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Probabilistic Reliability Management: Stakes and Sub-problems

Part I

Probabilistic Reliability Management:

Stakes and Sub-problems

Reliability Management

Reliability Assessment vs Reliability Control
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Probabilistic Reliability Management: Stakes and Sub-problems

Electric power system reliability

Requirement:
At sub-second temporal resolution, balance
generation/storage/consumption, under network constraints, in
spite of various threats

Threats faced:
Variations of generation and demand, weather conditions
Component failures, human errors, adversarial attacks

Problems to avoid:
Component overloads, voltage or frequency deviations
Cascading overloads, instabilities, blackouts

Opportunities:
Optimisation and control of flows closer to real-time
Preventive maintenance and planning of operation
Adaptation of the grid structure to market needs
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Probabilistic Reliability Management: Stakes and Sub-problems

Reliability management contexts

Taking decisions in order to ensure the reliability of the system
while minimizing socio-economic costs

Reliability management

System operationsAsset managementGrid development

Operation planning Real-time operation

Long-term Mid-term Short-term Real-time
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Probabilistic Reliability Management: Stakes and Sub-problems

The currently used N-1 Reliability Criterion (since 50 years)

“The power system should at any time be able to seamlessly withstand the
spontaneous disconnection of any single component (e.g. line, transformer, etc.).”

But N-1 can be over-conservative:
e.g., limiting use of cheap renewables.

... can be under-conservative:
e.g., adverse weather/major sport events, etc..

... can be risk averse:
seeking to avoid even “minor” (sometimes tolerable) consequences.

and N-1 can be risk taking!
incetivizes corrective control while neglecting its possible failure.

Need to move towards Probabilistic Reliability Criteria

“To enable the optimization of the overall expected socio-economic performance.”

New models need to be developed

More complex decision making problems need to solved
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Probabilistic Reliability Management: Stakes and Sub-problems

Two 6= types of reliability management sub-tasks

Reliability assessment (ex ante):
Determine the expected level of reliability for a given future
period of time and for a certain geographical area
→ large-scale stochastic simulation problem

Reliability control:
Determine an optimal set of decisions to take in order to
ensure a desired level of reliability over a given time period
and for a certain geographical area
→ large-scale multi-stage stochastic optimisation problem

NB: Both tasks need a suitable physical model of the system and suitable

uncertainty models of the exogenous factors acting on it over the

considered time period and geographical area.
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Machine Learning for Reliability Assessment

Part II

Machine Learning for

Reliability Assessment

Reliability assessment:
Determine the expected level of reliability for a given future period
of time and for a certain geographical area:

Real-time mode (minutes)

Short-term look-ahead mode (hours, days)

Longer-term look-ahead problems (months, years)
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Machine Learning for Reliability Assessment

Reliability Assessment in Real-Time Mode (Objectives)

Every 5 minutes, based on the real-time situation xrt , assess risk induced
by contingencies that could occur over the next hour.

Based on data and models (we stress dependence on xrt):

C (xrt), πc(xrt , c): set of contingencies and their probabilities
fcr (xrt , c): measure of the severity of contingency c in state xrt

We want to asses the expected impact of possible contingencies:

E{fcr |xrt} =
∑

c∈C(xrt)
πc(xrt , c)frt(xrt , c)

(e.g. expected cost of service interruptions)
P{fcr > η|xrt} =

∑
c∈C(xrt)

πc(xrt , c)1(fcr (xrt , c) > η)

(e.g. probability of large service interruptions)

Remarks:

Real-time situation: defined by exogenous and endogenous info
Contingencies: big set of external and/or internal threats
Contingency response: PF, OPF, time-domain simulation. . .
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Machine Learning for Reliability Assessment

Machine Learning for power systems (in general)
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Machine Learning for Reliability Assessment

Opportunities for Machine Learning (in Real-Time mode)

Practical facts:

The evaluation of the contingency response function fcr (xrt , c)
is generally expensive in CPU time.
Still, this function will be evaluated as often as possible by
TSO, yielding growing datasets D = {(x irt , c i ), fcr (x irt , c i )}···i=1

Supervised Machine Learning Paradigm:

From a sample D of input-output pairs {(z i , y i )}ni=1, we can
learn a function h(·) such that |h(z)− y | is small on average.

