case density formula obviously does not hold)

meaning: in some directions x is not random at all

write  $\Sigma$  as  $\Sigma = [Q_+ \ Q_0] \left[ \begin{array}{cc} \Sigma_+ & 0 \\ 0 & 0 \end{array} \right] [Q_+ \ Q_0]^T$ 

where  $Q = [Q_+ \ Q_0]$  is orthogonal,  $\Sigma_+ > 0$ 

- columns of  $Q_0$  are orthonormal basis for  $\mathcal{N}(\Sigma)$
- columns of  $Q_+$  are orthonormal basis for  $\operatorname{range}(\Sigma)$

then  $Q^T x = [z^T \ w^T]^T$ , where

- $z \sim \mathcal{N}(Q_+^T \bar{x}, \Sigma_+)$  is (nondegenerate) Gaussian (hence, density formula holds)
- $w = Q_0^T \bar{x} \in \mathbf{R}^n$  is not random

 $(Q_0^T x \text{ is called } deterministic \ component \ of \ x)$ 

#### Linear measurements

linear measurements with noise:

y = Ax + v

- $x \in \mathbf{R}^n$  is what we want to measure or estimate
- $y \in \mathbf{R}^m$  is measurement
- $A \in \mathbf{R}^{m \times n}$  characterizes sensors or measurements
- v is sensor noise

common assumptions:

- $x \sim \mathcal{N}(\bar{x}, \Sigma_x)$
- $v \sim \mathcal{N}(\bar{v}, \Sigma_v)$
- x and v are independent

- $\mathcal{N}(\bar{x}, \Sigma_x)$  is the *prior distribution* of x (describes initial uncertainty about x)
- $\overline{v}$  is noise *bias* or *offset* (and is usually 0)
- $\Sigma_v$  is noise *covariance*

$$\begin{bmatrix} x \\ v \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \bar{x} \\ \bar{v} \end{bmatrix}, \begin{bmatrix} \Sigma_x & 0 \\ 0 & \Sigma_v \end{bmatrix} \right)$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} I & 0 \\ A & I \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$

we can write

$$\mathbf{E}\left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}\bar{x}\\A\bar{x}+\bar{v}\end{array}\right]$$

 $\mathsf{and}$ 

thus

using

$$\mathbf{E}\begin{bmatrix} x-\bar{x}\\ y-\bar{y} \end{bmatrix}\begin{bmatrix} x-\bar{x}\\ y-\bar{y} \end{bmatrix}^{T} = \begin{bmatrix} I & 0\\ A & I \end{bmatrix}\begin{bmatrix} \Sigma_{x} & 0\\ 0 & \Sigma_{v} \end{bmatrix}\begin{bmatrix} I & 0\\ A & I \end{bmatrix}^{T}$$
$$= \begin{bmatrix} \Sigma_{x} & \Sigma_{x}A^{T}\\ A\Sigma_{x} & A\Sigma_{x}A^{T} + \Sigma_{v} \end{bmatrix}$$

covariance of measurement y is  $A\Sigma_x A^T + \Sigma_v$ 

- $A\Sigma_x A^T$  is 'signal covariance'
- $\Sigma_v$  is 'noise covariance'

#### Minimum mean-square estimation

suppose  $x \in \mathbf{R}^n$  and  $y \in \mathbf{R}^m$  are random vectors (not necessarily Gaussian) we seek to estimate x given y

thus we seek a function  $\phi : \mathbf{R}^m \to \mathbf{R}^n$  such that  $\hat{x} = \phi(y)$  is near x

one common measure of nearness: mean-square error,

$$\mathbf{E} \|\phi(y) - x\|^2$$

minimum mean-square estimator (MMSE)  $\phi_{mmse}$  minimizes this quantity general solution:  $\phi_{mmse}(y) = \mathbf{E}(x|y)$ , *i.e.*, the conditional expectation of xgiven y

#### **MMSE** for Gaussian vectors

now suppose  $x \in \mathbf{R}^n$  and  $y \in \mathbf{R}^m$  are jointly Gaussian:

$$\begin{bmatrix} x \\ y \end{bmatrix} \sim \mathcal{N}\left( \begin{bmatrix} \bar{x} \\ \bar{y} \end{bmatrix}, \begin{bmatrix} \Sigma_x & \Sigma_{xy} \\ \Sigma_{xy}^T & \Sigma_y \end{bmatrix} \right)$$

