
Introduction to information theory and coding

Louis WEHENKEL

Set of slides No 3

• Probabilisticdeductiveinference in graphical models

– Important classes of DAGs
– Hidden Markov chains and propagation algorithms
– Comments on generalized versions of these algorithms

• Automatic learning of graphical models

– Classes of learning problems for BNs
– Top down induction of decision trees

IT 2005-3, slide 1

Probabilistic deductiveinference in Bayesian networks

Approaches

• Brute force approach (table lookup plus marginalization)
⇒ intractable for large networks...

• Network reduction (transfiguration)
To determine impact of observationXi = X

j
i on distribution ofX remove all

other variables from graph
Removal of a variable creates new links among its neighbors

⇒ analogy with circuit theory (e.g. optimal ordering of node elimination)

• Monte-Carlo simulation techniques

• Local propagation of information (using the network structure)
⇒ generalized forward-backward procedure

Works only for singly-connected graphs (polytrees)
⇒ need to transform general DAG into polytree

IT 2005-3, slide 2

Bayesian network structures (DAGs)

• Unconnected graphs
Decompose overall problem into independent subproblems

• Markov chains
Every variable has at most one father and one son.

• Hidden Markov chain
Like a Markov chain where each node has one additional son

• Trees
All nodes except one (called root) has exactly one father.
NB. Markov (hidden or not) chains are a subclass of trees

• Polytrees
DAG such that the corresponding undirected graph has no cycles (i.e. is singly
connected)

This is the most general type of DAG on which local propagation works

NB. Trees are also polytrees.

IT 2005-3, slide 3

Building of Bayesian belief networks

Algorithm

Choose variables, and choose their orderingXi.

For i = 1, 2, . . .

• create nodeXi;

• select a minimal subset of{X1, . . . ,Xi−1} to becomeP(Xi).

• Create arcs fromP(Xi) → Xi.

• Create tableP (Xi|P(Xi)).

Comments

Complexity of resulting structure is highly dependent on node ordering.

In practice, use physical insight to choose appropriate order.

IT 2005-3, slide 4

Duplication and merging of nodes in a DAG

Can be used to transform graph into polytree :

s1 s2 s3

e1 e2 e3

x1 x2 x3

(a) General DAG

e1 e2 e3

x1 x2 x3

s’1 s’2 s’3

s1 s2 s3

(b) duplication of inputs

s’1 s’2 s’3

e’1 e’2 e’3

x1 x2 x3

(c) Polytree obtained after merging

General algorithm : based onjunction trees...

IT 2005-3, slide 5

Inference

For example :

yeux de e?
Quelle est la couleur la plus probable des
Question:

Couleurs des yeux de GPP, GMM, M et E
Observations:

GMM GPM

M

GMP GPP

P

e

E F1 F2

IT 2005-3, slide 6

Typical inference problem.
Given some observationsO (the values for a subset of variables) determine the pos-
sible values of all other variables and their probabilitiesP (Xi|O).

Remark.
Not all variables are used in all inference problems.
D-separation may be exploited to remove nodes from network.
⇒ often possible to simplify network structure before solving inference problem.

Question:

yeux de e?
Quelle est la couleur la plus probable des

Observations:
Couleurs des yeux de GPP, M et E

M

GPP

P

e

E

GMP

F1

bleu

?

bleu

bleu

IT 2005-3, slide 7

Hidden Markov chains

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

E1 E2

O2O1

Ei

Oi

ET

OT

• set of indicesi = 1, 2, . . . , T (e.g. to represent time)

• successive states of the chainEi : form a markov chain

• the observationsOi : P (Oi|Ei,W) = P (Oi|Ei) whereW denotes any subset of
states and observations.

⇒ Model instance characterized byP (E1), P (Ei+1|Ei), andP (Oi|Ei),

Time invariance : P (Ei+1|Ei) andP (Oi|Ei) are independent of time (i.e. ofi).

⇒ fundamental assumption in coding theory, and here it makes life easier...

Notation :πi
△
= P (E1 = i), Πi,j

△
= P (Ek+1 = j|Ek = i), Σi,j

△
= P (Ok = j|Ek = i).

IT 2005-3, slide 8

Examples of applications of Hidden Markov chains

A highly structured generalization of Markov chains, when states are not observed
directly⇒ large class of stochastic processes can be modelled in this way.

• Artificial intelligence :handwritten text and spoken text recognition.

• Information and coding theories :memoryless channel fed with a Markov chain,
channel coding and decoding processes

• Bioinformatics :models for complex molecules (proteins, DNA, . . .)

• Computer Science :stochastic automata

Further generalizations

Markov random fields and hidden markov fields (e.g. image restoration).

IT 2005-3, slide 9

Inference with hidden Markov chains : problem No 1

Let us consider a time invariant HMC characterized by

πi
△
= P (E1 = i), Πi,j

△
= P (Ek+1 = j|Ek = i), et Σi,j

△
= P (Ok = j|Ek = i).

Possible values of states1, 2, . . . , N , possible values of observations1, 2, . . . , M .