Application to Real-Time Reliability Assessment:

Learn a “regression proxy”: hregr(xrt , c) ≈ fcr (xrt , c)
Learn a “classifier proxy”: hclass(xrt , c) ≈ 1(fcr (xrt , c) ≥ η)

The underlying assumptions are as follows:

h-proxies are much faster to evaluate than fcr (xrt , c)
It is possible to learn accurate enough h-proxies
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Machine Learning for Reliability Assessment

Example: Voltage stability / French system (circa 1993)
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Machine Learning for Reliability Assessment

Example: Database generation by Monte-Carlo simulation
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Machine Learning for Reliability Assessment

Prediction of contingency severity
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Machine Learning for Reliability Assessment

ML for RT reliability assessment (practically)

How often to apply ML to refresh the proxies

On the fly in real-time
Ahead in time

How to gather the datasets used for learning the proxies

Passively, by exploiting data generated by EMS platforms
Actively, by using Monte-Carlo approaches

How to use the tool-box of available ML techniques

Interpretability
Computational performances (learning and prediction)
Accuracy

How to use the learnt proxies hr ,c

Stand-alone mode
Together with “exact” simulator of fcr
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Machine Learning for Reliability Assessment

Software framework

16



Machine Learning for Reliability Assessment

Further readings and developments

Literature of the late 1990’ies

Wehenkel, Louis. ”Contingency severity assessment for voltage security
using non-parametric regression techniques.” IEEE Transactions on Power
Systems 11.1 (1996): 101-111.
Wehenkel, Louis A. Automatic learning techniques in power systems.
Springer Science & Business Media, 2012 (first published in 1998)

More recent machine learning methods

Random forests and kernel based methods
Gaussian processes
Probabilistic graphical models
Deep neural networks

iTESLA European FP7 project: Machine Learning for Dynamic
Security Assessment

GARPUR European FP7 project: Probabilistic reliability
management
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Machine Learning for Reliability Assessment

Reliability Assessment in Look-ahead Mode (Ideally)

Every day (or every few hours), based on probability model P{x t0···tf
rt } of

trajectories of situations that could show up next day (next hours),
evaluate the risk induced by these situations.

Data and model:

x trt = (ξtrt , u
t
rt(ξ

t
rt), crt(ξ

t
rt , u

t
rt(ξ

t
rt))), where ξtrt is exogenous

(weather, demand, market . . . ), while the endogenous parts
are results of the real-time reliability management process

We want to assess expected outcome of real-time operation:

E
{∑tf

t=t0
crt(ξ

t
rt , u

t
rt(ξ

t
rt))
}

P
{∑tf

t=t0
crt(ξ

t
rt , u

t
rt(ξ

t
rt)) ≥ M

}
Remarks:

Exogenous uncertainties ξ
t0···tf
rt are modelled as spatio-temporal stochastic

processes conditioned on available information in look-ahead mode
Policy utrt(ξ

t
rt) models how the real-time operator will behave in real-time

Function crt(ξtrt , u
t
rt(ξ

t
rt)) expresses the resulting cost per time step of

real-time reliability management
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Machine Learning for Reliability Assessment

Opportunities for Machine Learning (in Look-ahead mode)

Look-ahead mode probabilistic reliability assessment could be
solved by Monte-Carlo simulation. Various possibilities exist to
make such a process more effective and practical.

Better models of P{ξt0···tf
rt |info available in look-ahead mode}

from observational datasets, from TSO and DSO
using unsupervised learning, e.g. convolutional GANs ?

Learning about real-time operation strategy utrt(ξ
t
rt) and/or crt(ξ

t
rt)

from observational datasets collected by SCADA and EMS
from simulations

Reducing the number of required Monte-Carlo samples to estimate

E
{∑tf

t=t0
crt(ξtrt , u

t
rt(ξ

t
rt))

}
(Variance reduction via control variates, and/or importance sampling)

P
{∑tf

t=t0
crt(ξtrt , u

t
rt(ξ

t
rt)) ≥ M

}
(Rare event simulation via importance sampling)
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Machine Learning for Reliability Assessment

Example: Machine Learning for Day-ahead reliability
assessment

Based on ongoing work at ULiège.

