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Context/Motivation/Background

Point of view of the European TSOs
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Problem addressed: Reliability management under growing
uncertainties and growing flexibility
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Reliability management (1)

Taking decisions in order to ensure the reliability of the system
while minimizing socio-economic costs

Reliability management

System operationsAsset managementGrid development

Operation planning Real-time operation

Long-term Mid-term Short-term Real-time
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Reliability management (2)

Can be decomposed into two parts:

Reliability assessment: determining the level of
reliability of the system based on a given decision
→ simulation

Reliability control: determine an optimal decision
→ large-scale multi-stage stochastic optimization
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The N-1 Reliability Criterion

A system should be able to withstand the loss of any single component (e.g.
line, transformer, etc.).

X Under “average” conditions, should still work quite well.

Operating quite far from “average conditions” . . .

N-1 over-conservative?
e.g., limiting use of cheap renewables.

N-1 under-conservative?
e.g., adverse weather/major sport events, etc..

N-1 risk averse?
seeking to avoid even “minor” (sometimes tolerable) consequences.

N-1 risk taking?
corrective control while neglecting its possible failure.
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www.garpur-project.eu

Generally Accepted Reliability Principle with Uncertainty
modelling and through probabilistic Risk assessment

Design, develop, and assess new probabilistic Reliability Management
Approaches and Criteria (RMACs)

Evaluate their practical use w.r.t. N-1, in terms of social welfare, data and
computational requirements

Ensure coherency among RMACs used in the contexts of system development,
asset management, and operation
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R1: Generic RMAC formulation
RMAC formulated as a multi-stage decision making problem over horizon 0 . . .T ,
under assumed exogenous uncertainties ξ1...T ∼ (S,P), with candidate policies
u0...T−1 ∈ U , and known state transitions xt+1 = ft(xt , ut , ξt+1).

(these 4 modelling items depend on the considered reliability management context)

(1) Socio-economic objective function over horizon:
maxu E{∑T

t=0(Market surplus - TSO costs - Costs of service interruptions)}
... i.e. the fully orthodox social-welfare optimizer viewpoint...

(2) Reliability target over induced system trajectories:
s.t. P{x1...T (ξ, u) ∈ Xa} ≥ 1− ε

(3) Uncertainty discarding principle:
allows to trim (S,P) to (Sc ,Pc ), provided that approximation in (1) ≤ ∆E .

(4) Relaxation principle:
allows to relax ∆E → ∆E + λ if (2)+(3) yield an unfeasible problem.

See http:www.garpur-project.eu/deliverables D2.2.
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(3) Uncertainty discarding principle:
allows to trim (S,P) to (Sc ,Pc ), provided that approximation in (1) ≤ ∆E .

... to make things possible from the computational viewpoint...

(4) Relaxation principle:
allows to relax ∆E → ∆E + λ if (2)+(3) yield an unfeasible problem.

See http:www.garpur-project.eu/deliverables D2.2.
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R2 - Real-time operation

The context (every 5’ ∼ 15’)

Power injections assumed relatively predictable, but
Uncertainty on:

→ the occurrence of contingencies c ∈ C;

→ the behavior of post-contingency corrective controls b ∈ B.

Variability on weather/market conditions w0, thus:

→ variable contingency & corrective control failure probabilities

(respectively πc (w0), πb(w0)).

→ variable socio-economic severity of a service interruption.

Decisions to:

→ apply preventive (pre-contingency) control u0 ∈ U0(x0) ?

→ prepare post-contingency corrective controls uc ∈ Uc (u0)∀c ∈ C?
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RT-RMAC Proposal (1/4)

uc ∈ Uc(u0)
↓ •

u0 ∈ U0 • •
↓ ↗ • ↗ •
• πc(w0) • πb(w0) •
x0 ↘ • ↘ •

• •
xc •

xbc

1. Reliability target

Avoid “unacceptable trajectories” (e.g., instability, too
large/long service interruptions) with a certain confidence.
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RT-RMAC Proposal (2/4)

2. Socio-economic objective

Combined expectation of reliability mgmt operational costs &
socio-economic severity of service interruptions.

min
u∈U(x0)

{
CP (x0, u0) +

∑
c∈C

πc(w0) · CC (xc , uc)

+
∑

c,b∈C×B

πc(w0) · πb(w0) · S(xbc ,u,w0)

}
.