Problem formulation

Given a sequence of observationsOT = O1, O2, . . . , OT (a realization of the r.v.
OT = O1, . . . ,OT), and the model specificationπ, Π, Σ :

Determine (compute) the probabilityP (OT)

Applications

Pattern recognition : given a set of candidate HMCs and an observation sequence,
which one among the candidate models is the most likelyexplanation.

IT 2005-3, slide 10

Inference with hidden Markov chains : problem No 2

Problem formulation

Given an observation sequenceOT and the model specificationπ, Π, Σ :

Determine the most likely state sequence

Applications

Decoding : looking at the observations as noisy versions of the states, we try to
recover the original state sequence.

Variants

Determine the single most likely state sequence

Determine (or approximate) the conditional probability distributionP (ET |OT).

Algorithms

BCJR and Viterbi are two efficient algorithms

IT 2005-3, slide 11

Forward algorithm : efficient solution to problem No 1

NB : see notes for full details and comments.

Idea : find recursive algorithm to computeP (OT , ET) and marginalize overET

Let us denote byαt(i) = P (O1O2 · · ·Ot, Et = i) (for eacht : N numbers in[0; 1])

Then we have :

• Initialization : α1(i) = P (O1, E1 = i) = P (E1 = i)P (O1|E1 = i) = πiΣi,O1
.

• Induction :αt+1(j) =
[

∑N
i=1 αt(i)Πi,j

]

Σj,Ot+1
(Proof follows on next slide).

• Termination :P (OT) =
∑

i=1 αT (i)

Comment

Number of computations linear inT × N2

Trivial method (marginalization w.r.t.ET) : 2T × NT

IT 2005-3, slide 12

Derivation of the induction step :

Exploiting conditional independence one time...

αt+1(j) = P (O1O2 · · ·Ot, Et+1 = j, Ot+1)

= P (O1O2 · · ·Ot, Et+1 = j)P (Ot+1|O1O2 · · ·Ot, Et+1 = j)

= P (O1O2 · · ·Ot, Et+1 = j)P (Ot+1|Et+1 = j)

= P (O1O2 · · ·Ot, Et+1 = j)Σj,Ot+1
,

and a second time

P (Ot, Et+1 = j) =
N

∑

i=1

P (O1 · · ·Ot, Et = i, Et+1 = j)

=
N

∑

i=1

P (O1 · · ·Ot, Et = i)P (Et+1 = j|O1 · · ·Ot, Et = i)

=
N

∑

i=1

P (O1 · · ·Ot, Et = i)P (Et+1 = j|Et = i)

=
N

∑

i=1

αt(i)Πi,j ,

IT 2005-3, slide 13

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

E1 E2 Et ET

O2O1 Ot OT

BelO1
BelO2

BelOt
BelOT

λ1

Initialization

IT 2005-3, slide 14

αt−1

BelOt

Π Π
λt αt

Local propagation

BelOt−1
BelOt+1

µt

Σ

µt+1

Σ

µt−1

Σ

λt+1

IT 2005-3, slide 15

Forward-backward algorithm (BCJR) : efficient computation ofP (Et|O
T) (∀t).

Remark : P (Et|O
T) allows one to guess also a likely value ofEt ⇒ BCJR algorithm

can be used to minimize BER in channel decoding

Idea : backward recursive algorithm to computeβt(i) = P (Ot+1, . . . , OT |Et = i).

Indeed, we have (step (a) by d-separation ofO1, . . . ,Ot andOt+1, . . . ,OT by Et)

P (OT , Et = i) = P (O1, . . . , Ot, Et = i, Ot+1, . . . OT)

= P (O1, . . . , Ot, Et = i)P (Ot+1, . . . OT |O1, . . . , Ot, Et = i)
a
= P (O1, . . . , Ot, Et = i)P (Ot+1, . . . OT |Et = i)

= αt(i)βt(i),

HenceP (OT) =
∑N

i=1 αt(i)βt(i) andP (Et = i|OT) = αt(i)βt(i)
∑

N

i=1
αt(i)βt(i)

.

Notice that
P (OT) =

N
∑

i=1

αt(i)βt(i)

provides also a forward-backward formula for the computation ofP (OT).

IT 2005-3, slide 16

Backward recursion for βt(i)

1. Initialization :βT (i) = 1, 1 ≤ i ≤ N

2. Induction :βt(j) =
∑N

i=1 Πj,iΣi,Ot+1
βt+1(i).

Proof : try to find it as an exercise

Viterbi algorithm : another (efficient) solution to problem No 2

Suppose that we want to find the state sequence maximizingP (ET |OT).

This is the single sequence which best explains the observation.

Solution : forward-backward algorithm based on dynamic programming principle.

See notes : we will explain this more in detail in the context of channel decoding.

Remark :

Viterbi algorithm minimizes probability of choosing the wrong code word.

IT 2005-3, slide 17

Probability propagation in polytrees

NB: generalization published in the late 1980’s (Pearl, Spiegelhalter et al)

Main steps

• Convert polytree tofactor graph(which ignores edge directions)

• Arrange factor graph as a horizontal tree with an arbitrary node chosen as root (on
the right extreme)

• Starting with the left most levels : forward passing of messages towards the root

• Each node in the factor graph stores received forward messages

• Backward pass : once message has reached root it is sent back towards the leaves.

