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Preface

This book is aimed at senior undergraduates and graduate students in Engi-
neering, Science, Mathematics, and Computing. It expects familiarity with
calculus, probability theory, and linear algebra as taught in a first- or second-
year undergraduate course on mathematics for scientists and engineers.

Conventional courses on information theory cover not only the beauti-
ful theoretical ideas of Shannon, but also practical solutions to communica-
tion problems. This book goes further, bringing in Bayesian data modelling,
Monte Carlo methods, variational methods, clustering algorithms, and neural
networks.

Why unify information theory and machine learning? Because they are
two sides of the same coin. In the 1960s, a single field, cybernetics, was
populated by information theorists, computer scientists, and neuroscientists,
all studying common problems. Information theory and machine learning still
belong together. Brains are the ultimate compression and communication
systems. And the state-of-the-art algorithms for both data compression and
error-correcting codes use the same tools as machine learning.

How to use this book

The essential dependencies between chapters are indicated in the figure on the
next page. An arrow from one chapter to another indicates that the second
chapter requires some of the first.

Within Parts I, II, IV, and V of this book, chapters on advanced or optional
topics are towards the end. All chapters of Part III are optional on a first
reading, except perhaps for Chapter 16 (Message Passing).

The same system sometimes applies within a chapter: the final sections of-
ten deal with advanced topics that can be skipped on a first reading. For exam-
ple in two key chapters – Chapter 4 (The Source Coding Theorem) and Chap-
ter 10 (The Noisy-Channel Coding Theorem) – the first-time reader should
detour at section 4.5 and section 10.4 respectively.

Pages vii–x show a few ways to use this book. First, I give the roadmap for
a course that I teach in Cambridge: ‘Information theory, pattern recognition,
and neural networks’. The book is also intended as a textbook for traditional
courses in information theory. The second roadmap shows the chapters for an
introductory information theory course and the third for a course aimed at an
understanding of state-of-the-art error-correcting codes. The fourth roadmap
shows how to use the text in a conventional course on machine learning.
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Preface xi

About the exercises

You can understand a subject only by creating it for yourself. The exercises
play an essential role in this book. For guidance, each has a rating (similar to
that used by Knuth (1968)) from 1 to 5 to indicate its difficulty.

In addition, exercises that are especially recommended are marked by a
marginal encouraging rat. Some exercises that require the use of a computer
are marked with a C.

Answers to many exercises are provided. Use them wisely. Where a solu-
tion is provided, this is indicated by including its page number alongside the
difficulty rating.

Solutions to many of the other exercises will be supplied to instructors
using this book in their teaching; please email solutions@cambridge.org.

Summary of codes for exercises

Especially recommended

! Recommended
C Parts require a computer

[p. 42] Solution provided on page 42

[1 ] Simple (one minute)
[2 ] Medium (quarter hour)
[3 ] Moderately hard
[4 ] Hard
[5 ] Research project

Internet resources

The website

http://www.inference.phy.cam.ac.uk/mackay/itila

contains several resources:

1. Software. Teaching software that I use in lectures, interactive software,
and research software, written in perl, octave, tcl, C, and gnuplot.
Also some animations.

2. Corrections to the book. Thank you in advance for emailing these!

3. This book. The book is provided in postscript, pdf, and djvu formats
for on-screen viewing. The same copyright restrictions apply as to a
normal book.

About this edition

This is the fourth printing of the first edition. In the second printing, the
design of the book was altered slightly. Page-numbering generally remained
unchanged, except in chapters 1, 6, and 28, where a few paragraphs, figures,
and equations moved around. All equation, section, and exercise numbers
were unchanged. In the third printing, chapter 8 was renamed ‘Dependent
Random Variables’, instead of ‘Correlated’, which was sloppy.
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About Chapter 1

In the first chapter, you will need to be familiar with the binomial distribution.
And to solve the exercises in the text – which I urge you to do – you will need
to know Stirling’s approximation for the factorial function, x! ! xx e−x, and
be able to apply it to

(N
r

)
= N !

(N−r)! r!
. These topics are reviewed below. Unfamiliar notation?

See Appendix A, p.598.

The binomial distribution

Example 1.1. A bent coin has probability f of coming up heads. The coin is
tossed N times. What is the probability distribution of the number of
heads, r? What are the mean and variance of r?

0
0.05

0.1
0.15

0.2
0.25

0.3

0 1 2 3 4 5 6 7 8 9 10

r

Figure 1.1. The binomial
distribution P (r | f = 0.3, N =10).

Solution. The number of heads has a binomial distribution.