For further details, please see

Machine Learning of Real-time Power Systems Reliability
Management Response, L. Duchesne et. al, IEEE PowerTech 2017

Using Machine Learning to Enable Probabilistic Reliability
Assessment in Operation Planning, L. Duchesne et. al, PSCC 2018
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Machine Learning for Reliability Assessment

Day-ahead learning of RT operator response (PowerTech 2017)

DA operation 
planning

Monte-Carlo 
Simulations

Real-time 
operation

Database

DA decisions

Realisations

Forecast

DA uncertainty 
models inputs outputs

Trajectories

Trajectory generator

4000 samples of uncertainty realizations ξrt along next day (load, wind, outages)

Real-time operation simulated by N-1 DC-SCOPF per time-step and trajectory

Inputs: DA decisions per time-step, ξrt per trajectory and time-step

Outputs: the different terms of the cost function crt , including risk E{frt |ξrt , urt}
of service-interruptions upon contingencies, per trajectory and per time-step.
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Machine Learning for Reliability Assessment

Some Machine Learning results (PowerTech 2017)
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Machine Learning for Reliability Assessment

Some Machine Learning results (PowerTech 2017)
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Machine Learning for Reliability Assessment
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Machine Learning for Reliability Assessment

Synthesis (PowerTech 2017)

Machine learning can be used day-ahead to build “proxies” ĉrt of the
different terms of crt incurred in real-time reliability management.

Computationally, evaluating ĉrt is about 10000 times faster than the
“exact” evaluation of crt via SCOPF and contingency simulation

Random forests and Neural networks are promizing and
complementary tools in this context

Some terms of ĉrt are more difficult to learn than others, in
particular the expected risk induced by contingencies

Open questions for further work:

Leverage deep learning to improve accuracy of proxies ĉrt
Use of machine learning to model the RT decision policy urt
Use of learnt proxies ĉrt for day-ahead reliability assessment
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Machine Learning for Reliability Assessment

Use of ML-proxies for DA reliability assessment (PSCC 2018)

Problem tackled:

Given two computer programs

a generative model allowing us to sample possible next day
trajectories according to P{ξt0···tf

rt |day ahead info}
and a SCOPF solver allowing us to compute operating costs
Crt(ξrt) =

∑24
t=1 crt(ξ

t
rt) along any trajectory

Compute an estimate of E{Crt |day ahead info}

Crude Monte Carlo (CMC) approach:

Sample n trajectories ξirt ∼ P{ξt0···tf
rt |day ahead info}

Compute C̄rt = 1
n

∑n
i=1 Crt(ξ

i
rt) = 1

n

∑n
i=1

∑24
t=1 crt(ξ

t,i
rt )

Needs large sample size n (a few thousand) to be accurate enough

Requires 24× n SCOPF computations
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Machine Learning for Reliability Assessment

Use of ML-proxies for DA reliability assessment (PSCC 2018)

We could (naively) use Machine Learning as follows:

Machine learning stage:

Sample k � n trajectories ξirt and use SCOPF to compute the

corresponding k × 24 values of crt(ξ
i,t
rt )

Use a supervised learning algorithm to build proxy ĉrt(·), much
faster to evaluate than SCOPF

Use CMC with proxy

Sample n′ � n additional trajectories and use proxy to

compute ¯̂Crt = 1
n′

∑n′

i=1

∑24
i=1 ĉrt(ξ

i,t
rt )' E{Ĉrt |day ahead info}.

Unfortunately, this later quantity is in general not equal to
E{Crt |day ahead info}

Its bias depends both on the problem and on the used machine
learning algorithm, and is therefore unpredictable.
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Machine Learning for Reliability Assessment

Use of ML-proxies for DA reliability assessment (PSCC 2018)

Combining Machine Learnt proxies with Control Variate approach:

First do as in the previous slide:

Learn proxy ĉrt(·) with k trajectories
Estimate E{Ĉrt |day ahead info} with large n′ trajectories.

Then estimate E{Ĉrt |day ahead info} − E{Crt |day ahead info}
Sample k ′ additional trajectories

Compute ∆̄ = 1
k′

∑k′

j=1

(
Ĉrt(ξ

j
rt)− Crt(ξ

j
rt)
)

Estimate E{Crt |day ahead info} ' E{Ĉrt |day ahead info} − ∆̄

This latter estimate is always unbiased

For a given budget of (k + k ′) trajectories solved via SCOPF, it is
typically more accurate than CMC with n = k + k ′ trajectories

27



Machine Learning for Reliability Assessment

Case study: 3-area RTS system (PSCC 2018)

NB: modified by including lots of wind power plants
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Machine Learning for Reliability Assessment

Crude Monte-Carlo approach (PSCC 2018)

0 500 1000 1500 2000

Number of trajectories

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

µ̂y

×10
6

For n = 2400 trajectories:

Estimate = 1.44 106

Std.error = 2 104 = 1.4%

Operating cost for one trajectory: 24 successive DC-SCOPF computations

Sample n = 2400 trajectories, and estimate expectation by sample average

Standard error is estimated by σ/
√
n, σ being the sample standard deviation
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Machine Learning for Reliability Assessment

Naive use of Machine Learnt proxy (PSCC 2018)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Number of trajectories ×10
4

