
State of the art in data compression

Louis Wehenkel

Institut Montefiore, University of Liège, Belgium

ELEN060-2
Information and coding theory

March 2024

1 / 53

Outline

• (Stochastic processes and models for information sources)

• (First Shannon theorem: data compression limit)

• Overview of state of the art in data compression

• Relations between automatic learning and data compression

2 / 53

Optimal prefix codes - Huffman Algorithm

Note: illustrations in the binary case.

Let n be the length of the longest codeword (q-ary code).

Complete q-ary tree of depth n: acyclic graph built recursively starting at the root (cf
figure).

Oriented arcs labeled by the q code symbols.

Father, son, siblings (brothers), descendants, ascendants...

Interior vs terminal nodes (leaves)

Path: sequence of arcs (ui1 , ui2) where ui1 = u(i−1)2 .

Levels: root = level 0,

3 / 53

(a) complete tree (b) incomplete tree

4 / 53

Incomplete trees

Complete tree of which some complete subtrees have been “erased”

∃ trees which are neither complete nor incomplete

But “tree is complete or incomplete” ⇔

A = (L− 1)
q

q − 1
,

where A and L respectively denote the total number of arcs and leaves

Relations between trees and codes

The paths towards the leaves of complete q-ary tree of depth n are in one-to-one
relation with sequences of length n built from a q-ary alphabet.

Each and every instantaneous (prefix-free) code may be represented by a complete or
incomplete tree, and reciprocally, every such tree defines a prefix-free code.

(Nb. Some leaves may possibly not be labeled by a codeword)

5 / 53

Proof:

Let’s assume that we have a prefix-free code of word-lengths ni.

Let
n = max

i=1,...,Q
{ni}.

We start with a complete tree of depth n:

All codewords necessarily correspond to paths in the tree starting at the root and ending
somewhere in the complete tree (at a leave or maybe at some interior node).

All these paths are different, since the code is necessarily regular.

The complete tree initially has a total of qn leaves.

Let us construct the incomplete tree corresponding to the code by pruning away some of
its (complete) subtrees.

How ?

6 / 53

We merely insert all the codewords and mark the end-nodes of the corresponding paths.

Now, let mi be one of these codewords: we erase all successor nodes of the last node in
the corresponding path.

By doing this, we will not delete any of the marked nodes. Why ?

In addition, the number of leaves of the original complete tree that we remove (or
mark) in this process is equal to qn−ni .

Thus, we remove (or mark) like this a total of
∑Q

i=1 q
n−ni leaves of the original

complete tree, by iterating the deletion process through all codewords, without
removing any of the Q nodes originally marked as a codeword.

Consequence: Since the original tree has qn leaves, and since (obviously) this process
works, we deduce that

Q∑
i=1

qn−ni ≤ qn

⇒ prefix-free code must satisfy the Kraft inequality.

7 / 53

Now let us show that if Kraft is true there exists a uniquely decodable code with the
given word length:

If the ni verify Kraft inequality, then ∃ an instantaneous code (hence uniquely
decodable) based on these lengths.

Let us start with
∑n

i=1 riq
n−i ≤ qn : ⇒ ∀p ≤ n :

∑p
i=1 riq

p−i ≤ qp.

Why is it true ? (ri is the number of words of length i)

(Multiply Kraft by qp−n, and truncate the sum after the p-th term.)

Now let us prove that we can build a prefix-free code with the original word lengths (ri
words of length i, ∀i).

1. r1 words of length 1: is it possible ?

2. r2 words of length 2: is it still possible ? We must have (q − r1)q ≥ r2 (?)

3. rp words of length p: suppose we have already chosen the p− 1 first groups of
words, and then verify that there is still enough room to insert the rp words of length p.

8 / 53

Questions.

If I give you the word lengths of an instantaneous code, could you build any such a code compatible ?

Under which condition can we complete the code with more words ?

If we want to add words of minimal length:

How many words of length ≤ n can we certainly add ?

What is the meaning of the condition
∑n

i=1 riq
−i = 1 ?