P (r | f,N) =
(

N

r

)
f r(1 − f)N−r. (1.1)

The mean, E [r], and variance, var[r], of this distribution are defined by

E [r] ≡
N∑

r=0

P (r | f,N) r (1.2)

var[r] ≡ E
[
(r − E [r])2

]
(1.3)

= E [r2] − (E [r])2 =
N∑

r=0

P (r | f,N)r2 − (E [r])2 . (1.4)

Rather than evaluating the sums over r in (1.2) and (1.4) directly, it is easiest
to obtain the mean and variance by noting that r is the sum of N independent
random variables, namely, the number of heads in the first toss (which is either
zero or one), the number of heads in the second toss, and so forth. In general,

E [x + y] = E [x] + E [y] for any random variables x and y;
var[x + y] = var[x] + var[y] if x and y are independent. (1.5)

So the mean of r is the sum of the means of those random variables, and the
variance of r is the sum of their variances. The mean number of heads in a
single toss is f × 1 + (1− f)× 0 = f , and the variance of the number of heads
in a single toss is

[
f × 12 + (1 − f) × 02

]
− f2 = f − f2 = f(1 − f), (1.6)

so the mean and variance of r are:

E [r] = Nf and var[r] = Nf(1 − f). ! (1.7)

1
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2 About Chapter 1

Approximating x! and
(

N
r

)

0
0.02
0.04
0.06
0.08

0.1
0.12

0 5 10 15 20 25

r

Figure 1.2. The Poisson
distribution P (r |λ=15).

Let’s derive Stirling’s approximation by an unconventional route. We start
from the Poisson distribution with mean λ,

P (r |λ) = e−λ λr

r!
r ∈ {0, 1, 2, . . .}. (1.8)

For large λ, this distribution is well approximated – at least in the vicinity of
r ! λ – by a Gaussian distribution with mean λ and variance λ:

e−λ λr

r!
! 1√

2πλ
e
− (r−λ)2

2λ . (1.9)

Let’s plug r = λ into this formula, then rearrange it.

e−λ λλ

λ!
! 1√

2πλ
(1.10)

⇒ λ! ! λλ e−λ
√

2πλ. (1.11)

This is Stirling’s approximation for the factorial function.

x! ! xx e−x
√

2πx ⇔ ln x! ! x ln x − x + 1
2 ln 2πx. (1.12)

We have derived not only the leading order behaviour, x! ! xx e−x, but also,
at no cost, the next-order correction term

√
2πx. We now apply Stirling’s

approximation to ln
(N

r

)
:

ln
(

N

r

)
≡ ln

N !
(N − r)! r!

! (N − r) ln
N

N − r
+ r ln

N

r
. (1.13)

Since all the terms in this equation are logarithms, this result can be rewritten
in any base. We will denote natural logarithms (loge) by ‘ln’, and logarithms Recall that log2 x =

loge x

loge 2
.

Note that
∂ log2 x

∂x
=

1
loge 2

1
x

.
to base 2 (log2) by ‘log’.

If we introduce the binary entropy function,

H2(x) ≡ x log
1
x

+ (1−x) log
1

(1−x)
, (1.14)

then we can rewrite the approximation (1.13) as
H2(x)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 x

Figure 1.3. The binary entropy
function.

log
(

N

r

)
! NH2(r/N), (1.15)

or, equivalently, (
N

r

)
! 2NH2(r/N). (1.16)

If we need a more accurate approximation, we can include terms of the next
order from Stirling’s approximation (1.12):

log
(

N

r

)
! NH2(r/N) − 1

2 log
[
2πN

N−r

N

r

N

]
. (1.17)
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1

Introduction to Information Theory

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.

(Claude Shannon, 1948)

In the first half of this book we study how to measure information content; we
learn how to compress data; and we learn how to communicate perfectly over
imperfect communication channels.

We start by getting a feeling for this last problem.

1.1 How can we achieve perfect communication over an imperfect,
noisy communication channel?

Some examples of noisy communication channels are:

• an analogue telephone line, over which two modems communicate digital
modem

phone
line

modem! !

information;

• the radio communication link from Galileo, the Jupiter-orbiting space-
Galileo radio

waves Earth! !

craft, to earth;

parent
cell

daughter
cell

daughter
cell

""#
$$%

• reproducing cells, in which the daughter cells’ DNA contains information
from the parent cells;

computer
memory

disk
drive

computer
memory

! !

• a disk drive.

The last example shows that communication doesn’t have to involve informa-
tion going from one place to another. When we write a file on a disk drive,
we’ll read it off in the same location – but at a later time.

These channels are noisy. A telephone line suffers from cross-talk with
other lines; the hardware in the line distorts and adds noise to the transmitted
signal. The deep space network that listens to Galileo’s puny transmitter
receives background radiation from terrestrial and cosmic sources. DNA is
subject to mutations and damage. A disk drive, which writes a binary digit
(a one or zero, also known as a bit) by aligning a patch of magnetic material
in one of two orientations, may later fail to read out the stored binary digit:
the patch of material might spontaneously flip magnetization, or a glitch of
background noise might cause the reading circuit to report the wrong value
for the binary digit, or the writing head might not induce the magnetization
in the first place because of interference from neighbouring bits.

In all these cases, if we transmit data, e.g., a string of bits, over the channel,
there is some probability that the received message will not be identical to the

3
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4 1 — Introduction to Information Theory

transmitted message. We would prefer to have a communication channel for
which this probability was zero – or so close to zero that for practical purposes
it is indistinguishable from zero.

