University of Liege
Stochastic Methods Department

ATDIDT User Guide

(versions 2.2 and 3.0)
- Draft 1.0 -

21 February 2002

Cristina Olaru

1 INTRODUCTION TO THE FIELD...otiiiiieiee e 6
L1 DATA MINING weeetieiestiesttete sttt et sttt et se et sae e s be e b e e e e ss e e besaeesreenseeneeeneenbeennennnenes 6
111 Definitions and ODJECHIVESccveiiiirereseeee e 6
112 T PIOCESS. ... ettt ettt e et e s b e et e e sbe e et e e sbeeenseesreeenreenreeanns 7
12 MATIN DIM TASKS. ..ttt ettt e s emn e s nr e e s nn e e sneeesneeesaneeesnnes 8
1.3 DM SUCCESS FACTORS....cccttiteeteetesieesseessesseassessesseessesssssssessesssesssssseessesssesseessesssssseenes 9

2 INTRODUCTION TO THE SOFTWAREooiiiiieeeeeee e e 11
2.1 ABOUT THE SOFTWAREcutiiteeteateestesssesseesseesesseasseesesseesseensesseessessessesssesnsesssessesnses 11
2.2 SOFTWARE ORGANIZATIONeiutteuteesuesesteesseeesessseessseessseassessassssessssssssessnsssssessnsessses 11
2.3 AVAILABLEMETHODSIN ATDIDT 3.0. .t 12
24 GET STARTED. ATDIDT RUN AND DATABASE LOADueteieeieeeieesieeesseeseeesnessnesneeas 14
24.1 Sart runNiNg ATDID T ... e ere e 14
24.2 (D= 1721 02 1S S Lo 7 o 1SS 14
24.3 RESEAIT ATDID T ...ttt sttt s 16

3 DATA HANDLING .. .ottt sttt nne e 17
3.1 OBJIECTS SET SELECTION ...ciiteetieutesteesseesesseesseesesseesseessessssssesssesssessesssesssesseessesnsesseenes 17
3.2 ATTRIBUTES SELECTION ...uuttiiuireteesueeaseesueeaseassseassessaesaseasssssssessnsssssesssseessesssesssessnns 17
321 TYPES Of ALITIDULES ... 17
3.2.2 AL TDULES VAIUES ...ttt esneenaesneenneenes 17
3.2.3 T o LU 63T K= o1 Lo o [P 18
324 OULPUL SEIECTION.......eeieeeeieeeeee ettt bbbttt e 19
3.3 DEFINENEW ATTRIBUTES ...ueitieutesteesteesesseesseesesseesseessesssssseessesssessesssssssesseessessssseenes 20
34 HANDLING TEMPORAL ATTRIBUTES. .. ctttiteteiteeearressseessseessssesssseeessseeesassesssesssnnenesns 21

4 SOFTWARE DM METHODS........oooi ittt s 22
4.1 GRAPHICAL TOOLS. ... utteiieeieesieeeteesieesteesieeesseesaeeebeesseessessaeeabeesnneeaseesaneeanesanneenseas 22
4.1.1 [TS 00 =T o U 22
4.1.2 Conditional NISEOGIramM.........ccoiiiiiireee e 22
4.1.3 Multiple conditional hiStOgrams............cccceveeieeieeeseese e 23
4.1.4 S o= L o] [0 SRS P PP 24
4.1.5 Conditional SCatter-PlOt.........c.cccueieeiecieseere e 24
4.1.6 Colored SCALLEr -PlOL.........eeeeeeieriee e e 24
4.1.7 Scatter-plot WIth VAIUESc.oocee et 25
4.1.8 Cumulative disStriDULIONccuoieeieee e 25
4.1.9 (=0T | T =T o T 26
4.1.10 TEMPOIAl CUIVES......c.eiieeeieiete ettt n e e e 26
4111 Temporal curvesfor aset of ODJECES.......cccveveieeri e 27
4.2 DECISION TREE......ctiiittiiiitiiesitieesiteesssteessssessssesssssesssssesssssesssssesssssesssssessnsesssnsenssnsenesns 31
4.2.1 LA 7= L S L TSRS PTPPRRPRN 31
422 Selections to make before Starting...........oeoeererereneneseseeee e 31
4.2.3 APPIY the MELNOU ..o e 31
4.2.4 TeSEtNE MOGEL ... e 32
4.2.5 IMProve the MOE!oovi i 32
4.2.6 Results visualization / interpretation...........cocceeeeeererenese e 34

4.2.7 Other POSSIDIE ACIONS.......ccviiiiececee e ere e 35
4.3 REGRESSION TREEciitttiitiatiasetasteesieeeteasseeaseessessseassesaseessessaseessesssesssessnsesssessnns 40
431 L= L S 1 SRS 40
4.3.2 Selections to make before Starting.........cooeeerererene e 40
4.3.3 APPIY the MELNOAociicie e 41
4.34 TESEtNE MOGEL ... e 41
4.35 IMProve the MOE]cooviiiece e 42
4.3.6 Results visualization / interpretation...........coceeeerenenenesesesesee e 43
4.3.7 Other POSSIDIE ACLIONS.......ccviiiieciecee e 44
44 LINEAR REGRESSIONoiiiiiiiiiiiieeitieeateeessieeesteaesseessseesssseesamsessamneesneeesaneeesneeesnneeas 49
44.1 LA L S 1 SRS 49
442 Selections to make before Starting.........cooeeerereresese e 49
4.4.3 APPIY the MELNOAccie s 49
4.4.4 TESEtNE MOGEL ..o e 50
4.4.5 Results visualization / interpretation..........ccoeeccveiee e 50
4.5 LINEAR HINGES MODELceiiiiiiiiiieaieeesiee et e s smeeesneeesneeesneeesnenenns 52
451 A7 L S 1 USSR 52
452 Selections to make before Starting.........cooceeerererencseseseeee e 52
4.5.3 APPIY the MELNOAcocie s 52
454 TESEtNE MOTEL ... e 52
455 Results visualization / interpretation..........ccoeecceeieecie e 53
4.6 REGRESSION TREE BAGGINGccutiiiiiiieiiie ettt sne e s e s e sne e snee e 95
4.6.1 LA L S 1 RSSO 55
4.6.2 Selections to make before Starting.........cooceeerereneneseseseeee e 55
4.6.3 APPIY the MELNOAccie e e 56
4.6.4 TESEtNE MOAEL ..o 56
4.6.5 Results visualization / interpretation............cceeeeeceeeeesesceeseese e eee e 56
4.7 REGRESSION TREE BOOSTING.c.utieteisieesieeseeesteesseessesseeesseesseasseesseessseesssesssessnneens 58
4.7.1 LA 7= L S L SRRSO 58
4.7.2 Selections to make before Starting...........oeeerererene e 58
4.7.3 APPIY the MELNOUc..ecececeee e e 59
4.7.4 TeSEtNE MOTEL ... e 59
4.7.5 Results visualization / interpretation............ccoeeieeceeeeesesiee e 59
4.8 MULTILAYER PERCEPTRONociiiiiiitiesiieaieeseessseesseesseesseesseesseessesssesssesssessnsesssessnns 61
4.8.1 LA 7= L S L PSSP 61
4.8.2 Selections to make before Starting...........oceerererenereseeee e 61
4.8.3 APPIY the MELNOM ... e e 62
4.8.4 TeSEtNE MOGEL ... e 63
4.8.5 Results visualization / interpretation............ccoeeeeeceesieesescee e 63
4.8.6 FEAtUreS EXIrACTION. ... coitieie et 64
4.8.7 Other POSSIDIE ACHIONS.......c.ccciiiiecece e 66
4.9 K-NEAREST NEIGHBORS.......ceiiteeiuteeteaseeesseeseeesseeaseassesssessseessssassessssssssessseessesssesns 72
49.1 L7 L S L SRS 72
49.2 Selections to make Defore Starting...........oeoeerererencseseeee e 72
4.9.3 APPIY the MELNOMc..ececeeee e e e 73
494 TeSEtNE MOTEL ... e 73
4.9.5 Results visualization / interpretation............ccoeeveeeesieenesiee e 74