And in terms of code tree ?

9 / 53

Given source symbol probabilities P (si), how to build an optimal
code ?

NB: optimal = average word length minimal.

Let us explore the problem in the particular case where q = 2 (binary code)

A first idea to construct Q prefix free codewords:

Start with a complete tree of depth n = dlog2Qe.

NB: if Q = 2n and P (si) uniform, it is not necessary to work further (Why ?).

Otherwise: if Q < 2n we delete 2n −Q subtrees of depth n− 1.

Is it possible ?

⇒ We have an algorithm to build a first, not necessarily optimal, code-tree

Idea : try to modify the tree, until it becomes an optimal tree.

Search operator : exchange subtrees in such a way that the average word length
always decreases, and detect when optimality has been reached.

10 / 53

Optimality : is n =
∑Q

i=1 niP (si) minimal ?

How to recognize an optimal tree ?

How to improve the tree in order to reach optimality ?

Reasoning tool : node probabilities

We decorate the leaves of the tree with the source symbol probabilities.

We propagate this information upwards towards the root: a node receives the sum of
the probabilities of its sons.

The recursive structure of the code and of the tree, implies that if a codetree is optimal,
than all its subtrees are also optimal (with respect to sub-source alphabets).

In particular, the partial (pending) trees must be optimal for the subset of source
symbols. Why ?

And also, the reduced trees that we would get by deleting some of the subtrees, must be
optimal with respect to the probabilities attached at the corresponding nodes. Why ?

11 / 53

But there is more :

An optimal tree must also respect a non-local condition which implies pairs of partial
trees of different levels:

If T1 and T2 are two partial trees of different levels (levels of their root) and of different
probabilities, then the most probable of the two must be the least deep one.

Indeed, otherwise we could swap the two subtrees and thereby improve (reduce) average
wordlength. By how much ?

For example if n1 < n2 and p1 < p2 : ∆n = (n2 − n1)(p2 − p1).

This criterion provides a nice criterion to improve our codetree!

We merely need to localise subtrees of different levels and different probabilities which
violate the condition, and swap them to improve our code.

12 / 53

Illustration(s)

(a) Average length: 2 (b) Average length: 2 (c) Average length: 1.8

Can we exchange the partial trees which should be exchanged while improving (strictly)
the average codelength ?

Do we have an algorithm ?

Yes, but it doesn’t work... (in all cases)

13 / 53

Conclusion :

We need to impose one more (at least) constraint on our codetree, in order to be
optimal.

Actually, we can (easily) prove the following:

For any source probability distribution, there exists an optimal prefix-free code that
satisfies the following properties:

1. If pj > pi, then nj ≤ ni.

2. The two longest codewords have the same length

3. The two longest codewords differ only in the last bit and correspond to the least
likely symbols.

Summary: if p1 ≥ p2 ≥ . . . ≥ pQ, then there exists an optimal (binary code) with length
satisfying n1 ≤ n2 ≤ . . . ≤ nQ−1 = nQ, and codewords mQ−1 and mQ differing only in
the last bit.

⇒We can restrict our search in the class of codes which satisfy these properties.

14 / 53

Huffman Algorithm

Who has guessed ?

Who does remember ?

(a) Code construction (b) Building of code-tree

This produces an optimal prefix-less code (not unique in general).

15 / 53

Synthesis

Huffman produces an optimal code tree and prefix-free code, such that

H(S)

log q
≤ n < H(S)

log q
+ 1

Absolutely optimal code: If n = H(S)
log q

Iff ni = − logq P (si),∀i ⇔ P (si) = q−ni ,∀i.

Reciprocally:

For every set of word lengths ni which respect the Kraft equality, there exists a source
probability distribution qi such that the optimal code has these word lengths and is
absolutely optimal.

What if pi 6= qi? One can show that in this case (binary code)

n = HQ(p1, . . . , pQ) +D((p1, . . . , pQ)‖(q1, . . . , qQ)).

What if q-ary code ?