Let’s consider a noisy disk drive that transmits each bit correctly with
probability (1−f) and incorrectly with probability f . This model communi-
cation channel is known as the binary symmetric channel (figure 1.4).

x
!

!

""#$$%1

0

1

0
y P (y =0 |x=0) = 1 − f ;

P (y =1 |x=0) = f ;
P (y =0 |x=1) = f ;
P (y =1 |x=1) = 1 − f.

Figure 1.4. The binary symmetric
channel. The transmitted symbol
is x and the received symbol y.
The noise level, the probability
that a bit is flipped, is f .

(1 − f)

(1 − f)

f

!

!

"
"

""#$
$

$$%
1

0

1

0
Figure 1.5. A binary data
sequence of length 10 000
transmitted over a binary
symmetric channel with noise
level f = 0.1. [Dilbert image
Copyright c©1997 United Feature
Syndicate, Inc., used with
permission.]

As an example, let’s imagine that f = 0.1, that is, ten per cent of the bits are
flipped (figure 1.5). A useful disk drive would flip no bits at all in its entire
lifetime. If we expect to read and write a gigabyte per day for ten years, we
require a bit error probability of the order of 10−15, or smaller. There are two
approaches to this goal.

The physical solution

The physical solution is to improve the physical characteristics of the commu-
nication channel to reduce its error probability. We could improve our disk
drive by

1. using more reliable components in its circuitry;

2. evacuating the air from the disk enclosure so as to eliminate the turbu-
lence that perturbs the reading head from the track;

3. using a larger magnetic patch to represent each bit; or

4. using higher-power signals or cooling the circuitry in order to reduce
thermal noise.

These physical modifications typically increase the cost of the communication
channel.

The ‘system’ solution

Information theory and coding theory offer an alternative (and much more ex-
citing) approach: we accept the given noisy channel as it is and add communi-
cation systems to it so that we can detect and correct the errors introduced by
the channel. As shown in figure 1.6, we add an encoder before the channel and
a decoder after it. The encoder encodes the source message s into a transmit-
ted message t, adding redundancy to the original message in some way. The
channel adds noise to the transmitted message, yielding a received message r.
The decoder uses the known redundancy introduced by the encoding system
to infer both the original signal s and the added noise.
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Figure 1.6. The ‘system’ solution
for achieving reliable
communication over a noisy
channel. The encoding system
introduces systematic redundancy
into the transmitted vector t. The
decoding system uses this known
redundancy to deduce from the
received vector r both the original
source vector and the noise
introduced by the channel.

Whereas physical solutions give incremental channel improvements only at
an ever-increasing cost, system solutions can turn noisy channels into reliable
communication channels with the only cost being a computational requirement
at the encoder and decoder.

Information theory is concerned with the theoretical limitations and po-
tentials of such systems. ‘What is the best error-correcting performance we
could achieve?’

Coding theory is concerned with the creation of practical encoding and
decoding systems.

1.2 Error-correcting codes for the binary symmetric channel

We now consider examples of encoding and decoding systems. What is the
simplest way to add useful redundancy to a transmission? [To make the rules
of the game clear: we want to be able to detect and correct errors; and re-
transmission is not an option. We get only one chance to encode, transmit,
and decode.]

Repetition codes

A straightforward idea is to repeat every bit of the message a prearranged
number of times – for example, three times, as shown in table 1.7. We call
this repetition code ‘R3’.

Source Transmitted
sequence sequence

s t

0 000
1 111

Table 1.7. The repetition code R3.

Imagine that we transmit the source message

s = 0 0 1 0 1 1 0

over a binary symmetric channel with noise level f = 0.1 using this repetition
code. We can describe the channel as ‘adding’ a sparse noise vector n to the
transmitted vector – adding in modulo 2 arithmetic, i.e., the binary algebra
in which 1+1=0. A possible noise vector n and received vector r = t + n are
shown in figure 1.8.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 1.8. An example
transmission using R3.

How should we decode this received vector? The optimal algorithm looks
at the received bits three at a time and takes a majority vote (algorithm 1.9).
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Received sequence r Likelihood ratio P (r | s = 1)
P (r | s = 0) Decoded sequence ŝ

000 γ−3 0
001 γ−1 0
010 γ−1 0
100 γ−1 0
101 γ1 1
110 γ1 1
011 γ1 1
111 γ3 1

Algorithm 1.9. Majority-vote
decoding algorithm for R3. Also
shown are the likelihood ratios
(1.23), assuming the channel is a
binary symmetric channel;
γ ≡ (1 − f)/f .

