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Overview of (irreversible) image compression

• Motivations

• Image representations

• Sources of redundancy

• Image compression systems

• Brief introduction to wavelets
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Motivations for image compression (and to some extent for sound compression)

Avantage of digital image representations : immunity to noise

Disadvantages : huge volumes of data if not compressed

Examples

A high resolution image= some MB.

A video sequence :≈ 20 images/s : 1minute≈ 1GB.

Present day image compression techniques

⇒ compression rates→ 100.

⇒ makes possible what would be impossible otherwise.

⇒ image processing : one of the most used techniques in many fields (more and more).

⇒ Multimedia DB, medical applications, legal, digital archives...
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What’s a (monochrome) image ?

x

y
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Mathematical model

Positive, real-valued function of two arguments

f(x, y) : [0, xmax] × [0, ymax] −→ [0, fmax],

Sampled version :

f(x, y) = N × M matrix : x = line index,y = column index.

NB: to simplify N × N . ((x, y) = pixel)

Discretized (quantized) version :f(x, y) = integer number with fixed number of bits.

Examples: photo, a component of a color image, a function of two variables (scalar
field)

Stochastic image models

They exist (e.g. Markov fields), but we will not talk about them
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Image transforms

NB: generalization of the Fourier transform

Goal: represent image in a way well suited for a class of operations.

E.g.: Fourier transform “makes easy” linear operations (convolution).

Here: goal= facilitate data compression (reversible or irreversible).

Reminder (in the temporal domain = unidimensional, sampled)

t(w) =
N−1
∑

t=0

f(t)g(t, w)

g(t, w) = kernel (family ofN basis functions indexed byw)

Inverse transform (when it exists)f(t) =
∑N−1

w=0 t(w)h(t, w).

IT 2000-6, slide 5



Vector representation :

g(t, w) = N × N matrix,f(t) andt(w) line vectors.

⇒ transformation = matrix product

t = fG, f = tH ⇒ H = G−1

Orthogonal Bases : orthogonal matricesG−1 = GT .

In the complex case :G−1 = G∗.

⇒ transformation = change of basis

NB: continuous case
∑N−1

0 →
∫ T
0 ...

Anyway : transformation =linear operation
⇒ transform of linear combination = linear combination of transforms.

Physical interpretation :

t(w) measures similarity off(t) andg(t, w) (analog to dictionary match)
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Generalization to images

The transformG of an imagef(x, y) (dimensionsN × N ) usingkernel g(·, ·, ·, ·) is
the new imageN × N

G(f) = T (u, v) =
N−1
∑

x=0

N−1
∑

y=0

f(x, y)g(x, y, u, v). (1)

The transform is non-singular, and has an inverse transformH which kernel ish(·, ·, ·, ·),
if ∀f(x, y)

f(x, y) = H(G(f)) = H(T ) =
N−1
∑

u=0

N−1
∑

v=0

T (u, v)h(x, y, u, v). (2)

The functionsg(i, j, ·, ·) and h(·, ·, i, j) may be interpreted as a set ofN2 “basis
functions” in a series expansion.
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Construction of image transforms

Kernelg(·, ·, ·, ·) is separable ifg(x, y, u, v) = g1(x, u)g2(y, v).
It is said to be symmetric if we can takeg1(·, ·) = g2(·, ·). (Same forh)

⇒ Multi-dimensional transforms are obtained by successive applications of unidi-
mensional ones.

One first transforms theN lines, then theN columns of the result :T = GT FG.

T (u, v) =
N−1
∑

x=0

N−1
∑

y=0

f(x, y)g(x, y, u, v) (3)

=
N−1
∑

x=0

N−1
∑

y=0

f(x, y)g1(x, u)g1(y, v) (4)

=
N−1
∑

x=0

g1(x, u)





N−1
∑

y=0

f(x, y)g1(y, v)



 (5)

henceT = GT [FG] = GT FG. (Invertible iff Gis non-singular)
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Bi-dimensional Fourier transform

The Fourier transform uses the following kernel

gF (x, y, u, v) =
1

N
exp

(−j2π(xu + yv)

N

)

. (6)

This kernel is separable, sincegF (x, y, u, v) = gF
1 (x, u)gF

1 (y, v), with gF
1 (x, u) =

1√
N

exp
(

−j2π(xu)
N

)

.

Sinceux = xu we have alsogF
1 (i, j) = gF

1 (j, i).

⇒ complex and symmetric matrixG (GT = G).

In additionG orthogonal (unitary) :

G−1 = G∗ = G. (7)

The kernel of the inverse Fourier transform is hence

hF (x, y, u, v) =
1

N
exp

(

+j2π(xu + yv)

N

)

. (8)

IT 2000-6, slide 9



Comments

Technique may be extended to more than 2 dimensions.

FFT algorithm may be used (⇒ O(N × N log N) operations) : quasi-linear.

Sampling theorem : applies also. (choice of sampling intervals as a function of the
frequency spectrum of the image)

Applications : signal processing...

Other transforms : Walsh and Hadamard

“Discrete Versions” of the Fourier transform.

Applicable ifN = 2n.

Values of the basis functions :± 1√
N

.

