Almaden, May 1999 (adapted from IPMU’ 92, Palma de Mallorca, July 6-10, 1992)

A global tree quality measure

and its use for pruning

Louis WEHENKEL
Department of Electrical Engineering - University of Li ege

Contents

1. Problem formulation

2. DT as a class-probability model

3. Global quality measure for inductive inference of DTs
4. DT Pruning

5. Discussion

http://www.montefiore.ulg.ac.be/~lwh/
Louis Wehenkel
Seminar given to the Data Mining research group at IBM (ARC, San Jose)

Spirit of presentation

Derive quality measure from Bayesian principles
Relation with MDL principle
Relation with other stuff in DT induction

Analyse guality measure and derive pruning algorithm(s)

J. Rissanen (1978, 83), R. Sorkin (83), J. Segen (85), CART (85), P. Cheeseman
(88)

Quinlan & Rivest (89), W. Buntine (90,92), J. Rissanen et al. (1995)

1. Problem formulation

Learning from examples

Given a learning set of objects LS = {o1,...,0xn}, Where each object is de-
scribed by n attribute values a(o) = (a1(0),...,an(0)), and belongs to a known
class c(o) € {c1,...,cm}-

= Build a model (in the form of a DT) to infer the class of an object from the knowl-
edge of its attribute values.

Difficulty

Generalization to unseen objects required.

= Compromise between precision (learning set fit) and reliability (unseen objects).
= Control of the DT complexity.

= Stop-splitting and/or pruning.

2. DT : model for conditional class-probabilities

Test nodes N :
- segmentation of the attribute space {a(0)|Vo} into a hierarchy of subregions.

Terminal nodes N (regions) :
- conditional class-probability vectors P(c;|a(o) € N).

B P(Unstable | Node) (LS)
B ~(stable | Node)

Pe(Node) (TS)
B 1 - Pe(Node)

Decision tree building (classical)

e Define a set of candidate tests (partitions) for each (type of) attribute.
e Build DT in a greedy top-down approach =- recursive partitioning

e Select tests to " class purity of successors.

e Stop splitting at a (local) maximum of quality.

e If no other information is available, estimate probabilities from the LS.

local

Classical local quality measure

Entropy in a subset (node) N : Ho(N) = <Y, p(¢;|NV) logs p(c;|N).

p(c;|) : determined by frequency counts of classes of objects belonging to N

e The lower conditional entropy the better the tree.
e The simpler the tree the better.

= greedy selection of tests is reasonable (ID3).

But, the approach does not account for the increase in complexity.
Not ok, if variable branching factors of candidate tests.

Unable to tell when to stop splitting.

3. Global quality measure for inductive inference of DTs

Account for complexity.
—=-Generalize to variable branching factors.
= Stop splitting criterion.

=-Pruning criterion.
Bayesian formulation

Denoting by

- ¢(LS) the observed classes in the learning set

- P(c(LS)) the probability of this observation as predicted by prior information
- P(c(LS)|DT) the probability of this observation as predicted by the DT

- P(DT) the prior probability that DT is “the good one”

P(c(LS)|DT)*xP(DT)

We have (Bayes rule) : P(DT|c(LS)) = P(c(L9))

Quality measure

log P(DT|c(LS))
log P(c(LS)|DT) <log P(c(LS)) + log P(DT)

Q(DT; LS)

Discussion:

- the term log P(c(L.S)) does not depend on DT (see later why we keep it)
- log P(DT') ~ number of bits in optimal tree code

-log P(c(LS)|DT) ~ number of bits in optimal class code

- log P(c(LS)) ~ number of bits in optimal class code

Conclusion:

-Q(DT; LS) > 0 < DT achieves data compression
- the larger the Q(DT; LS), the better

- How to define (compute) DT priors ?
- How to maximize quality given the priors ?

Defining priors P(DT') ?

Constant priors within a certain set of candidate DTs
(= leads to maximume-likelihood principle = ID3)

Universal priors...
Subijective priors

Should reflect the fact that simpler trees are preferable
= relies on the definition of complexity measure C'(DT)
= trees of same complexity are of same P(DT)

=

Because number of candidate DTs increases exponentially with complexity

Details of derivation of priors (maximum entropy principle)

Suppose that P(DT) = f(C(DT)).

Define : .
P(C) = X(pric(pr)=c} P(DT)
N(C) = [{DT|C(DT) = C}|
= P(DT) = —]I\Df%g))

For different assumptions make sense (e.g.)