At the risk of explaining the obvious, let’s prove this result. The optimal
decoding decision (optimal in the sense of having the smallest probability of
being wrong) is to find which value of s is most probable, given r. Consider
the decoding of a single bit s, which was encoded as t(s) and gave rise to three
received bits r = r1r2r3. By Bayes’ theorem, the posterior probability of s is

P (s | r1r2r3) =
P (r1r2r3 | s)P (s)

P (r1r2r3)
. (1.18)

We can spell out the posterior probability of the two alternatives thus:

P (s = 1 | r1r2r3) =
P (r1r2r3 | s = 1)P (s = 1)

P (r1r2r3)
; (1.19)

P (s = 0 | r1r2r3) =
P (r1r2r3 | s = 0)P (s = 0)

P (r1r2r3)
. (1.20)

This posterior probability is determined by two factors: the prior probability
P (s), and the data-dependent term P (r1r2r3 | s), which is called the likelihood
of s. The normalizing constant P (r1r2r3) needn’t be computed when finding the
optimal decoding decision, which is to guess ŝ = 0 if P (s = 0 | r) > P (s = 1 | r),
and ŝ= 1 otherwise.

To find P (s = 0 | r) and P (s = 1 | r), we must make an assumption about the
prior probabilities of the two hypotheses s = 0 and s = 1, and we must make an
assumption about the probability of r given s. We assume that the prior prob-
abilities are equal: P (s = 0) = P (s = 1) = 0.5; then maximizing the posterior
probability P (s | r) is equivalent to maximizing the likelihood P (r | s). And we
assume that the channel is a binary symmetric channel with noise level f < 0.5,
so that the likelihood is

P (r | s) = P (r | t(s)) =
N∏

n=1

P (rn | tn(s)), (1.21)

where N = 3 is the number of transmitted bits in the block we are considering,
and

P (rn | tn) =
{

(1−f) if rn = tn
f if rn *= tn.

(1.22)

Thus the likelihood ratio for the two hypotheses is

P (r | s = 1)
P (r | s = 0)

=
N∏

n=1

P (rn | tn(1))
P (rn | tn(0))

; (1.23)

each factor P (rn|tn(1))
P (rn|tn(0)) equals (1−f)

f if rn = 1 and f
(1−f) if rn = 0. The ratio

γ ≡ (1−f)
f is greater than 1, since f < 0.5, so the winning hypothesis is the

one with the most ‘votes’, each vote counting for a factor of γ in the likelihood
ratio.
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Thus the majority-vote decoder shown in algorithm 1.9 is the optimal decoder
if we assume that the channel is a binary symmetric channel and that the two
possible source messages 0 and 1 have equal prior probability.

We now apply the majority vote decoder to the received vector of figure 1.8.
The first three received bits are all 0, so we decode this triplet as a 0. In the
second triplet of figure 1.8, there are two 0s and one 1, so we decode this triplet
as a 0 – which in this case corrects the error. Not all errors are corrected,
however. If we are unlucky and two errors fall in a single block, as in the fifth
triplet of figure 1.8, then the decoding rule gets the wrong answer, as shown
in figure 1.10.

s 0 0 1 0 1 1 0

t
︷︸︸︷
0 0 0

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

︷︸︸︷
1 1 1

︷︸︸︷
1 1 1

︷︸︸︷
0 0 0

n 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
r 0 0 0︸︷︷︸ 0 0 1︸︷︷︸ 1 1 1︸︷︷︸ 0 0 0︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 0 0︸︷︷︸
ŝ 0 0 1 0 0 1 0

corrected errors '
undetected errors '

Figure 1.10. Decoding the received
vector from figure 1.8.

Exercise 1.2.[2, p.16] Show that the error probability is reduced by the use of The exercise’s rating, e.g.‘[2 ]’,
indicates its difficulty: ‘1’
exercises are the easiest. Exercises
that are accompanied by a
marginal rat are especially
recommended. If a solution or
partial solution is provided, the
page is indicated after the
difficulty rating; for example, this
exercise’s solution is on page 16.

R3 by computing the error probability of this code for a binary symmetric
channel with noise level f .

The error probability is dominated by the probability that two bits in
a block of three are flipped, which scales as f2. In the case of the binary
symmetric channel with f = 0.1, the R3 code has a probability of error, after
decoding, of pb ! 0.03 per bit. Figure 1.11 shows the result of transmitting a
binary image over a binary symmetric channel using the repetition code.

s

!

encoder t channel

f = 10%

!

r decoder

!

ŝ

Figure 1.11. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a repetition code and the
majority vote decoding algorithm.
The probability of decoded bit
error has fallen to about 3%; the
rate has fallen to 1/3.
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Figure 1.12. Error probability pb

versus rate for repetition codes
over a binary symmetric channel
with f = 0.1. The right-hand
figure shows pb on a logarithmic
scale. We would like the rate to
be large and pb to be small.

The repetition code R3 has therefore reduced the probability of error, as
desired. Yet we have lost something: our rate of information transfer has
fallen by a factor of three. So if we use a repetition code to communicate data
over a telephone line, it will reduce the error frequency, but it will also reduce
our communication rate. We will have to pay three times as much for each
phone call. Similarly, we would need three of the original noisy gigabyte disk
drives in order to create a one-gigabyte disk drive with pb = 0.03.