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

µ̂yp

×10
6 LS = 850, NN

For n′ = 20000 trajectories:

Estimate = 1.42 106

Std.error = 4 103 = 0.3%

Proxy of hourly operating cost learnt on k = 850 trajectories, using ANN

Estimate expectation via much larger sample, by using only the proxy

Unfortunately, using the proxy we get a biased estimate (by about 1.4 %)
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Machine Learning for Reliability Assessment

Use of ML proxy as a Control Variate (PSCC 2018)
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Number of trajectories

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

µ̂
yp
y

×10
6 ET

0 500 1000 1500

Number of trajectories

1.34

1.36
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1.4

1.42
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1.46
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1.5
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µ̂
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y

×10
6 NN

Estimate = 1.44 106

Std.error = 1 104 = 0.7%

Proxy learnt on k = 850 trajectories, using resp. ET or ANN

Estimate on k ′ up to 1550 additional samples by the control variates approach

Yields unbiased estimate of reduced std.error (factor 2), for same SCOPF budget
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Further refinement: Stacked Monte-Carlo (PSCC 2018)

0 500 1000 1500 2000

Number of trajectories

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

µ̂
SMC
y

×10
6 Stacked MC (NN)

Estimate = 1.44 106

Std.error = 5 103 = 0.35%

Yields unbiased estimate of reduced std.error by a factor 4

Uses SCOPF budget in a more effective way to reduce both bias and variance

See paper for explanation of the method
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Synthesis (PSCC 2018)

Machine learning can be used in a sound way to significantly speed
up day-ahead reliability assessment under uncertainties

Computationally, a speed-up of a factor 10-20 with respect to a
crude Monte-Carlo approach is certainly reachable

Further leveraging deep neural networks may help to make the
approach even more effective

Open questions for further work:

Adaptation of the proposed framework for estimating
probabilities of rare events P

{∑tf
t=t0

crt(ξ
t
rt , u

t
rt(ξ

t
rt)) ≥ M

}
Combination of this approach with appropriate techniques for
finding suitable day-ahead decisions
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Reliability Assessment in mid/long-term modes (Ideally)

Maintenance optimization and system development contexts

Look-ahead horizons: months to years; years to decades

Complexity multiplied by 8800 hrs × 30 years

Uncertainty models even more complex to establish

Many opportunities for Machine Learning...
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Part III

Machine Learning for

Reliability Control

Reliability control:
Determine an optimal decision u∗ to take in order to ensure a
desired level of reliability over a given time period:

Real-time mode

Short-term look-ahead mode

Longer-term look-ahead problems
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Possible Optimal Control Approaches

Analytical approach: formulate equations and solve them to
near-optimality; it is the realm of mathematical optimization; needs
lots of approximations to be tractable.

Brute force “Trial and error” approach: using ’Reliability assessment
module’ as an oracle: can work well when small number of
alternative decisions have to be compared; can exploit further ideas
of variance reduction and machine learning.

Off-line policy search: create structured space of candidate decision
policies, and sample them together with scenarios used to assess by
simulation the candidate policies. Interleave policy search steps and
proxy-learning steps in a suitable way.

On-line reinforcement learning approach: interleave learning and
decision making, while taking advantage of simulators and proxies
designed ahead in time.
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Some further bibliographical pointers

P. Panciatici, G. Bareux and L. Wehenkel

Operating in the fog - Security management under uncertainty
IEEE Power & Energy Magazine, 2012, September/October, 40-49

E. Karangelos, P. Panciatici and L. Wehenkel

Whither probabilistic security management for real-time operation of power systems ?
Proc. of IREP Symposium, Rethymnon 2013

E. Karangelos and L. Wehenkel

Probabilistic reliability management approach and criteria for power system real-time operation
Proc. of PSCC, Genoa 2016

E. Karangelos and L. Wehenkel

Probabilistic reliability management approach and criteria for power system short-term operational planning
Proc. of IREP Symposium, Porto 2017

L. Duchesne, E. Karangelos, and L. Wehenkel

Machine learning of real-time power systems reliability management response
Proc. of IEEE PowerTech, Manchester 2017

L. Duchesne, E. Karangelos, and L. Wehenkel

Using machine learning to enable probabilistic reliability assessment in operation planning
Proc. of PSCC, Dublin 2018

E. Karangelos, and L. Wehenkel

Post-contingency corrective control failure: a risk to neglect or a risk to control?
Proc. of PMAPS, Boise 2018

Available on-line at: http://orbi.ulg.ac.be/simple-search?query=wehenkel
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