⇒ calculations simpler, physical interpretation similar.
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Kernel of the Walsh (left) and Hadamard (right) transforms (N = 8)

u

x 0 1 2 3 4 5 6 7
0 + + + + + + + +
1 + + + + - - - -
2 + + - - + + - -
3 + + - - - - + +
4 + - + - + - + -
5 + - + - - + - +
6 + - - + + - - +
7 + - - + - + + -

u

x 0 1 2 3 4 5 6 7
0 + + + + + + + +
1 + - + - + - + -
2 + + - - + + - -
3 + - - + + - - +
4 + + + + - - - -
5 + - + - - + - +
6 + + - - - - + +
7 + - - + - + + -

NB. Identical up to a permutation of lines and columns. Real-valued, orthogonal and
symmetric⇒ inverse transform = direct transform.

Hadamard :G = 1√
N

HN whereHN can be generated recursively using the follow-
ing “formula”

H20 = [1]; H2n =

[

H2n−1 H2n−1

H2n−1 −H2n−1

]

. (9)
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Cosinus transform (used in JPEG format)

Problems with Fourier : complex values and border effects.
Fourier transform = series expansion of periodic extensionof original signal

N-10

Cosinus transform : series expansion of following extension

2N-10

continuous and even...
gC
1 (x, u) = hC

1 (x, u) = 1√
N

α(u) cos
(

(2x+1)uπ

2N

)

(α(0) = 1, α(i) =
√

2)
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Cosinus transform of Lena

Cosinus transform quantized at level 100.0
Entropy = 0.2493 (zero order, per pixel) 
Compression ratio : 32 (w.r.t. original image)

Decoded version of image

IT 2000-6, slide 13



Cosinus transform of Lena

Cosinus transform quantized at level 20.0
Entropy = 1.4689 (zero order, per pixel) 
Compression ratio : 5.4 (w.r.t. original image)

Decoded version of image

IT 2000-6, slide 14



Operations which are easy on the transformed images

Filtering : e.g. HF noise vs LF signal.

Zooming, smoothing.

From the viewpoint of information theory

Concentration of entropy in a reduced number of pixels
⇒ image compression.

Data transmission in an appropriate order :

⇒ first send main information, then details
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Sources of redundancy

(Remark : terminology used in image processing literature.)

1. Coding redundancy. Factor2 − 3

Some grey-levels are more frequent then others (cf. histogram)

2. Inter-pixel redundancy. Factor> 10

Nearby pixels are similar (continuity of the bi-dimensional signal)

⇒ HF components are normally of low intensity.

3. Psycho-visual redundancy. Factor> 100

Our biological vision system is unable to detect all the details and is (hence) “robust”
with respect to certain types of approximations.

⇒ allows to use irreversible compression techniques withoutimpact on perception.
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Image compression systems

Canal

Canal

(a) Image Encoder

(b) Image Decoder

f(x, y)
T T̂

T̂
f̂(x, y)

Quantization

Decoding

Transform Source Coding

Inverse transform

NB: the central part of the encoder is not necessarily present.

First block: change representation to reduce inter-pixel redundancy and facilitate
quantization (take advantage of phsycho-visual redundancy).

Last block: see data compression techniques.
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Some approaches

A. Reversible

“Zero order”

In the binary case : coding of black and white areas (cf. FAX)

Differential coding : one transforms the image and codes thedifferences.

Bit planes.

Predictive coding :

One uses a predictive model to estimate the value offn given already seen pixels and
one encodes only the prediction errors of this model.

NB: Differential coding = “naive” version of predictive coding.

One can use highly sophisticated prediction models (neuralnetworks...) :
⇒ compromize between model complexity vs entropy of prediction errors
⇒ General principle in automatic learning (Minimum Description Length).
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B. Irreversible

Predictive coding

We don’t encode prediction errors (or very roughly)

Use of image transforms

Often applied locally.

One doesn’t encode HF content (or very roughly).

C. Standards

Binary images : “run-length” encoding for FAX.

Monochrome images : JPEG (cosinus transform8 × 8 plus Huffman.)

Sequences of color images : MPEG (cosinus transform, plus predictive models along
time axis).
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A short introduction to wavelets

Problem : basis functions of most classical transforms are not very good to represent
images compactly.

Reasons : “non-stationary” aspect⇒ frequency content depends on spatial coordi-
nates.

⇒ requires the use of image transforms on small windows of the original image (cf.
JPEG).

Wavelets: constructive approach to build a catalog (dictionary) of well suited signals.

Main idea : extract frequency componentslocalized in space (or time)

The higher the frequency, the more local the information extracted.

Example : Haar wavelets (local version of Walsh-Hadamard)
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φ(·)

ψ(·)

The functionφ(·) is called mother wavelet.

It is used to build all the other wavelets by translation/scaling.

E.g. :ψ1
0(x) = ψ(2x) et ψ1

1(x) = ψ(2x− 1).
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. (10)

IR2k+1

: ψi
j = ψ(2ix− j), avecj = 0, 1, . . . , 2i − 1
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Compression technique (irreversible) :

(i) Compute Haar transform; (ii) set to 0 all pixels≤ ǫ; (iii) code remaining prixels
reversibly.

1 10
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30 61
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