1. Bounded complexity : P(C) = ﬁ if C < cMaX p(c) = 0if ¢ > cMax

2. Known expected complexity : P(C) x exp—PC (here 8 \, when E{C}).
For we assume that N(C) x exp?©

= P(DT) x exp—4¢(DT) js a reasonable choice

10

Defining the DT complexity measure

Complexity measure should be compatible with the recursive structure of DTs

= measure
In other words : complexity of DT = sum of complexities of subtrees

We choose :
Complexity = linear in number of terminal nodes

Complexity of trivial tree = 0 = C'(DT) = number of terminal nodes - 1

= log P(DT) = <qC(DT) + qo (we will drop the constant gg)

11

Some notation and comments before the rest

a(o) denotes the attribute vector observed for object o
L(a) the terminal node reached by attribute vector a (c(a) € {£1, ..., s}, k = C(DT) +1)
L (o) stands for L(a(0)) (depends only on a(0))

S(N) is the subset of objects in S which reach the node N of a DT
(topology and tests) = function £(-) :a+ L(a) € {Lq1,..., L}

c(o) € {c1,...,cm} denotes the class observed for object o.

P(c(0)|DT) denotes the probability of c(o) to happen according to the DT
= DT structure + class probabilities attached to each node
But, only the terminal nodes are important in terms of modeling :

= P(c(0)|DT) = P(c(0)|L(0)) (probability model)
12

Maximization of tree quality

Choose tree structure (I.e. topology + tests) and conditional probabilities at each
terminal node so as to maximize

Decompose the problem in two parts :

1. For a given structure determine conditional probabilities at terminal nodes

2. Determine optimal structure

13

Optimal conditional probabilities

e C(DT) does not depend on conditional probabilities

= for fixed structure, maximize w.r.t. conditional probabilities

e Assuming P(c(LS)|DT) = [l,ecr,s P(c(0)|DT) (independent observations)
= optimal P(c(o)|DT) is of c(o) iIn LS(L(0))

Denoting by LS; = {0 € LS|c(0) = ¢;} and by Nij = |LS;(L;)]
and by N; = ZJNJ N —ziNf,andN—ziszf
NJ

the optimal choice imposes P(cz|£) = ﬁ

14

The optimal structure

e Assuming conditional probabilities are chosen optimally, we have to maximize

&9C(DT) = <qC(DT)

But for all o € LS;(L;) we have P(c(0)|DT) = P(c;|£;) hence the term is

N]

Y ENlog g = NE G S Aioa N

e Assuming independence and that P(¢;) = % we have

&log P(c(LS)) = <>) log % — NZ “log % = N x Ho(LS)

1 0o€LS;
— Structure optimization amounts to maximize

I§Y = Ho ©Hg pris the quantity provided by DT

15

Quality of trivial tree = 0. (both Info and complexity are equal to zero).
Foragiven DT, [q /] = [Q'(DT;LS) \]
of Q'(DT; LS) : because C(DT) and I51 are additive

LS =LS

Pruned subtre®T1”

Notation :
DT = DT’ —|—N DT"
= Q(DT;LS) =
Q(DT',LS") + Q(DT",LS")

16

DT search space (D7)

DT is the set of candidate DT structures considered for inductive inference.

Examples : DT growing space; DT pruning space (see later)

(normally hold for growing and pruning):

1. Expandability : VDT € DT, 3IDT’ € DT suchthat DT’ can be reached by
expanding a terminal node of DT (except if DT of maximal complexity)

2. Closure w.r.t. pruning : VDT € D7, all its pruned subtrees are in DT
(in particular the trivial tree)

Decomposability : any pending subtree of an optimal tree is optimal...

Positivity : optimal tree and all its pending subtrees have positive quality

optimal tree size decreases

Monotonicity : if g increases = { optimal tree quality decreases

17

Visualization of search space D7

'\ NIZT(LS)

NHq(LS)| smallest ‘pure’ DT

optimal

- Cadd=aDTs

e Best DT of given complexity
monotone (assumption 1)

optimal

DT for ¢»
—————— Maximal quality curve
for different values of g

g2 > q1
//@‘3/ - (convex hull of &)
e Trivia DT
C(DT)

e EXpansion increases Info; pruning decreases Info
e Usefull g values € [g¢; q].
e Above g optimal trees are trivial; below g optimal trees are ‘pure’

e Number of critical q values upper bounded by complexity of smallest ‘pure’ DT.
18

Exploitation

Search space is huge, and unfortunately we don’t know how to define operators
to search only in the vicinity of the tradeoff curve.

But, given the good results obtained with greedy methods, there is a good chance
that this type of search actually searches the neighborhood of tradeoff curve.

Stop-splitting rule : stop as soon as there is no search operator which would lead
to increase in quality.

(see below)
A. if g Is known : direct recursive algorithm to maximize Q.

B. if ¢ is unknown : direct recursive algorithm to generate all DTs on tradeoff curve

+ cross-validation to select ‘good’ one.
19

4. DT pruning

Problem 1 : value of ¢ is given

Given a DT, a LS and a value of ¢, extract a pruned subtree of maximal quality, by
replacing the appropriate pending subtrees of the DT by terminal nodes.