Can we push the error probability lower, to the values required for a sell-
able disk drive – 10−15? We could achieve lower error probabilities by using
repetition codes with more repetitions.

Exercise 1.3.[3, p.16] (a) Show that the probability of error of RN , the repe-
tition code with N repetitions, is

pb =
N∑

n=(N+1)/2

(
N

n

)
fn(1 − f)N−n, (1.24)

for odd N .

(b) Assuming f = 0.1, which of the terms in this sum is the biggest?
How much bigger is it than the second-biggest term?

(c) Use Stirling’s approximation (p.2) to approximate the
(N

n

)
in the

largest term, and find, approximately, the probability of error of
the repetition code with N repetitions.

(d) Assuming f = 0.1, find how many repetitions are required to get
the probability of error down to 10−15. [Answer: about 60.]

So to build a single gigabyte disk drive with the required reliability from noisy
gigabyte drives with f = 0.1, we would need sixty of the noisy disk drives.
The tradeoff between error probability and rate for repetition codes is shown
in figure 1.12.

Block codes – the (7, 4) Hamming code

We would like to communicate with tiny probability of error and at a substan-
tial rate. Can we improve on repetition codes? What if we add redundancy to
blocks of data instead of encoding one bit at a time? We now study a simple
block code.
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1.2: Error-correcting codes for the binary symmetric channel 9

A block code is a rule for converting a sequence of source bits s, of length
K, say, into a transmitted sequence t of length N bits. To add redundancy,
we make N greater than K. In a linear block code, the extra N − K bits are
linear functions of the original K bits; these extra bits are called parity-check
bits. An example of a linear block code is the (7, 4) Hamming code, which
transmits N = 7 bits for every K = 4 source bits.

(a)

s
ss

t t

t

7 6

5

4s

3
21

(b)

1 0
0

0

1

01

Figure 1.13. Pictorial
representation of encoding for the
(7, 4) Hamming code.

The encoding operation for the code is shown pictorially in figure 1.13. We
arrange the seven transmitted bits in three intersecting circles. The first four
transmitted bits, t1t2t3t4, are set equal to the four source bits, s1s2s3s4. The
parity-check bits t5t6t7 are set so that the parity within each circle is even:
the first parity-check bit is the parity of the first three source bits (that is, it
is 0 if the sum of those bits is even, and 1 if the sum is odd); the second is
the parity of the last three; and the third parity bit is the parity of source bits
one, three and four.

As an example, figure 1.13b shows the transmitted codeword for the case
s = 1000. Table 1.14 shows the codewords generated by each of the 24 =
sixteen settings of the four source bits. These codewords have the special
property that any pair differ from each other in at least three bits.

s t

0000 0000000
0001 0001011
0010 0010111
0011 0011100

s t

0100 0100110
0101 0101101
0110 0110001
0111 0111010

s t

1000 1000101
1001 1001110
1010 1010010
1011 1011001

s t

1100 1100011
1101 1101000
1110 1110100
1111 1111111

Table 1.14. The sixteen codewords
{t} of the (7, 4) Hamming code.
Any pair of codewords differ from
each other in at least three bits.

Because the Hamming code is a linear code, it can be written compactly in
terms of matrices as follows. The transmitted codeword t is obtained from the
source sequence s by a linear operation,

t = GTs, (1.25)

where G is the generator matrix of the code,

GT =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1
1 0 1 1





, (1.26)

and the encoding operation (1.25) uses modulo-2 arithmetic (1+1 = 0, 0+1 =
1, etc.).

In the encoding operation (1.25) I have assumed that s and t are column vectors.
If instead they are row vectors, then this equation is replaced by

t = sG, (1.27)
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where

G =





1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1



 . (1.28)

I find it easier to relate to the right-multiplication (1.25) than the left-multiplica-
tion (1.27). Many coding theory texts use the left-multiplying conventions
(1.27–1.28), however.

The rows of the generator matrix (1.28) can be viewed as defining four basis
vectors lying in a seven-dimensional binary space. The sixteen codewords are
obtained by making all possible linear combinations of these vectors.

Decoding the (7, 4) Hamming code

When we invent a more complex encoder s → t, the task of decoding the
received vector r becomes less straightforward. Remember that any of the
bits may have been flipped, including the parity bits.

If we assume that the channel is a binary symmetric channel and that all
source vectors are equiprobable, then the optimal decoder identifies the source
vector s whose encoding t(s) differs from the received vector r in the fewest
bits. [Refer to the likelihood function (1.23) to see why this is so.] We could
solve the decoding problem by measuring how far r is from each of the sixteen
codewords in table 1.14, then picking the closest. Is there a more efficient way
of finding the most probable source vector?

Syndrome decoding for the Hamming code

For the (7, 4) Hamming code there is a pictorial solution to the decoding
problem, based on the encoding picture, figure 1.13.