4.9.6 Other POSSIDIE ACIONS.........oeeiieee e e 74

.10 KAIMEANS ..ottt ettt ettt b et ae e st e e e e e bt e b e sae e nhe e e e an e ne e b e nae e 78
g 0 O VAV = = S 78
4.10.2 Selectionsto make before starting........ccocceevee i ciie s 78
4.10.3 APPlY the MEthod ..o e 78
4.10.4 Resultsvisualization / interpretation..........ccoevcveieecieevee e 79

g B R O @ 1Y 1= Y =7y AV = 7. = S 8l

5 OPERATIONAL, PRACTICAL AND USEFUL INFORMATIONcccceevrierrnenne 82

5.1 DY B PRSI 82

5.2 IDEASFORHYBRID METHODS.ctiuteteetesseesteesesseasseesessesssesnsesseessesssessssssesssessesssesnses 82

53 USEFUL FUNCTIONS/COMMANDSoctteterueesreeseeaseesseessessesssesssessesssesssessesssesssessesssesnses 83

6 USER INTERFACE ...ttt s st sne s 85
T REFERENCES ettt 85
S N o 1 1) SR 86

8.1 EXAMPLE OF DATABASE. ... cttiii ittt e sittee sttt e st e e st e e ssssae e e s s sssae e s s snae e s s snsseeessanns 86
811 7= 1= W = S 86
8.1.2 Database declaration file — long-way database load.............ccccovevireniiinnnne. 87

8.2 EXAMPLE OF NON-LINEAR FUNCTION DETECTED BY A MLP MODELcccccvrerniennee. 88
8.2.1 Nonlinear regression (MLP of FIQUIe 32)cccooeiiiiniiniiieenenc e 88

8.2.2 Nonlinear classification (MLP of Figure 33)cccccoiieviiiiicie e 89

About this document

This document is confidential.

This guide intents to be a useful tool for those persons who are:

Beginnersin the Data Mining field and/or beginner users of ATDIDT software;
Current users of ATDIDT of previous versions of the tool;

Individuals interested in a particular method of the software;

Peoples (organisms) interested in a software evaluation,

People interested in trying out various data mining methods in the context of a demo
loaded-in database (Tutoria version of the software).

The document covers al ATDIDT old and new functionalities, with an emphasis on
operational aspects. For each data mining method practical aspects are distinguished: the
proper sequence of actions to be done, parameters to choose, which are the “seen” and
“unseen” effects of the method use, how to interpret the graphics/results, all completed by
practical counsels. Some adjacent Lisp and Emacs tips are also included. Where possible,
general features of all methods are grouped together, but still one may find redundant
information in this guide, mainly for reasons of completeness at method level. The user
interested in a certain Data Mining method may directly read the corresponding chapter,
hyperlinks helping him to find in other chapters subsequent information if necessary.

The guide will be soon updated with a section dedicated to the user interface.

1 Introduction to the field

1.1 Data Mining

1.1.1 Definitions and objectives

‘Data Mining’ (DM) is a folkloric denomination of a complex activity, which aims at
extracting synthesized and previously unknown information from large databases. It denotes
also a multidisciplinary field of research and development of algorithms and software
environments to support this activity in the context of real life problems, where often, huge
amounts of data are available for mining. There is a lot of publicity in this field and also
different ways to see the things. Hence, depending on the viewpoints, DM is sometimes
considered as just a step in a broader overall process called Knowledge Discovery in
Databases (KDD), or as a synonym of the latter as we do in this guide. Thus, according to this
less purist definition DM software includes tools of automatic learning from data, such as
machine learning and artificial neural networks, plus the traditional approaches to data
analysis such as query-and-reporting, on-line analytical processing or relational calculus, so as
to deliver the maximum benefit from data.

The general purpose of data mining is to process the information from the enormous
stock of data we have or that we may generate, so as to develop better ways to handle data and
support future decision-making. Sometimes, the patterns to be searched for, and the models to
be extracted from data are subtle, and require complex calculus and/or significant specific
domain knowledge. Or even worse, there are situations where one would like to search for
patterns that humans are not well suited to find, even if they are good experts in the field. For
example, in power systems related problems one is faced with high dimensional data sets that
cannot be easily modeled and controlled on the whole, and therefore automatic methods
capable of synthesizing structures from such data become a necessity.

By definition, data mining is the nontrivial process of extracting valid, previously
unknown, comprehensible, and useful information from large databases and using it. It is an
exploratory data analysis, trying to discover useful patterns in data that are not obvious to the
data user. DM takes 2 forms: verification driven data mining, which extracts information in
the process of validating a hypothesis postulated by a user, and discovery-driven data mining,
which automatically extracts information novel for the user.

What is a database (DB)? It is a collection of objects (called tuples in the DB jargon,
examples in machine learning, or transactions in some application fields), each one of which is
described by a certain number of attributes, which provide detailed information about each
object. Certain attributes are selected as input attributes for a problem, certain ones as outputs
(i.e. the desired objective: a class, a continuous value...).

Usually, one of the first tasks of a data mining process consists of summarizing the
information stored in the database, in order to understand well its content. This is done by
means of statistical analysis or query-and-reporting techniques. Then more complex
operations are involved such as to identify models that may be used to predict information

7

about future objects. The term “supervised learning” (known as “learning with a teacher”) is
implied in mining data in which for each input of the learning objects, the desired output
objective is known and implicated in learning. In “unsupervised learning” approaches
(“learning by observation”) the output is not provided or not considered at all, and the method
learns by itself only from input attribute values.

What is a data miner? - some person, usually with background in computer science or in
statistics and in the domain of interest, or a couple of two specialists, one in data mining, one
in the domain of interest, able to perform the steps of the data mining process. The miner is
able to decide how much iterative to be the whole process and to interpret the visual
information he gets at every sub-step.

1.1.2 The process

In general, the data mining process iterates through five basic steps:

o Data selection. This step consists of choosing the goal and the tools of the data mining
process, identifying the data to be mined, then choosing appropriate input attributes and
output information to represent the task.

o Data transformation. Transformation operations include organizing data in desired ways,
converting one type of data to another (e.g. from symbolic to numerical) defining new
attributes, reducing the dimensionality of the data, removing noise, “outliers”,
normalizing, if appropriate, deciding strategies for handling missing data.

o Data mining step per se. The transformed data is subsequently mined, using one or more
techniques to extract patterns of interest. The user can significantly aid the data mining
method by correctly performing the preceding steps.

o Result interpretation and validation. For understanding the meaning of the synthesized
knowledge and its range of validity, the data mining application tests its robustness, using
established estimation methods and unseen data from the database. The extracted
knowledge is also assessed (more subjectively) by comparing it with prior expertise in the
application domain.

o Incorporation of the discovered knowledge. This consists of presenting the results to the
decision maker who may check/resolve potential conflicts with previously believed or
extracted knowledge and apply the new discovered patterns.