CP (x0, u0): preventive control cost function,

CC (xc , uc ): corrective control cost function,

S(xbc , u,w0): socio-economic impact of service interruptions.
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RT-RMAC Proposal (3/4)

c ∈ C – by decreasing πc

πc · S(xbc,u, w0)
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RT-RMAC Proposal (3/4)

c ∈ C - by decreasing πc · S(xbc,u, w0)

πc · S(xbc,u, w0)

RC\Cc
(u) ≤ ∆E

3. Discarding principle

Choose Cc ⊂ C, such that residual risk is negligible.
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RT-RMAC Proposal (4/4)

Compact statement

min
u∈U(x0)

{
CP (x0, u0) +

∑
c∈Cc

πc(w0) · CC (xc , uc)

+
∑
c∈Cc

πc(w0) ·
∑
b∈B

πb(w0) · S(xbc ,u,w0)

}
(1)

s.t. P
{

(x0, xc , x
b
c )∈Xa|(c , b)∈Cc × B

}
≥ (1− ε) (2)

while

RC\Cc (u) ≤ ∆E . (3)
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RT-RMAC Algorithms: current status

Reliability assessment: boils down to simulating the severity
resulting from contingencies (and failure modes) by decreasing
order of their probability of occurrence in order to compute
(1) until the bound on ∆E is satisfied, while checking (2).

Reliability control: boils down to a sequence of SCOPF
problems until the bound on ∆E is satisfied, with additional
integer variables modelling the chance constraint (2).

The algorithms have been developed (with the DC- and the
AC-power system models), and tested on IEEE-RTS96.

Real-life implementation of assessment part is currently
under progress in the GARPUR project pilot tests.

Karangelos E. & Wehenkel L., “Probabilistic reliability management approach and

criteria for power system real-time operation”, PSCC-2016, for further details.
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R3 - Asset management

NB: LT=5-30 years; MT= 6-24 months; ST= 6-48 hours; RT= 5-60 minutes
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Two practical problems

In the context of asset management, the Transmission System
Operator (TSO) faces the following two problems:

Long-term maintenance policy selection:
How much and what kind of maintenance to carry
out for the next (say) 20 years, so as to keep the
right components in a sufficiently healthy state?

Mid-term outage scheduling:
When to place component outages issued from
the chosen maintenance policy over (say) one
year, so as to minimize the impact of these
outages on system operation?
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Example

A maintenance policy for a network with two zones, A and B:

uact =

[  repair A1
replace B2
inspect B3

 ,

{
repair A4

inspect B6

}
, . . .

]

ucstr =

[ {
15 MM zone A
20 MM zone B

}
,

{
20 MM zone A
10 MM zone B

}
, . . .

]
(year 1) (year t) (year 20)

In order to assess the impact of such a policy on system
operation, it is necessary to simulate the resulting system
behavior over a set of scenarios covering many years.

To do this, it is also necessary to “automatically” determine
for each year of the study horizon a sensible way of scheduling
the outages required to apply the maintenance policy.
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Maintenance policy assessment model

Long-Term Maintenance 
Policy assessment 

methodology 

Maintenance  
policy 

Reliability/Cost 
Indicators 

Component Models 
 

Ageing/Repairing/Failure 
 

Activities/Logistics/Costs 

Outage scheduling 
Proxy 

(N-1 based) 

D-1 and RT 
operation Proxies 

(N-1 based) 

Uncertainty Models 
 

LT macro-scenarios 
 

MT micro-scenarios 

Reliability Assessment Proxy (GARPUR RMAC based) 
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Short-term proxies

1 micro-scenario described at the hourly time step (for 1 day D) 
 

Contains D-1 market clearing and next-day forecasts, as well as RT realizations for day D 

D-1 operation 
Planning 

 
(1 x N-1 AC-SCOPF 

over 24 hours) 

RT Operation 
 
 

(24 x N-1 AC-SCOPF 
over 1 hour) 

Reliability 
Assessment 

 
(24 x #C post-

contingency OPF) 

D-1 Market clearing 
D-1 Forecasts, 
over 24 hours of D 

D Realizations of 
load, generation, 
and topology 

D VOLL, Contingency 
and C-Ctrl failure 
probabilities 

u(RT) 
u(D-1) 

Costs incurred at D-1 Costs incurred in RT Hourly Expected 
Interruption Costs 
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Outage scheduling problem

Example

On year 1:

Micro-scenariosy
repair A1

replace B2
inspect B3

 −−−→
Outage

scheduling
proxy

←−−−
{

15 MM zone A
20 MM zone B

}
y

Outage schedule:

repair A1 inspect B3 replace B2
| [ ] | [ ] →

0 60 80 200 300 325 days
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Proposed outage scheduling proxy

A set of M micro-scenarios at the hourly time step, for year Y 
 

Contain hourly RT data for day D and hourly D-1 market clearing and forecasts 
 

A set of K maintenance activities to schedule for year Y 

Greedy algorithm using the D-1 and RT proxies (based on N-1) to  
to determine for each activity the ‘least expensive’ period to do it 

 
(uses about M x (K x (365 + K x OD/2)) times these proxies) 

 
 

………. 
 