As a first example, let’s assume the transmission was t = 1000101 and the
noise flips the second bit, so the received vector is r = 1000101⊕ 0100000 =
1100101. We write the received vector into the three circles as shown in
figure 1.15a, and look at each of the three circles to see whether its parity
is even. The circles whose parity is not even are shown by dashed lines in
figure 1.15b. The decoding task is to find the smallest set of flipped bits that
can account for these violations of the parity rules. [The pattern of violations
of the parity checks is called the syndrome, and can be written as a binary
vector – for example, in figure 1.15b, the syndrome is z = (1, 1, 0), because
the first two circles are ‘unhappy’ (parity 1) and the third circle is ‘happy’
(parity 0).]

To solve the decoding task, we ask the question: can we find a unique bit
that lies inside all the ‘unhappy’ circles and outside all the ‘happy’ circles? If
so, the flipping of that bit would account for the observed syndrome. In the
case shown in figure 1.15b, the bit r2 lies inside the two unhappy circles and
outside the happy circle; no other single bit has this property, so r2 is the only
single bit capable of explaining the syndrome.

Let’s work through a couple more examples. Figure 1.15c shows what
happens if one of the parity bits, t5, is flipped by the noise. Just one of the
checks is violated. Only r5 lies inside this unhappy circle and outside the other
two happy circles, so r5 is identified as the only single bit capable of explaining
the syndrome.

If the central bit r3 is received flipped, figure 1.15d shows that all three
checks are violated; only r3 lies inside all three circles, so r3 is identified as
the suspect bit.
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Figure 1.15. Pictorial
representation of decoding of the
Hamming (7, 4) code. The
received vector is written into the
diagram as shown in (a). In
(b,c,d,e), the received vector is
shown, assuming that the
transmitted vector was as in
figure 1.13b and the bits labelled
by ' were flipped. The violated
parity checks are highlighted by
dashed circles. One of the seven
bits is the most probable suspect
to account for each ‘syndrome’,
i.e., each pattern of violated and
satisfied parity checks.
In examples (b), (c), and (d), the
most probable suspect is the one
bit that was flipped.
In example (e), two bits have been
flipped, s3 and t7. The most
probable suspect is r2, marked by
a circle in (e′), which shows the
output of the decoding algorithm.

Syndrome z 000 001 010 011 100 101 110 111

Unflip this bit none r7 r6 r4 r5 r1 r2 r3

Algorithm 1.16. Actions taken by
the optimal decoder for the (7, 4)
Hamming code, assuming a
binary symmetric channel with
small noise level f . The syndrome
vector z lists whether each parity
check is violated (1) or satisfied
(0), going through the checks in
the order of the bits r5, r6, and r7.

If you try flipping any one of the seven bits, you’ll find that a different
syndrome is obtained in each case – seven non-zero syndromes, one for each
bit. There is only one other syndrome, the all-zero syndrome. So if the
channel is a binary symmetric channel with a small noise level f , the optimal
decoder unflips at most one bit, depending on the syndrome, as shown in
algorithm 1.16. Each syndrome could have been caused by other noise patterns
too, but any other noise pattern that has the same syndrome must be less
probable because it involves a larger number of noise events.

What happens if the noise actually flips more than one bit? Figure 1.15e
shows the situation when two bits, r3 and r7, are received flipped. The syn-
drome, 110, makes us suspect the single bit r2; so our optimal decoding al-
gorithm flips this bit, giving a decoded pattern with three errors as shown
in figure 1.15e′. If we use the optimal decoding algorithm, any two-bit error
pattern will lead to a decoded seven-bit vector that contains three errors.

General view of decoding for linear codes: syndrome decoding

We can also describe the decoding problem for a linear code in terms of matrices.
The first four received bits, r1r2r3r4, purport to be the four source bits; and the
received bits r5r6r7 purport to be the parities of the source bits, as defined by
the generator matrix G. We evaluate the three parity-check bits for the received
bits, r1r2r3r4, and see whether they match the three received bits, r5r6r7. The
differences (modulo 2) between these two triplets are called the syndrome of the
received vector. If the syndrome is zero – if all three parity checks are happy
– then the received vector is a codeword, and the most probable decoding is
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Figure 1.17. Transmitting 10 000
source bits over a binary
symmetric channel with f = 10%
using a (7, 4) Hamming code. The
probability of decoded bit error is
about 7%.

given by reading out its first four bits. If the syndrome is non-zero, then the
noise sequence for this block was non-zero, and the syndrome is our pointer to
the most probable error pattern.

The computation of the syndrome vector is a linear operation. If we define the
3 × 4 matrix P such that the matrix of equation (1.26) is

GT =
[

I4

P

]
, (1.29)

where I4 is the 4 × 4 identity matrix, then the syndrome vector is z = Hr,
where the parity-check matrix H is given by H =

[
−P I3

]
; in modulo 2

arithmetic, −1 ≡ 1, so

H =
[

P I3

]
=




1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



 . (1.30)

All the codewords t = GTs of the code satisfy

Ht =




0
0
0



 . (1.31)

! Exercise 1.4.[1 ] Prove that this is so by evaluating the 3 × 4 matrix HGT.