The whole data mining process is iterative, interactive, and very much a trial and error
activity. DM techniques are different one form another in terms of problem representation,
parameters to optimize, accuracy, complexity, run time, transparency, interpretability. The
quality of the extracted knowledge is a function both of the effectiveness of the data mining
techniques and the quality (often size) of the available database.

8

Visualization plays an important role. It may provide preliminary understanding of
data, domain specific visualizations or can present the results of the mining techniques.

From the point of view of software structure, there are two types of possible
implementations:

o Data mining “in place” (version 3.0 of ATDIDT): the learning system accesses the data
through a data base management system (DBMS) and the user is able to interact with both
the database (by means of queries) and the data mining tools. The advantage is that the
approach may handle very large databases and may exploit the DBMS facilities (e.g. the
handling of distributed data).

o Data mining “offline” (version 2.2 of ATDIDT): the objects are first loaded in the DM
software, with a translation into a particular form, outside the database, and the user is
interacting mainly with the data mining software. They may be faster but are generally
limited to handle medium sized data sets that can be represented in main memory (up to
several hundred Mbytes).

1.2 Main DM tasks

Depending mainly on the application domain and on the interest of the miner, one can
identify several types of data mining tasks for which data mining offers possible answers. We
present them in the order they are usually implied in the process.

Summarization. It aims at producing compact and characteristic descriptions for a given set
of data. It can take multiple forms: numerical (simple descriptive statistical measures like
means, standard deviations...), graphical forms (histograms, scatter plots...), or the form of
“if-then” rules. It may provide descriptions about objects in the whole database or in selected
subsets of it. Example of summarization: ““the minimum unitary price for all the transactions
with energy is 70 price units™.

Clustering. A clustering problem is an unsupervised learning problem, which aims at finding
in the data clusters of similar objects sharing a number of interesting properties. It may be
used in data mining to evaluate similarities among data, to build a set of representative
prototypes, to analyze correlations between attributes, or to automatically represent a data set
by a small number of regions, preserving the topological properties of the original input space.
Example of a clustering result: ““from the seller B point of view, buyers A and E are similar
customers in terms of total price of the transactions done in 1998.

Classification. A classification problem is a supervised learning problem where the output
information is a discrete classification, i.e. given an object and its input attributes, the
classification output is one of the possible mutually exclusive classes of the problem. The aim
of the classification task is to discover some kind of relationship between the input attributes
and the output class, so that the discovered knowledge can be used to predict the class of a
new unknown object. Example of a derived rule, which classifies sales made early in the day
(a sale is said to be early if it was made between 6 a.m. and 12 a.m.): ““if the product is energy
then the sale is likely to be early”.

9

Regression. A regression problem is a supervised learning problem of building a more or less
transparent model, where the output information is a continuous numerical value or avector of
such values rather than a discrete class. Then given an object, it is possible to predict one of its
attributes by means of the other attributes, by using the built model. The prediction of numeric
values may be done by classical or more advanced statistical methods and by *“symbolic”
methods often used in the classification task. Example of a model derived in a regression
problem: “when buyer A buys energy, there exists a linear dependence between the
established unitary price and the quantity he buys: quantity =170-1.5* price”.

Dependency modeling. A dependency modeling problem consists in discovering a model
which describes significant dependencies among attributes. These dependencies are usually
expressed as “if-then” rules in the form “if antecedent is true then consequent is true”, where
both the antecedent and the consequent of the rule may be any combination of attributes,
rather than having the same output in the consequent like in the case of the classification rules.
Example: such a rule might be ““if product is energy then transaction price is larger than 2000
price units™.

Deviation detection. This is the task focusing on discovering the most significant changes or
deviations in the data between the actual content of the data and its expected content
(previously measured) or normative values. It includes searching for temporal deviations
(important changes in data with time), and searching for group deviations (unexpected
differences between two subsets of data). As an example, deviation detection could be used in
order to find main differences between sales patterns in different periods of the year.

Temporal problems. In certain applications it is useful to produce rules that take into account
explicitly the role of time. There are data bases containing temporal information which may be
exploited by searching for similar temporal patterns in data or learn to anticipate some
abnormal situations in data. Examples: “a customer buying energy will buy spinning reserve
later on)”, or “if total quantity of daily transactions is less than 100 price units during at least
1 month for a client, the client is likely to be lost™.

Causation modeling. This is a problem of discovering relationships of cause and effect
among attributes. A causal rule of type “if-then” indicates not only that there is a correlation
between the antecedent and the consequent of the rule, but also that the antecedent causes the
consequent. Example: “decreasing energy price will result in more sold energy daily™.

1.3 DM success factors

The success of mining some dataisinduced by alist of factors:

The right tools. A distinctive feature of a DM software is the quality of its algorithms, the
effectiveness of the techniques, and sometimes their speed. In addition, the efficiency of using
the hardware, the operating system, the database resources and the parallel computing are
influencing the process. Moreover, it turns out that the particular set of tools useful in a given
application are highly dependent on the practical problem. Thus at the prototyping step, it is
useful to have available a broad enough set of techniques so as to identify interesting

10

applications. However, in the final product used for actual field implementation it is often
possible to use only a small subset of the latter tools. Customizing data mining techniques to
the application domain and using methods that are reliable means to the proposed goal may
enhance the process of extracting useful information.

The right data. The data to be mined should contain information worth mining: consistent,
cleaned, and representative for the application. Of course, it is useless to apply data mining to
an invalid database with high measurement or estimation data errors, or to try to precisely
estimate numerical outputs that present a priori high noise. A data mining tool ideally explains
as much information as is stored in the data which is mined (a derived model is strongly
dependent on the learning set used), and sometimes it is not what is in the data that matters for
an application (wrong attributes, wrong selected sample).

An important part of data mining result errors are due to uncertainties in modeling and
generation of objects in certain databases in discordance with the real probabilities of
phenomena appearances in the system. That is why the data mining errors often do not have a
meaning by themselves; they just provide a practical means to compare efficiencies of
different criteria applied to the same database.

Theright people. Regardless of what many producers of data mining tools claim, data mining
is not (yet) an “automatic” operation with little or no human intervention. On the contrary, the
human analyst plays an important role, mostly in the areas of data selection and data /
knowledge interpretation. The data miner should have an understanding of the data under
analysis and the domain or industry to which it pertains. It is more important for the mining
process to embrace the problems of the application meant to solve, than to incorporate in the
data mining software the hottest technologies.

The right application. Almost always a problem well posed is already a partially solved
problem. It is important to clearly define the goals and choose the appropriate objectives so as
to yield a significant impact on the underlying decision making process.

The right questions. An important issue: how does the data miner structure a data analysis
problem so that the right question can be asked, knowing how easy and useless it is to give the
right answer to the wrong question?

The right sense of uncertainty. Data miners are more interested in understandability than
accuracy or predictability per se. Often, even the best methods of search will leave the data
miner with a range of uncertainties about the correct model or the correct prediction.

2 Introduction to the software

2.1 About the software

ATDIDT software is a “Data Mining” software. It has been developed at the University of
Liege for research, teaching and applications of automatic learning. The acronym stands for
"Acl Top Down Induction of Decision Trees". The software is partly written in Allegro
Common Lisp (ACL) and partly in GNU Emacs Lisp.