16 / 53

Data compression algorithms

1. Reversible text compression

• Zero order methods → arithmetic coding

• Higher order methods

• Adaptative methods

• Dictionary methods

2. Image compression

• Multi-dimensional information structures

• Sources of redundancy

• Image transform based methods

17 / 53

1. Reversible text compression

Let us assume binary input and output alphabets.

T : input text (sequence of bits)

U = C(T): coded text (sequence of bits)

`(·): length

Compression rate of C on text T : `(T)
`(C(T))

Realized rate: average of texts T .

Preliminary stage:

Choice of a source alphabet → segmentation of text into a sequence of words

S = {s1, . . . , sm}

Parsing of T : T ≈ si1 · · · sit

18 / 53

Zero order methods

Intuitively: we take into account only the frequencies of the si.

(Higher order: we take also into account correlations among successive symbols)

Non-adaptative: code independent of the position in the text.

(Adaptative: code evolves as the text is screened)

NB. Text screened by increasing order of indexes

⇒ One-dimensional (oriented) structure (time: from left to right)

1. Replacement schemes

Idea: replace each si → wi (Shannon, Fano, Huffman)

2. Arithmetic codes

Replace the whole text: T → r ∈ [0, 1[.

19 / 53

Example: T = 111110111111101110111101110110

Let’s suppose that the si are chosen as follows

s1 = 0
s2 = 10
s3 = 110
s4 = 1110
s5 = 1111,

(1)

⇒ parsing of T gives: T = s5s2s5s4s4s5s1s4s3.

Let the code be C : si → wi

s1 → 1111
s2 → 1110
s3 → 110
s4 → 10
s5 → 0.

(2)

⇒ C(T) = 01110010100111110110.

Thus `(C(T)) = 20 (et `(T) = 30) ⇒ compression rate of 3/2.

20 / 53

Questions

How to chose the si ? (source alphabet)

How to chose the wi ? (code)

NB: both influence the compression rate.

E.g.: if S = {0, 1}, replacement scheme always gives a compression rate ≤ 1.

1. Choice of S

Which types of S make sense ?

We restrict our choice to the sets which are sufficiently rich to parse any sequence of
bits, and at the same time sufficiently small to do the parsing in a single way (no
ambiguity).

This will mean that for such an S, every binary text may be parsed in a single way into
a sequence of symbols in S.

21 / 53

Definition : SPP.

S = {s1, s2, . . . , sm} (binary words) verify the strong parsing property SPP)
⇔ every binary text is representable in the form of a unique concatenation,

T = si1 · · · sitν, (3)

of some of the si and a suffix ν (possibly empty), such that none of the si is a prefix of
ν, and `(ν) < max1≤i≤m `(si).

ν = leaf of the parsing of T by the si.

Uniqueness: If
T = si1 · · · sitν = sj1 · · · sjrµ

with ν and µ having none of the si as prefix and `(ν), `(µ) < max1≤i≤m `(si), then
t = r, i1 = j1, . . . , it = ir, and ν = µ.

Necessary and sufficient condition for SPP: no prefix + Kraft equality

∑
si∈S

2−`(si) = 1. (4)

22 / 53

Avantage prefix-less: efficient and on-line parsing

Avantage completeness: works for any text

Examples :

1. S = {0, 1}L: fixed block lengths

E.g. L = 8 computer files (cf bytes).

Interest : natural redundancy (8 bits for 60 ASCII characters)

⇒ free compression: m = 60.

2. Complete prefix-free codes (cf. codetrees).

NB: we are going to neglect the parsing leaf in what follows...

How to choose the si ? Standard solution : S = {0, 1}8, but...

23 / 53

2. Choice of the (data compression) code

T given in binary, then parsed into Z using a source alphabet S (SPP) :

Z = si1 · · · sin (+ possibly ν)

Choice of a wi for each si, such that `(U) = `(wi1 · · ·win) is minimal

`(U) =

n∑
j=1

`(wij) = n

m∑
i=1

fi`(wi). (5)

NB: mathematically same problem than source coding (pi → fi).