Since the received vector r is given by r = GTs + n, the syndrome-decoding
problem is to find the most probable noise vector n satisfying the equation

Hn = z. (1.32)

A decoding algorithm that solves this problem is called a maximum-likelihood
decoder. We will discuss decoding problems like this in later chapters.

Summary of the (7, 4) Hamming code’s properties

Every possible received vector of length 7 bits is either a codeword, or it’s one
flip away from a codeword.

Since there are three parity constraints, each of which might or might not
be violated, there are 2 × 2 × 2 = 8 distinct syndromes. They can be divided
into seven non-zero syndromes – one for each of the one-bit error patterns –
and the all-zero syndrome, corresponding to the zero-noise case.

The optimal decoder takes no action if the syndrome is zero, otherwise it
uses this mapping of non-zero syndromes onto one-bit error patterns to unflip
the suspect bit.
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There is a decoding error if the four decoded bits ŝ1, ŝ2, ŝ3, ŝ4 do not all
match the source bits s1, s2, s3, s4. The probability of block error pB is the
probability that one or more of the decoded bits in one block fail to match the
corresponding source bits,

pB = P (ŝ *= s). (1.33)

The probability of bit error pb is the average probability that a decoded bit
fails to match the corresponding source bit,

pb =
1
K

K∑

k=1

P (ŝk *= sk). (1.34)

In the case of the Hamming code, a decoding error will occur whenever
the noise has flipped more than one bit in a block of seven. The probability
of block error is thus the probability that two or more bits are flipped in a
block. This probability scales as O(f2), as did the probability of error for the
repetition code R3. But notice that the Hamming code communicates at a
greater rate, R = 4/7.

Figure 1.17 shows a binary image transmitted over a binary symmetric
channel using the (7, 4) Hamming code. About 7% of the decoded bits are
in error. Notice that the errors are correlated: often two or three successive
decoded bits are flipped.

Exercise 1.5.[1 ] This exercise and the next three refer to the (7, 4) Hamming
code. Decode the received strings:

(a) r = 1101011

(b) r = 0110110

(c) r = 0100111

(d) r = 1111111.

Exercise 1.6.[2, p.17] (a) Calculate the probability of block error pB of the
(7, 4) Hamming code as a function of the noise level f and show
that to leading order it goes as 21f2.

(b) [3 ] Show that to leading order the probability of bit error pb goes
as 9f2.

Exercise 1.7.[2, p.19] Find some noise vectors that give the all-zero syndrome
(that is, noise vectors that leave all the parity checks unviolated). How
many such noise vectors are there?

! Exercise 1.8.[2 ] I asserted above that a block decoding error will result when-
ever two or more bits are flipped in a single block. Show that this is
indeed so. [In principle, there might be error patterns that, after de-
coding, led only to the corruption of the parity bits, with no source bits
incorrectly decoded.]

Summary of codes’ performances

Figure 1.18 shows the performance of repetition codes and the Hamming code.
It also shows the performance of a family of linear block codes that are gen-
eralizations of Hamming codes, called BCH codes.

This figure shows that we can, using linear block codes, achieve better
performance than repetition codes; but the asymptotic situation still looks
grim.
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Figure 1.18. Error probability pb

versus rate R for repetition codes,
the (7, 4) Hamming code and
BCH codes with blocklengths up
to 1023 over a binary symmetric
channel with f = 0.1. The
righthand figure shows pb on a
logarithmic scale.

Exercise 1.9.[4, p.19] Design an error-correcting code and a decoding algorithm
for it, estimate its probability of error, and add it to figure 1.18. [Don’t
worry if you find it difficult to make a code better than the Hamming
code, or if you find it difficult to find a good decoder for your code; that’s
the point of this exercise.]

Exercise 1.10.[3, p.20] A (7, 4) Hamming code can correct any one error; might
there be a (14, 8) code that can correct any two errors?
Optional extra: Does the answer to this question depend on whether the
code is linear or nonlinear?

Exercise 1.11.[4, p.21] Design an error-correcting code, other than a repetition
code, that can correct any two errors in a block of size N .

1.3 What performance can the best codes achieve?

There seems to be a trade-off between the decoded bit-error probability pb

(which we would like to reduce) and the rate R (which we would like to keep
large). How can this trade-off be characterized? What points in the (R, pb)
plane are achievable? This question was addressed by Claude Shannon in his
pioneering paper of 1948, in which he both created the field of information
theory and solved most of its fundamental problems.

At that time there was a widespread belief that the boundary between
achievable and nonachievable points in the (R, pb) plane was a curve passing
through the origin (R, pb) = (0, 0); if this were so, then, in order to achieve
a vanishingly small error probability pb, one would have to reduce the rate
correspondingly close to zero. ‘No pain, no gain.’

However, Shannon proved the remarkable result that the boundary be- ∗
tween achievable and nonachievable points meets the R axis at a non-zero
value R = C, as shown in figure 1.19. For any channel, there exist codes that
make it possible to communicate with arbitrarily small probability of error pb

at non-zero rates. The first half of this book (Parts I–III) will be devoted to
understanding this remarkable result, which is called the noisy-channel coding
theorem.