Requirements. For running ATDIDT software on your machine you need to have installed,
besides GNU Emacs (version 19.29 or higher) and ACL, also the next auxiliary tools, freely
distributed on the web: GUNZIP, GHOSTVIEW, XFIG (3.2 of higher), TRANSFIG (same
version as XFIG), NETSCAPE and ACROBAT READER. Recent versions of Linux
distributions contain all what is required.

Copyright. University of Liege owns the software. Only authorized people may use this
software. Of course, if you use this software, you do it on your own responsibility.

2.2 Software organization

The software has three main parts:

Data Handling allows manipulating partially or entirely one or more databases, to prepare
them off-line for loading, to load them every time one needs to explore them. Also data
selection and data transformation steps of the data mining process are concerned here: a set of
attributes as inputs, the task output variable, and a sample of objects (a part of the loaded
objects) are selected, and new attributes are defined.

Graphics allows the visualization task: preliminary brute data visualization, customizable
representation of objects, method results visualization.

Automatic L ear ning allows the interactive and iterative use of data mining methods. Some of
these methods will produce a model, which expresses the relationships between the input
attributes and the output variable. This model is added on-line to the database as a new
functional attribute, which can be used in turn as input or output variable in subsequent steps
of the data mining process.

Data mining process starts always with the data handling stage. Then any automatic learning
method may be tried. Graphics part is needed at every intermediary stage of the process, be it
data handling or automatic learning.

12
2.3 Available methods in ATDIDT 3.0

Table 1 synthesizes all the learning methods available in ATDIDT software. Following the
commands organization within the software, we grouped them into six categories of methods.
For each method the supported inputs and outputs are indicated, together with the type of the
learning problem (task) it is able to accomplish.

Besides these methods, the software supports hybrid methods.

Tablel

METHOD INPUTS OUTPUTS LEARNING
METHODS TASK
Dendrogram non-constant numerical - Clustering
Histogram symbolic and numerical --, symbolic or numerical Summarization
Graphical Tools Cumulative Distribution symbolic and numerical - Summarization
Scatter -plot symbolic and numerical --, symbolic or numerical Summarization
Temporal Curves temporal -- Summarization
. Decision Tree symbolic and numerical symbolic Classification
Treelnduction _ . _ _ .
Regression Tree symbolic and numerical numerical Regression
] _ Linear Regression non-constant numerical numerical Regression
Linear Regression _ _ 1 _ _ _
Linear Hinges Model non-constant numerical numerical Regression
_ MLP numerical symbolic Classification
Non Linear) : .
. MLP numerical numerical Regression
Regression _ . :
Features Extraction numerical - Clustering
KNN numerical symbolic Classification
Similarity KNN numerical numerical Regression
K-Means numerical - Clustering
_ Regression Tree Bagging® non-constant numerical numerical Regression
Meta Learning _ _ . _ .
Regression Tree Boosting non-constant numerical numerical Regression

1 Only inversion 2.2 of ATDIDT
20Only inversion 3.0 of ATDIDT

2.4 Get started. ATDIDT run and database load

Cautions. ATDIDT produces alot of output files, temporary or permanent. The names of the
files have been chosen so as to limit the risk of destroying other files. However, we
recommend that you “create a new empty directory” and start the software while being in this
directory, in order to make sure that none of your own files is “destroyed”.

2.4.1 Start running ATDIDT

Once positioned in the directory of your choice (with rights to write on it) you tape in an
xterm window one of the next commands:

- For ATDIDT-2.2:
/sst5/soft/atdidt/bin/atdidt.script &

- For ATDIDT-TUTORIAL-2.2:
/upl/lwh/gtdidt-tutorial/gtdidt-demo.script &

- For ATDIDT-TUTORIAL-3.0:
/upl/lwh/gtdidt-tutorial/atdidt-tutorial.script &

where you change the path if different in your case.

2.4.2 Database load

The first thing to do in order to use the program is to load a database. Once the data is loaded,
the data mining process is followed as in section 1.1.2. All the data mining techniques may be
applied iteratively and independently one of each other.

ATDIDT-TUTORIAL-2.2

In the tutorial version, a database is already loaded into the program. The user skips therefore
this database-loading step.

ATDIDT-2.2

This ATDIDT version is organized as an offline data mining software. The database is loaded
once in the beginning and kept entirely in the main memory during the data mining process.

There are two possible ways of handling a database loading:
L ong-way. It presumes that the user dispose of / create two types of files:
- Data files - files where explicit attribute values are stored (see example in appendix

8.1.1, long-way database load). These files are organized as tables where a column is
associated with an attribute and a raw with an object. There are two possible versions

15

of these datafiles according to insertion of not of the object numbers. The user already
disposes of these files when he starts the data mining process.

- Database declaration file — a lisp code file, providing information about what explicit
attributes have to be loaded (name, short doc, type, default value (optional), possible
values), in which format and what are their corresponding data files; the file may also
define functional attributes. The file may load only a part of the available attributes or
a part of the available objects provided in the data files. The user does not dispose of
this file when he gets started. He has to create it. See in appendix 8.1.2 an example of a
database declaration file. The possible attribute types may be found in section 3.2.1

This database declaration file is then loaded using the command :LOAD_DB, in menu
:DATA_BASE.

Short-way. It presumes that the user dispose of / create only one type of file:

- Data files - files where explicit attribute values are stored (see example in appendix
8.1.1, short-way database load). They are called javadb files. These files are organized
exactly as in the long-way case, plus the following adding:

0 The lines starting with a semicolon are comments and may appear anywhere in
the file, except for the first line which is mandatory and must be exactly as in
the provided example;

The first non-comment line must give the database name;

0 The second non-comment line contains attribute names immediately followed
by their type: numerical (for ordered numerical attributes) or symbolic (for
qualitative or ordered symbolic attributes);

o Both versions 1 and 2 are possible, being not mandatory to add the object
names, given that anyway if no name is specified, it will be computed on the
fly based on the line number.

o

These data files are then loaded using the same command :LOAD_DB, in menu
:DATA_BASE.

Once the database has been loaded using this short way, the user may type the following lisp
command in the command line (lisp buffer):

(save-db)
The following two files are automatically created and located in the current work directory:
- Data file (database-name.att, e.g. OMIB.att) in the version 2 of short-way format
- Database declaration file (database-name.db. e.g. OMIB.db) as in the appendix

example

At any new session, the database loading may be effectuated by the long-way loading of this
new created database declaration file.

16

If the user defines new functional attributes or redefinesymodifies old ones (as indicated in
section 3.3) and adds them to the new created database declaration file, once re-loaded thisfile
using the long-way loading, the new attributes will be also considered, at any new session.

Get data file in the right format. The user may not necessarily dispose of a data file in text
format or javadb as we indicated in appendix. If data is stored in Microsoft Excel or Access
format, the user has to save these files in “commas” format data-file.cvs and then type in an
xterm window the command

csv2jdb.pl -i data-file.csv -o data-file.dat

in order to obtain the data in javadb format. csv2jdb.pl script is written in Pearl. It interprets
the first raw of the Microsoft table as the attribute names. For every column, i.e. explicit
attribute, the script asks a confirmation concerning the attribute type (numerical or symbolic)
and makes a conversion type if necessary, from numerical to symbolic, by adding a prefix “S-
“ to numerical values.