Conclusion: same solutions applicable, and same limitations (Shannon).

Optimal solution: Huffman using the fi.

NB:
If fi change from text to text
→ code changes → must transmit the fi or the code → overhead.
Or we take a fixed source model.

24 / 53

Binary expansion of a number r ∈ [0, 1[

r = lim
n→∞

n∑
j=1

aj2
−j , aj ∈ {0, 1} (6)

The n first bits : → a word a1a2 · · · an.

Notation : 0.a1a2 · · · an =
∑n

j=1 aj2
−j .

Dyadic fraction, if ∃ ‘exact’ finite expansion.

Dyadic fraction ⇒ two binary representations :

0.a1a2 · · · an−11 = 0.a1a2 · · · an−1011111 . . .

Convention

If dyadic: we use finite expansion

Otherwise: ∃ 1 single expansion (infinite).

25 / 53

Shannon code

We have already seen the word lengths (proof of first Shannon theorem), but not the
method invented by Shannon to build the prefix-free code using these word-lengths.

Let the s1, . . . , sm be sorted suchthat f1 ≥ f2 ≥ · · · ≥ fm > 0

(we can remove those sj which do not appear at all after parsing text T .)

Let F1 = 0 and Fk =
∑k−1

i=1 fi, 2 ≤ k ≤ m and denote by `k = dlog2 f
−1
k e.

The Shannon code si → wi consists in using for wi the `i first bits of the binary
expansion of Fi.

Question : is this code prefix-free ?

Convince yourself...

Average length:
`Shannon ≤ Hm(f1, . . . , fm) + 1. (7)

26 / 53

Example: s5s2s5s4s4s5s1s4s3 → f1 = f2 = f3 = 1/9, f4 = f5 = 3/9

Sort: s′i = s5−i+1 → `′1 = `′2 = 2 and `′3 = `′4 = `′5 = 4

F ′1 = 0 = (.00 . . .)
F ′2 = 3/9 = (.01 . . .)
F ′3 = 6/9 = (.1010 . . .)
F ′4 = 7/9 = (.1100 . . .)
F ′5 = 8/9 = (.1110 . . .)

(8)

Shannon code
s5 = s′1 → 00
s4 = s′2 → 01
s3 = s′3 → 1010
s2 = s′4 → 1100
s1 = s′5 → 1110

(9)

Average length is 8/3 = 2.666, to compare with H = 2.113.

Compression rate 5/4 (24 bits to represent the text U).

27 / 53

Fano code (philosophy)

Construction of a codetree in a “top-down” fashion.

Strategy is similar to decision tree building techniques.

We start with source entropy H(S) (given) : how to divide the set of symbols so as to
minimize average conditional entropy ?

H(S) = H(S,Q) = H(S|Q) +H(Q)
⇒ maximize H(Q)
⇒ equilibrate probabilities

Code: decision tree

28 / 53

Fano code (algorithm)

- fi and si sorted by decreasing order of the fi.
- we split according to this order, so as to maximize H(Q):

⇒
∑k

i=1 fi and
∑m

i=k+1 fi as close as possible
- one proceeds recursively with each subset → singletons

Example:
s1 = 3/9 0 0 → 00
s2 = 3/9 0 1 → 01
s3 = 1/9 1 0 → 10
s4 = 1/9 1 1 0 → 110
s5 = 1/9 1 1 1 → 111.

(10)

Average length 20/9 = 2.222.

In general:

One can show that: `Fano ≤ Hm(f1, . . . , fm) + 2.

NB: if for each question H(Q) = 1, then `Fano = Hm(f1, . . . , fm)

29 / 53

Huffman code

Bottom-up construction of the codetree ⇒ optimal.

Example:

Average length 20/9 = 2.222.

We have: `Huffman ≤ Hm(f1, . . . , fm) + 1.

30 / 53

Summary (symbol codes)

What about the choice of the source alphabet si ?

What about the fi ?

Given by a source model

Or estimated from each given text:

- necessity to transmit code (what is the overhead ?)
- necessity to adopt some conventions in code construction algorithms
- is not an on-line method.