D-1 operation 
Planning 

 

(1 x N-1 SCOPF 
over 24 hrs) 

RT Operation 
 
 

(24 x N-1 SCOPF 
over 1 hr) 

u(D-
1) 

Costs incurred at D-1 Costs incurred in RT 

D-1 operation 
Planning 

 

(1 x N-1 SCOPF over 
24 hrs) 

RT Operation 
 
 

(24 x N-1 SCOPF 
over 1 hr) 

u(D-1
) 

Costs incurred at D-1 Costs incurred in RT 

An outage schedule for year Y 
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Proposed outage scheduling algorithm

Start

End

Initialize manpower
(MP) resources

Mark all activities
and days

In parallel for each
marked day

In parallel for each
marked activity

In parallel for each
micro-scenario

Compute outage
daily impact

Compute outage
expected daily impact

Compute outage
global impact

Select the activity with
highest global impact

Check MP constraints
to find feasible days

Schedule the activity in
days of lowest impact

All act.
done?

Unmark the activity

Only mark days
affected by the outage

Update MP resources
on marked days

yes

no
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Case study on the IEEE RTS-96

A set of 5 outage requests on transmission lines are scheduled over a
mid-term horizon of 182 days, while using 96 micro-scenarios:

Line o.d. (days)
2 35
6 20

21 42
25 22
27 23
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Case study: Implementation details

A micro-scenario generative model is developed, where
each micro-scenario includes the following uncertaintes:

load forecast and realisation;
hydro-power capacity;
branch and generator forced outages;
market clearing outcome.

The DA and RT proxies are currently implemented using a
DC SCOPF with the N − 1 criterion.

Implementation in JULIA for cluster architectures:

i) using parallel tasks to treat individual micro-scenarios separately;
ii) allowing CPLEX to use CPU-multithreading within each parallel task.

See http:www.garpur-project.eu/deliverables D5.2.
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Case study: iteration (1)

Day

0 28 56 84 112 140 168

pending

Color_code

6

27

25

2

21

Li
n
e

Outage schedule
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Case study: iteration (2)
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Case study: iteration (3)
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Case study: iteration (4)
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Case study: iteration (5)
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Case study: iteration (last)
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Case study: iteration (last)

Day

0 28 56 84 112 140 168

commited

Color_code

6

27

25

2

21

Li
n
e

Outage schedule

Results show that the proposed model:

a) avoids simultaneously scheduling outages that could lead to
a large degradation of system performance, and

b) exploits favorable conditions for maintenance to
simultaneously schedule multiple outages.
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Computational feasibility

Exhaustive search:

1825 × 24× 182× 96 ' 8× 1016 hourly SCOPF calls
1825 × 182× 96 ' 8× 1015 ' 3× 1015 daily UC calls

Proposed greedy algorithm:

(5 + 1)× 24× 182× 96 ' 3× 106 hourly SCOPF calls
(5 + 1)× 182× 96 ' 1× 105 UC calls.

Remains challenging for large-scale systems, even with
massive HPC infrastructure.

Further work needed to speed up the greedy algorithm

Variance reduction and bounding techniques
Use of faster proxies for the short-term processes
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Ongoing works (Russian dolls - 1)

Day-ahead mode RMAC

Choose least costly day-ahead decision so as to make
real-time operation feasible
Needs to cover spatio-temporal uncertainty about
weather and injections for the next day
Models 24 sequential real-time time operation according
to RT-RMAC

Learning proxies of real-time operation

Learning proxies of day-ahead operation planning

See http:www.garpur-project.eu/deliverables D2.2 for problem statement.
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Ongoing works (Russian dolls - 2)

Day-ahead mode RMAC

Learning proxies of real-time operation

Generate training sample of solved RT-RMAC instances
Machine learning to build proxies of cost and feasibility
Exploit proxies in look-ahead reliability management
problems, both for assessment and control

Learning proxies of day-ahead operation planning

See https://matheo.ulg.ac.be/bitstream/2268.2/1374/4/master_thesis_

laurine_duchesne.pdf for first results.
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Ongoing works (Russian dolls - 3)

Day-ahead mode RMAC

Learning proxies of real-time operation

Learning proxies of day-ahead operation planning

Generate training sample of solved DA-RMAC instances
Machine learning to build proxies of cost and feasibility
Exploit proxies in mid-term and long-term reliability
management problems

See http:www.garpur-project.eu/deliverables D5.2 for preliminary study.
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Parallel R&D on Big Data Methods

Machine learning for large scale data-sets

tree-based supervised learning, bayesian networks,
reinforcement learning

Combining search, inference and learning

Variance reduction, MCMC, exploration-exploitation
tradeoff, causal models

How to combine effectively physical models with
observational data, by leveraging simulation,
optimization and learning?

See https://vimeo.com/album/3275353/video/120523455 for a talk on this subject
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Thank you !

Questions ?
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