(after alot of algebra) the conditional density is

$$p_{x|y}(v|y) = (2\pi)^{-n/2} (\det \Lambda)^{-1/2} \exp\left(-\frac{1}{2}(v-w)^T \Lambda^{-1}(v-w)\right),$$

where

$$\Lambda = \Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{xy}^T, \quad w = \bar{x} + \Sigma_{xy} \Sigma_y^{-1} (y - \bar{y})$$

hence MMSE estimator (i.e., conditional expectation) is

$$\hat{x} = \phi_{\text{mmse}}(y) = \mathbf{E}(x|y) = \bar{x} + \Sigma_{xy}\Sigma_y^{-1}(y - \bar{y})$$

 $\phi_{\rm mmse}$  is an affine function

MMSE estimation error,  $\hat{x} - x$ , is a Gaussian random vector

$$\hat{x} - x \sim \mathcal{N}(0, \Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{xy}^T)$$

note that

$$\Sigma_x - \Sigma_{xy} \Sigma_y^{-1} \Sigma_{xy}^T \le \Sigma_x$$

*i.e.*, covariance of estimation error is always less than prior covariance of x

## Best linear unbiased estimator

estimator

$$\hat{x} = \phi_{\text{blu}}(y) = \bar{x} + \Sigma_{xy}\Sigma_y^{-1}(y - \bar{y})$$

makes sense when x, y aren't jointly Gaussian

this estimator

- is unbiased, *i.e.*,  $\mathbf{E} \hat{x} = \mathbf{E} x$
- often works well
- is widely used
- has minimum mean square error among all *affine* estimators

sometimes called best linear unbiased estimator

#### **MMSE** with linear measurements

consider specific case

$$y = Ax + v, \quad x \sim \mathcal{N}(\bar{x}, \Sigma_x), \quad v \sim \mathcal{N}(\bar{v}, \Sigma_v),$$

x, v independent

MMSE of x given y is affine function

$$\hat{x} = \bar{x} + B(y - \bar{y})$$

where  $B = \Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1}$ ,  $\bar{y} = A \bar{x} + \bar{v}$ 

#### intepretation:

- $\bar{x}$  is our best prior guess of x (before measurement)
- $y \bar{y}$  is the discrepancy between what we actually measure (y) and the expected value of what we measure  $(\bar{y})$

- $\bullet\,$  estimator modifies prior guess by B times this discrepancy
- estimator blends prior information with measurement
- *B* gives *gain* from *observed discrepancy* to *estimate*
- B is small if noise term  $\Sigma_v$  in 'denominator' is large

#### **MMSE** error with linear measurements

MMSE estimation error,  $\tilde{x} = \hat{x} - x$ , is Gaussian with zero mean and covariance

$$\Sigma_{\text{est}} = \Sigma_x - \Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1} A \Sigma_x$$

- $\Sigma_{\text{est}} \leq \Sigma_x$ , *i.e.*, measurement always decreases uncertainty about x
- difference  $\Sigma_x \Sigma_{est}$  gives *value* of measurement y in estimating x
- e.g.,  $(\Sigma_{\rm est~}ii/\Sigma_{x~}ii)^{1/2}$  gives fractional decrease in uncertainty of  $x_i$  due to measurement

**note:** error covariance  $\Sigma_{est}$  can be determined *before* measurement y is made!

to evaluate  $\Sigma_{est}\text{, only need to know}$ 

- A (which characterizes sensors)
- prior covariance of x (*i.e.*,  $\Sigma_x$ )
- noise covariance  $(i.e., \Sigma_v)$

you do not need to know the measurement y (or the means  $\bar{x}$ ,  $\bar{v}$ ) useful for experiment design or sensor selection

#### Information matrix formulas

we can write estimator gain matrix as

$$B = \Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1}$$
$$= (A^T \Sigma_v^{-1} A + \Sigma_x^{-1})^{-1} A^T \Sigma_v^{-1}$$