Optimality :

`Huffman ≤ min{`Shannon, `Fano} but `Shannon?><?`Fano

What if the pi 6= fi ?

What if we consider the extended source ?

31 / 53

Arithmetic coding (the Rolls)

Idea (stream code)

For a given source text length N .

We associate to each possible text a sub-interval of [0, 1[(they don’t overlap)

Sub-interval defined by a probabilistic model of the source.

C(T) = r ∈ sub-interval, represented in binary with just enough bits to avoid confusion
among different numbers corresponding to different texts.

Small sub-intervals = unlikely texts:

⇒ unlikely texts : need many bits to specify r.

Sub-interval of a text is included in the sub-interval of any prefix of this text:

⇒ recursive (and on-line) construction

32 / 53

Illustration

T = 111110111111101110111101110110 thus f(0) = 6/30 = 0.2 , f(1) = 0.8

33 / 53

How does it work ?

Shannon-Fano-Elias → starting point

Symbol code: cumulative symbol frequency diagram (NB: symbols are in arbitrary
order.)

F i = Fi + 1
2fi.

brc`: keep the ` first bits of the binary expansion of r.

34 / 53

Let us take for r = F i and `i = d− log fie+ 1.

One can check that: 0.wi = bF ic`i in]Fi, Fi+1[.

One can also check that code si → wi is prefix-free.

Average length: ` < Hm(f1, . . . , fm) + 2.

NB: we pay for 1 bit because of the prefix condition, which is imposed by the nature of
a symbol code (can be dropped for a stream code).

By itself not very efficient, but the idea is at the basis of arithmetic coding.

If, instead of coding source symbols we code blocs of source symbols: same idea still
works but the overhead of the rounding and prefix bits become less dramatic.

If we code the whole text (Mega-Block) : no need for the prefix condition: we can
assume `(T) = d− log f(T)e.

⇒ Arithmetic code

35 / 53

How to encode and decode efficiently

NB. For a long text, explicit method doesn’t work.

Let n be the length of the text T .

We use a tree of depth n to represent (implicitly) all possible texts of length n.

The leaves sorted from left to right correspond to the lexicographic order of all possible
texts.

Let n = 5 and let’s suppose that x5 represents our text.

36 / 53

We must determine F (x5) and f(x5) to encode the text.

f(xn): given by the source model (see also subsequent discussion).

F (xn): is in principle laborious, since it is defined as a sum of f(·) over all texts which
are on the left of xn : about 2n−1 terms (in the average).

But, this sum can be decomposed in a different way : sum of the probs of the subtrees
which are on the left of xn : only about n

2 terms.

Let Tx1x2···xk−10 denote the sub-tree pending below the prefix x1x2 · · ·xk−10. The
frequency of this sub-tree is

f(Tx1x2···xk−10) =
∑

yk+1···yn

f(x1x2 · · ·xk−10yk+1 · · · yn) (11)

= f(x1x2 · · ·xk−10), (12)

⇒ coding reduces to the computation of order n values of f(·).

For example, if we use a zero order model, we compute f(xn) =
∏n

i=1 f(xi).

Thus, this improved version will require order n2 operations.

37 / 53

Example:

Binary text of the figure, with f(1) = θ et f(0) = 1− θ.

Order zero hypothesis (successive symbols independent) :
f(s1, . . . , sn) = f(s1) · · · f(sn).

Let us compute the value of F (01110) (x5 on the figure).

We find that

F (01110) = f(T1) + f(T2) + f(T3)
= f(00) + f(010) + f(0110)
= f(0)f(0) + f(0)f(1)f(0) + f(0)f(1)f(1)f(0)
= f(0)(1 + f(1)(1 + f(1)))f(0)
= (1− θ)(1 + θ(1 + θ))(1− θ),

Observation: many identical terms in the f(·) which have to be recomputed.

⇒ Recursive computation of the f(·): linear time complexity

⇒ reduction of the number multiplications/additions by avoiding to recompute common
factors of the fi.