Example: f = 0.1

The maximum rate at which communication is possible with arbitrarily small
pb is called the capacity of the channel. The formula for the capacity of a
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Figure 1.19. Shannon’s
noisy-channel coding theorem.
The solid curve shows the
Shannon limit on achievable
values of (R, pb) for the binary
symmetric channel with f = 0.1.
Rates up to R = C are achievable
with arbitrarily small pb. The
points show the performance of
some textbook codes, as in
figure 1.18.

The equation defining the
Shannon limit (the solid curve) is
R = C/(1 − H2(pb)), where C and
H2 are defined in equation (1.35).

binary symmetric channel with noise level f is

C(f) = 1 − H2(f) = 1 −
[
f log2

1
f

+ (1 − f) log2
1

1 − f

]
; (1.35)

the channel we were discussing earlier with noise level f = 0.1 has capacity
C ! 0.53. Let us consider what this means in terms of noisy disk drives. The
repetition code R3 could communicate over this channel with pb = 0.03 at a
rate R = 1/3. Thus we know how to build a single gigabyte disk drive with
pb = 0.03 from three noisy gigabyte disk drives. We also know how to make a
single gigabyte disk drive with pb ! 10−15 from sixty noisy one-gigabyte drives
(exercise 1.3, p.8). And now Shannon passes by, notices us juggling with disk
drives and codes and says:

‘What performance are you trying to achieve? 10−15? You don’t
need sixty disk drives – you can get that performance with just
two disk drives (since 1/2 is less than 0.53). And if you want
pb = 10−18 or 10−24 or anything, you can get there with two disk
drives too!’

[Strictly, the above statements might not be quite right, since, as we shall see,
Shannon proved his noisy-channel coding theorem by studying sequences of
block codes with ever-increasing blocklengths, and the required blocklength
might be bigger than a gigabyte (the size of our disk drive), in which case,
Shannon might say ‘well, you can’t do it with those tiny disk drives, but if you
had two noisy terabyte drives, you could make a single high-quality terabyte
drive from them’.]

1.4 Summary

The (7, 4) Hamming Code

By including three parity-check bits in a block of 7 bits it is possible to detect
and correct any single bit error in each block.

Shannon’s noisy-channel coding theorem

Information can be communicated over a noisy channel at a non-zero rate with
arbitrarily small error probability.
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Information theory addresses both the limitations and the possibilities of
communication. The noisy-channel coding theorem, which we will prove in
Chapter 10, asserts both that reliable communication at any rate beyond the
capacity is impossible, and that reliable communication at all rates up to
capacity is possible.

The next few chapters lay the foundations for this result by discussing
how to measure information content and the intimately related topic of data
compression.

1.5 Further exercises

! Exercise 1.12.[2, p.21] Consider the repetition code R9. One way of viewing
this code is as a concatenation of R3 with R3. We first encode the
source stream with R3, then encode the resulting output with R3. We
could call this code ‘R2

3’. This idea motivates an alternative decoding
algorithm, in which we decode the bits three at a time using the decoder
for R3; then decode the decoded bits from that first decoder using the
decoder for R3.

Evaluate the probability of error for this decoder and compare it with
the probability of error for the optimal decoder for R9.

Do the concatenated encoder and decoder for R2
3 have advantages over

those for R9?

1.6 Solutions

Solution to exercise 1.2 (p.7). An error is made by R3 if two or more bits are
flipped in a block of three. So the error probability of R3 is a sum of two
terms: the probability that all three bits are flipped, f3; and the probability
that exactly two bits are flipped, 3f2(1 − f). [If these expressions are not
obvious, see example 1.1 (p.1): the expressions are P (r =3 | f,N =3) and
P (r =2 | f,N =3).]

pb = pB = 3f2(1 − f) + f3 = 3f2 − 2f3. (1.36)

This probability is dominated for small f by the term 3f2.
See exercise 2.38 (p.39) for further discussion of this problem.

Solution to exercise 1.3 (p.8). The probability of error for the repetition code
RN is dominated by the probability that .N/2/ bits are flipped, which goes
(for odd N) as Notation:

⌈
N/2

⌉
denotes the

smallest integer greater than or
equal to N/2.

(
N

.N/2/

)
f (N+1)/2(1 − f)(N−1)/2. (1.37)

The term
(N
K

)
can be approximated using the binary entropy function:

1
N + 1

2NH2(K/N) ≤
(

N

K

)
≤ 2NH2(K/N) ⇒

(
N

K

)
! 2NH2(K/N), (1.38)

where this approximation introduces an error of order
√

N – as shown in
equation (1.17). So

pb = pB ! 2N (f(1 − f))N/2 = (4f(1 − f))N/2. (1.39)

Setting this equal to the required value of 10−15 we find N ! 2 log 10−15

log 4f(1−f)
= 68.

This answer is a little out because the approximation we used overestimated(N
K

)
and we did not distinguish between .N/2/ and N/2.
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