ATDIDT-3.0

This ATDIDT version is organized as an in place data mining software. The database is
accessed every time some data is necessary for a data mining manipulation. The loading
process comports two stages:

- Preparing the database. The user disposes of a javadb data file format (called external
format), applies the command :PREPARE_DB and gets internal format files, a
compiled version of the database. This step is accomplished only once for a database,
not for every new ATDIDT session. Once the internal format files obtained, the user
do not need anymore the external format files. Among the generated files there is one
called DBNAME-project.xml that represents the project description file.

- Loading the database. The user applies the command : LOAD_PROJECT in order to
load the project description file DBNAME-project.xml. This step has to be done at each
new session of the program. Presently, the software core does not manage more than
one database per session and does not check for conflicts between attribute names.

In this way, the attribute values are progressively loaded in the main memory when they are
needed for a data mining technique. This permits a faster manipulation of the data at the
loading step. It permits to configure the memory space allocated to the data loading and to
reduce the garbage collection waste of time. It allows the handling of larger and almost
unlimited-size databases.

2.4.3 Restart ATDIDT

ATDIDT 2.2 command is:
- popup menu GTDIDT, submenu RESTART
- emacs menu :RESTART.

3 Data handling

3.1 Objects set selection

Once a database is loaded into the program, the user must select an objects subset of the
loaded data, as being the current working set for the most data mining techniques and
graphics. The global variable that contains the selected objects set on which the methods are
trained or the graphics are drawn, is called *1earning-set* (LS). The global variable
that contains the selected objects set on which the methods are tested is called *test-set*®
(TS).

It is mandatory to a priori choose *1earning-set* of objects before using one method.
*test-set® must be defined only if the user needs to test its methods.

ATDIDT 2.2 commands are:
- popup menu :Selections, submenu Select Tlearning set and Select
test set,or
- emacs menu :SUBSETS_SELECTION, submenus :LEARNING_SET and
:TEST_SET

Commands for learning and/or test set selection are found also in every submenu of a data
mining method that uses the two variables. Both selections have the same syntax, even if they
use different commands. Table 2 collects all the possible alternatives for this objects set

selection. In the sequel, we will call LS the variable *1earning-set* and TS the variable
*test-set®.

3.2 Attributes selection

3.2.1 Types of attributes

» Explicit attributes. attributes values are specified explicitly for each object in some
datafile;

» Functional attributes: attributes values are computed from the values of other (explicit
or functional) attributes. They are defined by the user (as lisp functions) or
automatically generated by the learning methods.

3.2.2 Attributes values

e Ordered: numerical (integer or real valued e.g. pu, qu, cct-sbs, pu+b*qu) or symbolic
(e.g. cct-disk)

* Qualitative: unordered symbolic (e.g. security)

» Temporal: numerical time series or sequences of events (e.g. delta)

18

e Any lisp type: a complex number, a scalar attribute function of a temporal one (e.g.

delta-after-fault), etc.
Table 3 shows the correspondent type of each attribute in the database declaration file example

of appendix 8.1.2.

Table 2

Command syntax I Selected objects Examples

(first n) n first objects of the entire (first 100)
database (first 100t)
(first n set) n first objects of set (first 50 *learning-set*)
(last n) n last objects of the entire (last 100)
database (last 100 t)
(last n set) n last objects of set (last 50 *test-set*)
(random n) n objects selected randomly (random 50)
from the entire database
(random n set) n objects selected randomly (random 500 *|earning-set*)
from set
(not-in set) all the objects which are not (not-in *learning-set*)
in set

(member 01 02 ...)

objects 01, 02 ...

(member opl o0p250 opl2)

(such-that att cond set)

objects from set for which
att respects the condition
cond

(suchthat pu (float 1000.0 1100.0) t)
(suchthat security (member secure)
learning-set)

(from n1 n2)

objects from n1to n2

(from 5001 6000)

(union setl set?2)

union of objects from setl
and set2

(union (first 10) (last 10))
(union *learning-set* *test-set*)

(atnode node of dt in set)

objects from set which
would go to node node of dt
tree

(atnode “L1” of “DT1” in t)

objects from set

learning-set
pruning-set
test-set
validation-set
last-selected-subset
classification-errors
knn-reference-set
t

3.2.3 Inputs selection

It is mandatory to a priori choose the list of attribute inputs before using the majority of
methods. The global variable that contains the selected attributes considered as inputs is called
*candidate-attributes®.

19

ATDIDT 2.2 commands are:
- popup menu Atts, submenu Select Attributes,or
- emacsmenu :ATTRIBUTES_SELECTION, submenu : CANDIDATE_ATTRIBUTES

With these commands, all the available attributes are displayed and any attribute may be
added or deleted from the list of inputs. Command for candidate attributes selection is found
also in every submenu of a data mining method that uses this variable.

If there exists predefined lists of attributes, the user may use the command
:ATTRIBUTES_CHOICE from menu :ATTRIBUTES_SELECTION in order to directly
select as inputs one predefined such list or to merge the current list of inputs with a predefined
one.

When applying the majority of data mining techniques, the list of *candidate-
attributes® is expanded by replacing tempora attributes by a list of scalar ones and
filtered to remove attributes which type is not handled by the technique.

Table3
Attributetype Database declaration type
ordered ordonne
linear-combination
qualitative qualitatif-quinlan

temporal (ordonne time)

lisp type ordonne

etc.

3.2.4 Output selection

It is mandatory to a priori choose the output before using the majority of methods.

The global variable *goal-classification® indicates the output for methods used in
classification task and must be a symbolic type of attribute. The global variable *goal -
regression¥® indicates the output for methods used in regression task and must be of
numerical type. These goals are chosen among the available attributes in the loaded database.

ATDIDT 2.2 commands are:
- popup menu Atts, submenu Select goal classification,or
- emacs menu :ATTRIBUTES_SELECTION, submenus : GOAL_CLASSIFICATION
and : GOAL_REGRESSION

Commands for regression/classification goal selection are found also in every submenu of a
data mining method that uses these variables.

20

3.3 Define new attributes

New functional attributes may be defined/modified in three ways. Once defined/modified a
new functional attribute, its definition may be stored in alisp file file.lsp and this file loaded at
any new session, or anytime during the current session, but always after the explicit attributes
loading, by using one of the commands:

* (load “filedsp”) or

e popup menu Load, submenu Load a lisp file,or

e emacs menu : DATA_BASE, submenu : LOAD_DB, or

e (compile “file.lsp”) together with (load “file.fsl”) when the user wants to load the

compiled version of the file

In this way, only the new defined/modified attributes have to be loaded, not all the database
declaration file, fact which for large databases saves a lot of loading time.

1. Using the lisp macr o def-fun-att

Example: (def-fun-att mva (object) (sqrt (+ (sgr (pu object)) (sqr (qu object)))))
See the effect with: (mva object-name)

2.Usingan ATDIDT command

ATDIDT 2.2 command is:
- emacs menu :ATTRIBUTES_SELECTION, submenus :DEFINE_ATTRIBUTE

This command allows the user to define new attributes by using def-fun-att macro as in the
above example. The definition of the new attribute is valid during the current session, and it is
lost for future sessions.