38 / 53

Encoding algorithm

The source symbols are treated sequentially:

1. Let xk be the prefix already treated at stage k, f(xk) the corresponding relative
frequency, F (xk) the cumulative frequency (left trees), and uk the current node.

2. Initialization: k = 0 ; x0 empty string; f(x0) = 1; F (x0) = 0

3. Updating: Let b denote (k + 1)-the bit read of the source text.

• if b = 1, F (xk+1) = F (xk) + f(xk0).

• if b = 0, F (xk+1) = F (xk).

• xk+1 = xkb; f(xk+1) see comments below; current node uk+1 is implicitly updated
(following branch b) from node uk.

4. Iteration: if k < n, we iterate, otherwise the values F (xn) and f(xn) are returned.

5. Termination: the codeword bF (xn) + f(xn)cdlog f(xn)e is constructed.

39 / 53

Computing the f(xk) recursively

Independent symbols: f(xk+1) = f(xk)f(xk+1)

In general: f(xk+1) = f(xk+1|xk)f(xk)

Markov: f(xk+1) = f(xk+1|xk)f(xk)

m-ary source alphabet: cumulate frequencies of all left subtrees at each stage.

Decoding: works symetrically.

The decoder uses the binary expansion of the number r = 0.wi in order to select
branches in the tree.

Same computations, leaving on the left all subtrees such that F (xk) < 0.wi.

At each transition the encoder will produce one source symbol.

The decoding process stops after n symbols

⇒ the decoder needs to be informed of the source message length.

40 / 53

On-line Algorithm

Stopping criterion is problematic.

Transmission of length n vs special end of text symbol “.”

Why on-line ?

Average length

Zero order mode: 1
n bits more than the zero-order entropy limit Hm(f1, . . . , fm).

Remarkably flexible

Can easily adapt to any left-to-right oriented probabilistic source model.

Technicalities (...)

Mainly: computing with the very-long dyadic fractions (high-precision real-number
computations)

E.g: text of 1MB → a real number with about 106 bits precision.

41 / 53

Data compression with higher order models

Instead of using the model of “monogram” f(si), one uses the frequencies of
multigrams f(sk+1) (for an order k model).

Models: either provided a priori or determined from the given text, or from a sample of
representative texts.

If model depends on encoded text : ⇒ overhead (transmit multigram frequencies).

Higher order Huffman encoding

How would you do ? In practice: two possible solutions

1. Code blocs of length k + 1 ⇒ big Huffman tree.

2. Construct mk small Huffman trees for the conditional distributions f(sk+1|sk), and
take into account the previous k symbols to encode/decode ⇒ border effects
(initialization)

Which one is better: no general rule.

42 / 53

Adaptative data compression

These techniques allow us to treat two problems :

1. Non stationary sources: a single code is not good for the whole text.

2. Don’t need to transmit probabilistic model to decoder (on-line...)

Very simple generic idea:

Let T = sN be the text to endode/decode.

When coding (and hence also when decoding) the k-the symbol we use a probabilistic
model determined from the already seen symbole (prefix sk−1).

Model initialized e.g. with a unform distribution, and then updated sequentially after
each source symbol.

NB: idea is also compatible with higher order source models.

43 / 53

Implementation details (...)

Huffman

Since the source model changes after each symbol, the codetree must be recomputed ⇒
not very practical.

Example: a source with six symbols : intitialization of the tree : used to code the first
symbol.

44 / 53

NB: we need some conventions to treat multiple possibilities.

After the next symbols have been read:

What you should remember:

∃ an efficient algorithm to update Huffman trees incrementally (Knuth-Gallager)

Adaptive arithmetic coding (the adaptive Rolls)

Think about it yourself...

45 / 53

Dictionary methods for data compression

Basic idea:

Use a dictionary (set of frequently used words)

Parse text using the dictionary:

→ encode text as a sequence of addresses in the dictionary

NB: similar (but not identical) to source alphabet parsing idea.