- $n \times n$  inverse instead of  $m \times m$
- $\Sigma_x^{-1}$ ,  $\Sigma_v^{-1}$  sometimes called *information matrices*

corresponding formula for estimator error covariance:

$$\Sigma_{\text{est}} = \Sigma_x - \Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1} A \Sigma_x$$
$$= (A^T \Sigma_v^{-1} A + \Sigma_x^{-1})^{-1}$$

can interpret  $\Sigma_{\text{est}}^{-1} = \Sigma_x^{-1} + A^T \Sigma_v^{-1} A$  as:

posterior information matrix  $(\Sigma_{est}^{-1})$ = prior information matrix  $(\Sigma_x^{-1})$ + information added by measurement  $(A^T \Sigma_v^{-1} A)$  proof: multiply

$$\Sigma_x A^T (A \Sigma_x A^T + \Sigma_v)^{-1} \stackrel{?}{=} \left( A^T \Sigma_v^{-1} A + \Sigma_x^{-1} \right)^{-1} A^T \Sigma_v^{-1}$$

on left by  $(A^T \Sigma_v^{-1} A + \Sigma_x^{-1})$  and on right by  $(A \Sigma_x A^T + \Sigma_v)$  to get

$$(A^T \Sigma_v^{-1} A + \Sigma_x^{-1}) \Sigma_x A^T \stackrel{?}{=} A^T \Sigma_v^{-1} (A \Sigma_x A^T + \Sigma_v)$$

which is true

### **Relation to regularized least-squares**

suppose 
$$\bar{x}=0$$
,  $\bar{v}=0$ ,  $\Sigma_x=lpha^2 I$ ,  $\Sigma_v=eta^2 I$ 

estimator is  $\hat{x} = By$  where

$$B = \left(A^T \Sigma_v^{-1} A + \Sigma_x^{-1}\right)^{-1} A^T \Sigma_v^{-1}$$
$$= \left(A^T A + \left(\beta/\alpha\right)^2 I\right)^{-1} A^T$$

... which corresponds to regularized least-squares

MMSE estimate  $\hat{x}$  minimizes

$$||Az - y||^2 + (\beta/\alpha)^2 ||z||^2$$

over z

# Example

navigation using range measurements to distant beacons

$$y = Ax + v$$

- $x \in \mathbf{R}^2$  is location
- $y_i$  is range measurement to *i*th beacon
- $v_i$  is range measurement error, IID  $\mathcal{N}(0,1)$
- ith row of A is unit vector in direction of ith beacon

prior distribution:

$$x \sim \mathcal{N}(\bar{x}, \Sigma_x), \quad \bar{x} = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \Sigma_x = \begin{bmatrix} 2^2 & 0\\ 0 & 0.5^2 \end{bmatrix}$$

 $x_1$  has std. dev. 2;  $x_2$  has std. dev. 0.5

90% confidence ellipsoid for prior distribution {  $x \mid (x - \bar{x})^T \Sigma_x^{-1} (x - \bar{x}) \leq 4.6$  }:



**Case 1:** one measurement, with beacon at angle  $30^{\circ}$ 

fewer measurements than variables, so combining prior information with measurement is critical

resulting estimation error covariance:

$$\Sigma_{\rm est} = \left[ \begin{array}{cc} 1.046 & -0.107 \\ -0.107 & 0.246 \end{array} \right]$$

90% confidence ellipsoid for estimate  $\hat{x}$ : (and 90% confidence ellipsoid for x)



interpretation: measurement

- yields essentially no reduction in uncertainty in  $x_2$
- reduces uncertainty in  $x_1$  by a factor about two

**Case 2:** 4 measurements, with beacon angles  $80^{\circ}$ ,  $85^{\circ}$ ,  $90^{\circ}$ ,  $95^{\circ}$  resulting estimation error covariance:

$$\Sigma_{\rm est} = \begin{bmatrix} 3.429 & -0.074 \\ -0.074 & 0.127 \end{bmatrix}$$

90% confidence ellipsoid for estimate  $\hat{x}$ : (and 90% confidence ellipsoid for x)



interpretation: measurement yields

- little reduction in uncertainty in  $x_1$
- small reduction in uncertainty in  $x_2$