Solution
Backward, bottom up recursive algorithm.
1. If trivial DT, then already “optimal”.
2. Otherwise, first prune the subtrees of its root node.
3. If resulting tree has positive quality, then it is optimal, otherwise

prune it by contracting the root node.

20

Note . Forward pruning

Alternative algorithm.

1. Progress downwards the tree, from its root to its
terminal nodes.

2. Contract a test node as soon as its own local
guality iIs non-positive.

In the case of 2 classes and fixed branching factor, equivalent to the y<square
hypothesis testing approach used for stop splitting, using the G<statistic.

= Provides a ground for choosing ¢ (or «).
But suboptimal, since doesn’t look ahead.

Often (for appropriate ¢ values) equivalent to backward (optimal) pruning.
21

A QUALITY Forward

pruning

Effect of the value of q.

y

q=0

Growing

N\

Necccccccccsccce

Typical quality variations
during tree growing and
pruning.

COMPLEXITY
=

Pruning sequences |- Growing DT sequence =====e==- >

e For backward and forward pruning, and
e for every g growing from O to oo,

e generate the corresponding optimally pruned DT

22

Problem 2 : value of g is unknown
1. Consider “special” search space : space of all pruned subtrees of DT'.

A NIPT(LS)

G
SEE O

el

S
Tt
2

%
25585
SRS

25

SRR
ST
e e ietn s s
S S e T e S T i Sty
RS IR RIL e
e e er s
I,

b sttty
L

£
g

%

joteses
s
o

R

!
s
bt
25
FoSotateteteds!
S
bt 5
5 5%
i

atetete:
SRS
P

ettt
Fotareterets

e
e
s

£5050
Stetetete

4

S
ST

S

e,
25

255
55455
S,
2505

2505
25
Jtratatetatets!

e

25
S
ot

i
25

i
5255

L
et
325055

5558
00000’:’00:::::”
Tttt

SIS,
RS

250

2505

2505
stete!
Tty

55

-
%
Qp
o
55

I
o
e

<
IoTatatae e oo e e e e tetes
SO %
S5
¥
<
250505
{50050
S

{5
%

255
sttty

steletotele!

%
bols
o
4
%
355
%

o
o

G
e

2
e
e
it
&5
!

e
prossletetes

LI
SIS
K R KK

S

o

byt
byt
KRS
3%

% o
e

S5

ety
stelelotele!
555
e
iyt

L
a
325

25
50505

byt
5
o
S
L

o
4

G
2505

2805
S

by
5
oy

i
Jateeteteres
iy

<3

2

4
o

jo

<8
o

L
o

S
e

O
2525
ialeely,
s
2525258

=
e
L

o
gﬁ&&p.
S
4
120!
%
555

bty
:4%%0¢
!
L
e
b

e
<5
S

o

R,
00:0000 o
’QQ&gooo
00%&&&

Candidate pruned subtrees

Tt
05050
Boatatatets!
S
ittty

e Best DT of given complexity
monotone (assumption 1)

7 X7\ Pruning sequence

.
C(DT)

Trivia DT

2. 1 efficient recursive algorithm to generate trees on tradeoff curve
3. Test the trees on tradeoff curve using independent test set...

23

Properties

At most #N; different trees corresponding to sequence of critical g values.

The pruned trees form a decreasing sequence of trees.

Recursive generation of pruning seguence
Root

" Generate sequences recursively

/ Then merge (interleave critical ¢ values)

Then sweep through sequence sorted by increasing value of q
update taking into account root, until root is contracted
replace tail of sequence by entry corresponding to trivial tree

24

How to choose ¢ ?

Note. Does not depend on LS size, but is application specific.

Method 1.
Fix a priori (in the range of [10 ...15]). Identical to fix a non-
detection risk « for hypothesis test. (¢ ~ 10 < a ~ 10™%)

Method 2.
On the basis of independent test set. E.g. value maximizing DT
reliability w.r.t. unseen test states.

Generally method 2 is used to tune ¢ to the application specifics. Subsequent
trees are pruned using method 1, not requiring a TS.

Computational Efficiency

E.g. <1sona300MHz ULTRASPARC workstation for the generation (and testing)
of the complete pruning sequence of a DT of 1000 nodes.
25

5. Discussion

- Close to classical entropy criteria, hypothesis tests...
- Takes into account complexity and prior information
- Allows to compare trees obtained by different methods

- Can be used for tree averaging

- Nice theoretical properties
- Algorithms, analogies

- Acceptable for various types of interpretations

- Other structures, other complexity measures (e.g. test-complexity...)

- Regression trees

26