3. Using the lisp macro declar e-function-attributes

Example:
(declare-function-attributes
OMIB
-attributs-conserves t
:attributs-fonctions-scalaires
((mva "Apparent power [MVA]"
‘type ordonee
:valeurs (real * *)
:fonction (sqrt (+ (sqr (pu objet)) (sqr (qu objet)))))
(symbolic-pu "Pu>1000MW"
‘type qualitatif-quinlan
:valeurs (member <1000 >=1000)
:par-defaut <1000
:fonction (if (< (pu objet) 1000.0) '<1000 '>=1000))))

21

See the effect with: (mva object-name)
(symbolic-pu object-name)

The dot :par-defaut isoptiona. The dot :attributs-conserves indicates the list
of the newly defined attributes that will be loaded: t value means all the defined attributes,
nil meansnone of them.

In order to visualize the function of afunctional attribute attribute-name, at any moment the
user may tape in the lisp buffer the lisp command:

(print (get attribute-name ‘fonction))

3.4 Handling temporal attributes

The global variable *candidate-attributes® is specifying a list of scaar attributes.
Thus, temporal attributes must be transformed into scalar ones according to a sampling
strategy. This is done automatically by the software each time the *candidate-
attribute® list is used in some option. Table 4 presents the scalar attributes created when
the *candidate-attributes¥ list is activated in a command, for the temporal attribute
delta.

Table4

Temporal attributein Function of the corresponding

candidate-attributes created scalar attribute
delta (delta < object> * present-time*)

(delta0.3) (delta <object> 0.3)
(delta (time 0.0 0.2 nbsteps 5)) ((delta 0.0)(delta 0.04)...(delta 0.2))
(delta (time 0.0 0.2)) ((delta 0.0)(delta 0.2))

(delta (time)) (delta (time to tf *time-steps*))

ATDIDT parameters that control the temporal attributes handling are:

present-time
- Default value 0.0

- ATDIDT 2.2 command: menu :DATA_BASE, menu :ATTRIBUTES_SELECTION,
command :PRESENT_TIME

time-steps
- Default value 50

- ATDIDT 2.2 command: menu :DATA_BASE, menu :ATTRIBUTES_SELECTION,
command :TIME_STEPS

4 Software DM methods
4.1 Graphical Tools

All the graphical tools available in ATDIDT software use a postscript curve-drawing program
called GDC (version 4.3).
All the graphics are computed on and representing the objects found in the current
*learning-set®, and when necessary, ae based on current *goal-
classification®*. When statistics are displayed below a graphic they are asfollows:

- Mu-average

- Mn—minimum

- Mx - maximum

- Sd - standard deviation

- Rho - correlation coefficient between abscissa and ordinate attributes

4.1.1 Histogram

Definition. The histogram is a statistical tool that performs non-parametric density estimation.
It is a frequency diagram. The 2D graphic displays the estimated number of objects for each
interval of values of the chosen attribute (interval-region called bar).
Selections.

- Choose *1earning-set* (LS)
Set parameters. ATDIDT 2.2 command: menu :DATA_BASE, menu : GRAPHICS, command
‘NUMBER_OF_BARS changes the number of intervals (bars) in which the attribute is split for
computing frequencies (40 by default).
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
‘HISTOGRAM
The command promptsfor:

- anumerical (see Figure 1) or symbolic (see Figure 2) att attribute
Effect.

- The created graphic is computed on LS for attribute att

- A postscript graphic is generated named abs freg-tem.ps located in the current

directory
- Statistics on LS for attribute att are displayed below the graphic.

4.1.2 Conditional histogram

Definition. It is a histogram colored according to the value of the *goal-
classification*.
Selections.

- Choose *1earning-set* (LS)

- Choose *goal-classification* (symbolic or numerical attribute)

23

Note: use lisp instruction (setf *goal-classification* “‘numerical-goal-name) for setting the goal
as a numerical attribute

Set parameters. ATDIDT 2.2 command: menu :DATA_BASE, menu : GRAPHICS, command
‘NUMBER_OF_BARS changes the number of intervals (bars) in which the attribute is split for
computing frequencies (40 by default).

Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:COND_HISTOGRAM

The command promptsfor:

- a numerical attribute (see Figure 3 for symbolic goal, see Figure 5 for numerical goal)
or a symbolic attribute (see Figure 2 for symbolic goal, see Figure 4 for numerical
goal) att

Effect.

- The created graphic is computed on LS for attribute att and is conditioned by *goal-
classification® variable. If the goal is numerical, it is automatically split in
classes of values and the graphic represents each class in a different color.

- A postscript graphic is generated named cond_freg-tem.ps located in the current
directory

- Statistics on LS for att attribute are displayed below the graphic for each of the
symbolic values of the *goaTl-classification* if the goal is symbolic, or for
each of the generated classes, if the goal is numerical.

4.1.3 Multiple conditional histograms

Selections.
- Choose *1earning-set* (LS)
- Choose *goal-classification* (symbolic or numerical attribute)
- Choose *candidate-attributes®
Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal
as a numerical attribute
Set parameters. ATDIDT 2.2 command: menu :DATA_BASE, menu : GRAPHICS, command
‘NUMBER_OF_BARS changes the number of intervals (bars) in which the attribute is split for
computing frequencies (40 by default).
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:DB_STATS
Effect.
- For each attribute from *candidate-attributes®, a conditional histogram is
built
- The created graphics are computed on LS and based on *goal-
classification® variable
- A postscript graphic is generated named db_stats-tem.ps located in the current
directory
- Statistics on LS for each attribute are displayed below the graphics, for each of the
symbolic values of the *goal-classification* if the goal is symbolic, or for
each of the generated classes, if the goal is numerical
- Foravery large *candidate-attributes¥ list, this option will take some time.

24

4.1.4 Scatter-plot

Definition. It is a 2D graphic representing one attribute yy function of another attribute xx.
Attributes xx and yy may be symbolic or numerical.
Selections.
- Choose *1earning-set* (LS)
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:SCATTER _PLOT
The command promptsfor:
- anumerica or symbolic attribute xx
- anumerica or symbolic attribute yy
Effect.
- A graphic (xx, yy) computed on LS is displayed (see Figure 6)
- A postscript graphic is generated named correl-tem.ps located in the current directory
- Statisticson LS for xx and yy attributes are displayed bel ow the graphic.

4.1.5 Conditional scatter-plot

Definition. It is a scatter-plot colored according to the value of the *goal-
classification*.
Selections.
- Choose *learning-set* (LS)
- Choose*goal-classification* (symbolic or numerical attribute)
Note: use lisp instruction (setf *goal-classification* “‘numerical-goal-name) for setting the goal
as a numerical attribute
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:COND_SCATTER_PLOT
The command promptsfor:

- anumerical or symbolic attribute xx

- anumerical (see Figure 7) or symbolic (see Figure 8) attribute yy
Effect.

- A graphic (xx, yy) computed on LS and conditioned by *goal-classification*
variable is displayed. If the goal is numerical, it is automatically split in classes of
values and the graphic represents each class in a different color.

- A postscript graphic is generated named cond_correl-tem.ps located in the current
directory

- Statistics on LS for xx and yy attributes are displayed below the graphic for each of the
symbolic values of the *goaTl-classification* if the goal is symbolic, or for
each of the generated classes, if the goal is numerical.