• Each node in the factor graph stores received backward messages

• Finalization : each nodeXi combines received messages to computeP (Xi|OBS)

Observed variables : sendδi,j messages indicating belief of the observed value.

Unobserved leaf nodes : send uniform message1(i)
IT 2005-3, slide 18

Example : medical diagnosis

D

S1

A1 A2

P (A1 = 0) = 0.95 P (A2 = 0) = 0.8

P (S = 0|D = 0) = 1.0

P (S = 0|D = 1) = 0.2

P (D = 0|A1 = 0,A2 = 0) = 0.9

P (D = 0|A1 = 1,A2 = 0) = 1.0

P (D = 0|A1 = 0,A2 = 1) = 0.9

P (D = 0|A1 = 1,A2 = 1) = 0.0

Let’s computeP (D|S = 0)

IT 2005-3, slide 19

Factor graph : undirected graph representing factorization ofP (G)

1 variablenode for each variable + 1functionnode for each probability table

Notation : we denote byfX the func-
tion node associated to variableX and
by fX (X ,P(X)) its tableP (X |P(X))

Root node

A1 A1

D

S

fA1
fA2

fD

fS

IT 2005-3, slide 20

Forward pass

fA2
(i)

Root node

fA1
(i)

µ[A2→fD]

µ[fA1
→A1]

A2

A1

fD

Messages start at the left most nodes and are sent to-
wards root.

Terminal function nodes (blue) sent a message in the
form of a vector of prior probabilities :
fA1

(i) = P (A1 = i) andfA2
(i) = P (A2 = i)

Other nodes store incoming messages, then combine
and propagate towards right.

IT 2005-3, slide 21

Combination rules :

Need to distinguish among function nodes and variables nodes.

A. Variable nodesX : propagateµ[X→f](i) towards function nodef on the right

1. If variable is observedX = j : µ[X→f](i) = δi,j

2. If node is terminal in factor graph and variable is not observed :µ[X→f](i) = 1

3. Otherwise : multiply messages received from left (say function nodesf1 andf2) :
µ[X→f](i) = µ[f1→X](i)µ[f2→X](i)

B. Function nodesf : propagateµf→X (i) towards variable nodeX on the right.

All incoming variables are marginalized out, for example for nodefD :

µ[fD→D](i) =
∑

j∈A1

∑

k∈A2

fD(i, j, k)µ[A1→fD](j)µ[A2→fD](k)

wherefD(i, j, k) = P (D = i|A1 = j,A2 = k)

IT 2005-3, slide 22

Backward pass

fS

µ[S→fS]

S

Same propagation rules are used as for the forward pass (replace right by left)

Again, each variable node stores its incoming messages (coming from the right)

Note that, here the root node intializes the process : since the valueS = 0 is observed
it will send the messageµ[S→fS] = δi,0 towards nodefS .

IT 2005-3, slide 23

Termination (local)

After forward and backward passes, each variable nodeX has received a message in
the form of a tableµf→X (i) from each of its adjacent function nodes (left and right).

Using this information, the variable nodeX can compute its local probability distri-
bution

P (X |O)

whereO denotes all the observations (except the observed variablenodes).

E.g. we have
P (D = i|O) = βµ[fD→D](i)µ[fS→D](i)

whereβ is a normalization constant, i.e.

β =
∑

i

µ[fD→D](i)µ[fS→D](i).

Remark.

Algorithm can be made more elegant (??) and more general by adding extra nodes to
the graph for the observations : these nodes are called constraint nodes.

Proof not given here...
IT 2005-3, slide 24

Automatic learning of graphical models(a very quick introduction)

A. Bayesian networks

Suppose structure is given and data is completeley observed

Example :

D

S1

A1 A2

Base de donńeesDB

No A1 A2 D S1
1 F F F F
2 F F F F
3 F F F F
4 F T T T
5 F F F F
6 T F F F
7 F T F F
...

...
...

...
...

N-1 F F T F
N F F F F

IT 2005-3, slide 25

Learning problem : estimate probability tables from database.

Basic idea : consider relevant subsets of data base and estimate probabilities by rela-
tive frequencies.

E.g. To estimateP (S1|D = T) consider all lines of table suchthatD = T then count
number of lines suchthat alsoS1 = T (andS1 = F)...

See course notes, for further details and arguments showingthat this procedure esti-
mates the model by maximum likelihood.

What if structure is unknown ?

Try out different structures (but combinatorial explosion)

What if some attribute values are missing ?(missing values or hidden variables)

Remove corresponding objects from tables... Estimate missing values from data...

How to take into account constraints among tables ?

E.g. what if we have a time invariance assumption in HMC

IT 2005-3, slide 26

B. Automatic learning of decision trees

Same basic idea : estimate conditional probabilities from data base by relative fre-
quency counts.

Tree is built top-down.

⇒ leads to recursive partitioning algorithm (very fast)

NB : needs complexity tradeoff to avoid overfitting

See demonstration : dtapplet

IT 2005-3, slide 27