NB: but no (e.g. SPP) hypothesis on the contents of the dictionary.

Solutions: use a “library” of specialized dictionaries

E.g. : one dictionary for English texts, one for LATEX source code. . .

Problem: maintenance of dictionaries; does not work for a “random” text

NB: dictionary methods → a generic approach in AI. . .

46 / 53

“Universal” dictionary methods

Rebuild the dictionary on the fly for each text, incrementally as the text is read.

→ “universal” adaptive methods

⇒ algorithms invented by Lempel and Ziv (1977-78)

Two basic methods: LZ77 and LZ78

⇒ numerous implementations (e.g. GNUzip, PKZIP, COMPRESS, GIF. . .)

Basic principle and a few discussions follow.

47 / 53

Basic Lempel-Ziv Algorithm

• one starts with an empty dictionary;

• then, at each step one reads symbols as long as current prefix belongs to the
dictionary;

• the prefix together with the next source symbol form a word which is not yet in the
dictionary ⇒ this new word is inserted in the dictionary

E.g. if T = 1011010100010 . . ., this yields 1, 0, 11, 01, 010, 00, 10,

• The present word is encoded : address of prefix in the dictionary + last bit

Let c(n) denote the address (integer) in the dictionary. We have the following for our
example text:

source words λ 1 0 11 01 010 00 10
c(n) 0 1 2 3 4 5 6 7
c(n)binary address 000 001 010 011 100 101 110 111
(address, bit) – (000,1) (000,0) (001,1) (010,1) (100,0) (010,0) (001,0)

⇒ encoded text: U = 0001, 0000, 0011, 0101, 1000, 0100, 0010.

48 / 53

Why does this idea allow to compress ?

Because the size of the dictionary grows “slowly” with the size of the source text.

Let c(N) be the number of encoded entries for a text of length N .

⇒ dlog c(N)− 1e+ 1 bits for every word

⇒ in average: c(N)(log c(N)+1)
N bits/symbol

One can show that: ⇒ asympotically limn→∞
c(n)(log c(n)+1)

n = H(S)

almost surely for messages of any stationary ergodic source

⇒ “universal” algorithm

49 / 53

On-line character:

problem = address coding

Solution ⇒ use current dictionary size to determine number of bits.

source words λ 1 0 11 01 010 00 10
c(n) 0 1 2 3 4 5 6 7
c(n)binray address 000 001 010 011 100 101 110 111
dlog2 c(n)e - 0 1 2 2 3 3 3
(address, bit) – (,1) (0,0) (01,1) (10,1) (100,0) (010,0) (001,0)

⇒ U = 1, 00, 011, 101, 1000, 0100, 0010

Adaptativity: ⇒ local dictionary

Variants: dictionary management, address coding (e.g. Huffman)

Relative optimality: ⇒ not very competitive in general but very robust (no
assumption about source behavior).

The asympotic performances are reached only when the dictionary starts to become
representative: contains a significant fraction of sufficiently long typical messages.
⇒ for very long texts

50 / 53

Summary of text compression :

we have seen the state of the art.

Complementarity of good source models and good coding algorithms ⇒ need both

Codes of fixed (given) word lengths: ⇒ conceptual tool for AEP

Symbol codes: Huffman

Stream codes:

1. Are not constrained to use at least one bit per source symbol
⇒ work also for a binary source alphabet

2. Arithmetic coding: a nice probabilistic approach (source modeling)
⇒ allow one to exploit a priori knowledge about the real world.

3. Lempel-Ziv: universal method, able to learn “everything” about a stationary ergodic
source, at the expense of more data (longer messages).

Data compression ' Automatic learning

51 / 53

Further reading

• D. MacKay, Information theory, inference, and learning algorithms

• Chapters 1, 5, 6, 7

52 / 53

Frequently asked questions

• Give examples of reversible data compression methods and explain their advantages
and drawbacks.

53 / 53

	(Stochastic processes and models for information sources)
	(First Shannon theorem: data compression limit)
	Overview of state of the art in data compression
	Relations between automatic learning and data compression