4.1.6 Colored scatter-plot

25

Definition. It is a scatter-plot colored according to the value of athird attribute.
Selections.
- Choose *1earning-set* (LS)
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:COLOUR_SCATTER_PLOT
The command promptsfor:
- anumerical or symbolic attribute xx
- anumerical or symbolic attribute yy
- anumerical (see Figure 9 and Figure 10) or symbolic (see Figure 7) attribute zz

- A graphic (xx, yy) computed on LS and conditioned by attribute zzis displayed. If zzis
numerical, it is automatically split in classes of values and the graphic represents each
classin adifferent color.

- A postscript graphic is generated named colour_correl-tem.ps located in the current
directory

- Statisticson LSfor xx, yy and zz attributes are displayed below the graphic.

4.1.7 Scatter-plot with values

Definition. It is a scatter-plot where each point is market on the graphic by the value of athird
attribute.
Selections.
- Choose *1earning-set* (LS) - asmall one, for example 100 objects
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:SCATTER_PLOT_VAL
The command promptsfor:
- anumerical attribute xx
- anumerical attribute yy
a numerical or symbolic attribute zz

Effect.
- A graphic (xx, yy) computed on LS is displayed where values of zz (if numerical) or
classes of zz (if symbolic) are market on the graphic for each point (object) of LS
- A postscript graphic is generated named val correl-tem.ps located in the current
directory
- Statistics on LS for xx and yy attributes are displayed below the graphic.

4.1.8 Cumulative distribution

Definition. The cumulative distribution is a statistical tool that performs a cumulative
frequency diagram (the integral of the histogram). The 2D graphic displays points (x,y) where
X represents the percentage of objects for which attribute value is at more y.
Selections.

- Choose *1earning-set* (LS)

26

Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:CUMULATIVE_DIST
The command promptsfor:
- anumerical (see Figure 11) or symbolic (see Figure 12) att attribute
Effect.
- The created graphic is computed on LS for attribute att
- A postscript graphic is generated named cum freg-tem.ps located in the current
directory
- Statistics on LSfor attribute att are displayed below the graphic
- Percentages corresponding to ordinate line are market in yellow on the graphic.

4.1.9 Dendrogram

Definition. The dendrogram is the graphical representation of a dtatistical tool called
hierarchical agglomerative clustering. It is used to cluster attributes, the similarity between
two subsets of attributes being defined as the minimum similarity of pairs of attributes of the
two subsets. This tool is particularly interesting for the analysis of attribute similarities,
detecting and eliminating the attributes too correlated, or detecting important correlation
sbetween a goal attribute and input attributes.

Selections.

- Choose *1earning-set* (LS)

- Choose *candidate-attributes®*. Make sure you insert in the list all the
attributes, including regression goal. Constant numerical and non-numerical attributes
are not handled and excluded from the attributes list prior to dendrogram building.

Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:DENDROGRAMS
Effect.

- Thedendrogram is computed on LS

- The coefficients displayed on the graphic represent the minimum correlation
coefficients between one attribute and a group of attributes or between two groups of
attributes. Correlations with a coefficient more that 0.5 are depicted in red.

- A postscript graphic is generated named dendrogram.ps located in the current directory

- Statistics on LS for each attribute are displayed together with correlation coefficients
for every two-by-two pairs of attributes.

4.1.10 Temporal curves

Definition. They represent evolution in time of temporal attributes for a given object.
Selections.
- Choose *1earning-set* (LS)
- Choose *candidate-attributes¥®. Insert al the temporal attributes for which
you wish a curve on the same graphic.
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:TEMPORAL_CURVES_O

27

The command promptsfor:
- An object name obj
Effect.
- A curve for each tempora attribute in the list of *candidate-attributes* is
represented on the same graphic for object obj (see Figure 13)
- A postscript graphic is generated named scenario-tem.ps located in the current
directory.

4.1.11 Temporal curves for a set of objects

Definition. They represent evolution in time of one temporal attribute for a set of objects.
Selections.
- Choose *1earning-set* (LS)—asmall one, for example 50 objects
Command. ATDIDT 2.2 command: menu :DATA_BASE, menu :GRAPHICS, command
:TEMPORAL_CURVES_SET
The command promptsfor:
- Atemporal attribute att
Effect.
- A curve for each object in *Tearning-set* is represented on the same graphic for
attribute att (see Figure 14)
- A postscript graphic is generated named scenarios-tem.ps located in the current
directory.

28

Nb.cas

Histogram of CCT-SBS
Critical clearing time of three-phase fault at machines EHV bus

|:| 1990 opcte
V57600 20 0002
Aebteise

=3

o o g 025
-CCTSBS —

505 10w
CMIB 10000 oL Wehenk! Fi e 2 1997

Figurel

— 1900 abiegts T
e ‘loﬁ\nﬂm)
o

[0 SEGURE objecis
Nin= 2000 "Nso 2000
mi- 2000 sd- 0000

Copcional fistograms of Securiy Vs Security
Security Classificaton Cet-Sbs <

— Securty -

BECURE

Figure?2

Nb.cas

S
mu, 0. QBM‘SQ N)

310 INSECURE otjects

wn=" 151

= 07088

200 SECURE oy
O e er o

- TaaiEde

e 04220
Z 02811 sd- s4rerae

Conditional histograms of Cct-Sbs Vs Security
Critical Clearing Time Of Three-Phase Fault At Machlnes Ehv Bus

o, 025 03 3 o4
- CorSts —

01528

CMB 10000 oiec: L ahenke F1 5 121097

Figure3

C of Security Vs Cct-Sb:
Sez:umy Classificaton Cet-Sbs < “Tau* ?
No cas
500 . H [PP
00, B T .
200, i .
100 Lol .
TNSECURE
- Secury —
— 1400 obgets (Tl 100 00T 8BSt 1628 abjgcis
Ve UL 2 I Rt g %8
s 16 8 0
86,007 85 02 2 ojecte 97,007 8850 1772 gect
- i O3 5 i W
L T8 mi= 2000
100 GGT.SBS<0, 1245 objects: 102 GG 885402038 objocts
Nn=" 1000 i’ 1083 M= 2000 Ma= 2000 M= 2800
mi- 1000 & M= 2000 - 6000

= 9’3 COT,88502261 gbjocs
B
101 GT.S88<02644 objocts
N

%0 cCT. SBsdusugb jocts

Classes

'SECURE

101 corses|
& L
288

B 19200758
200 in= 2,000
6000 M= 2060

00
6000

N

Figure4

M3 10000 cojecs -1 Wenenhel i Ooc 12 1957

Nb.cas

Conditional hi: of Cct-Sbs Vs Cct-Sh: i lasses
Critical Clearing Time Of Three-Phase Fault At Machines Ehv Bus

o 02 025
- Gat-Sbs —

R g, I WRSTESURCIRE . B NSTIRORY i LRt
- 02061 e~ 880302 - 0378 sd- e2040aa 02136 sd- 5086643 - 03048 | sd- 1
[% COT B8 426 2 opioste 97.COT SB80 1772 gbjoce 101 CCT 88820250 objocts 102 08T smSpO2RG 0
wn-" 18106 2w 9350002 M- Te2E MG 2781 - 07834 - Gagee Tt 0
8828102 ahiees a3 Eag
| T SB5<02847
sty T r&ﬁc‘ﬂ%%s“’ui“’%“z" 7] B3 e il e
mos 01079 sd= 774353 = 003 e 52003

o toun i L vehrio 4D 1 1987

Figure5

Correlation (CCT-SBS,PU)
PU
1300 .
BRIk
BT,
K
120l 8,
e,
. o
1100i (0. .
1000,
20
80
700
5oz o
© 1000 abjects rro = 81162
Bs
Bi00d.2 e 04229
2051 e 6808002
1300
.

Figure6

o Tz 1 wanena 1O 1 997

29

Correlation (CCT-SBS,PU) vs. SECURITY

1100,

w0 : A

800 Vs

3 0%
~6CT8BS

e Y gp—

FU mu= 1003 1862

o Inssaure 310 tho = 23443
EET8a8 mus 01088 sd= 3313542
BU'mus 1161 sa- 1018

Secire, 890 tho = 73225
CETSAS mu_ 0811 sd- sa7eraz
BU'mu- 6827 sa- 1387

Figure?7

SMIB 10000 cioc: L Wk F1 B 321997

Correlation (PU,SECURITY) vs. SECURITY
SECURITY
SECURE|! : - X ; . . Sl :
INSECURE(: Lol . L

700 &0 500
Topal 1000 tho — 60027
RU mus 1005 %= 1882
SECURTY mu- {680 sa- 04778

o Insecura: 310 tho ~.08374
BUMLS 1161 sd- 1018
SEGURTTY mu= 06687 sd= 0.1465
Sopuro: 600 rho - 13132
Bl - 6357 sd= 1387
SECURTTY mi- 2000 sd- 01453

Figure8

B - Tococeuck L Wbkl i Do 12 1957

Correlation (CCT-SBS,PU) vs CCT-SBS

TeZ o TS 3 025
~-GCT-8B8
1080 giects tho = 81152

Cer
Nie 15100 2Mx- 04420 mu- 0Z061 sd 6.08032
Mn= 7017 Mxe 1300 mu- 1003 s 1862
COT-885,

V=" T5100d-2Mx= 04420 mu= 02061 sd= 8803002

0143 0185 0229

Figure9

B0 coes L el Fi O 12 17

Correlation (SECURITY,PU) vs CCT-SBS

NSECURE
1000 iecss ho 69785
CORPRS

BB

—SECURITY —

k:
M- 07502 Mx- 2210 mu- 1897 sd- 0.4827
M= 7017 Mx- 1300 mu- 1003. sd- 1662
W 1510002 Mx= 04420 mus 02061 sd= £.6030d2

‘SECURE

Figure 10

s - 1000 b L Wenenal i Das 12 1987

Cumulative distribution of CCT-SBS

B
40,
. Vel

Y N /

e

3 0%
- GCT8BS
— 190 CET 8ES orjects

Nin= O78155% SR 0 4400

mi= 02081 s~ 8803042

Figure11

WIB 10000 oiece L Weanenta i Do 12 1597

Cumulative distribution of SECURITY

INSECURE

—— 1000 SECURITY objegts
hne TO00 Mgm 8 bog
mi- 1880 o odszs

-~ SECURITY

SECURE

Figure 12

CMIE - Tocoactinck L waheriel i Dac 12 1087

30

100,

Scenarioc OP5001 of data base OMIB

0]

100,

—— DELTA(OP5001) Rotor argle of machine (faul
OMEGA(OP50D1) Rotor speed of machin

00 05] KE I3 25 3.

Figure 13

Temporal atiribute DELTA of data base OMIB

50

—— DELTA(OP5001) Rotor argle of machine

DELTA(OP5002) Rotor angle
DELTA(OP5003) Rotor angle

DELTA(OPE004) Roter argle of machine

Figure 14

L.k 0.4 0.4
L 1 | 1 |

ws 0.6

Mll.N

04

0.3

D2 L.l .o

Kinf

QO

0053

Vinf

0012

" O [V T3
Cot-Shs 0972

dela[0.0] _
Pu

0926

0001

Pl

LD 0.9 0.8

07 06

0

Figure 15

04

0.3

D2 0.1 0.0

4.2 Decision Tree

4.2.1 What is it?

Definition. Decision trees (DT) are tools used in classification problems. They are concerned
with the automatic design of if-then rules. They have a symbolic output and symbolic and/or
numerical inputs.

Method characteristics. The main strength of DT is its interpretability. Another asset is the
ability to identify the most relevant attributes for a problem: the model itself selects a part of
the attributes from the list of candidate attributes as the model inputs. Finaly, it is a
computationally efficient tool. As a counter part, it is less accurate than a neural network. It
may be used in association with aneural network or a KNN method in a hybrid approach.

4.2.2 Selections to make before starting

Define the problem. Choose *goal-classification®* and choose *candidate
attributes®. Admissible input attribute types are: “ordonee”, “linear-combination” and
“qualitatif-quinlan”. Note that the model does not handle temporal attribute values, they being
replaced by a list of scalar ones in *candidate-attributes® list prior to model
building.

Select data. Choose *learning-set* and *test-set* (if you also want to test or
prune the model).

Set method parameters. Method parameters are *alfa* and *h-min*.

alfa

- Necessary to detect deadens in decision trees, i.e. impure terminal nodes

- Takes values between 0.00005 and 1.0 (complete tree, maximum complexity)

- Accepted values: 1.0 0.25 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 0.00025 0.0001
0.00005

- Default value 0.0001

- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :SET_*ALFA*

h-min
- Necessary to detect leaves in decision trees, i.e. pure terminal nodes
- Takes any real value between 0.0 (trivial tree, 0 complexity, O test nodes, 1 terminal
node) and 10.0 (fully grown tree)
- Default value 0.028
- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :SET_*H-MIN*

4.2.3 Apply the method

32

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :BUILD_DT

Effects of the method employment. If the decision tree name is xx (the default name is
DT<i>) and the *goal-classification®isyy:
- The new functional attribute created by default once the model is built has the name
approx-xx-of-yy
- The created file containing information about the building process has the name xx.log
and islocated in the current directory
- Thenew decision tree xx is pushed in the global variable *decision-trees*
- Thegloba variable *current-dt* keepsthelast built (decision or regression) tree.

Interesting displayed information while building the tree: status variables, prior class
probabilities in LS and at every node, LS size at every node, type of node, entropy of node,
possible tests, their scores (the best score is 1.0, the worst one is 0.0) and the scores’ standard
deviations, chosen test, the correlation coefficient of each attribute’s optimal test with the
optimal test of the selected attribute, CPU time.

Interesting displayed information while describing the results: a résumé of used
parameters and settings, total entropy of DT in LS (= total entropy of root node), DT
complexity (number of test, leaf and deadend nodes), the percentage of the total information
explained by the tree by every chosen attribute (a measure of the relevance of every attribute
in the model), the name of the new created functional attribute, the name and the path of the
created file containing the displayed information. All these information may be redisplayed
anytime by using the command : DESCRIBE_TREE from : TREE_INDUCTION menu.

4.2.4 Test the model

Command. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command : TEST_TREE

The program detects when TS and LS are overlapping and asks the user if he wants to
eliminate this overlap objects or not from TS before performing the testing.

Interesting displayed infor mation while describing the results: non-detection costs (values
between 0 and 1), confusion matrix on TS (number of objects correctly classified and
misclassified), classification error rate on TS, CPU time.

Effects of the method employment. After testing, the global variable *classification-
errors¥* contains all the misclassified objects.

4.2.5 Improve the model

33

Once build and tested, a tree may be pruned in order to improve the model’s compromise
between accuracy and complexity. The new resulted tree has less complexity than the original
tree and better or comparative error rate. The pruning procedure generates a sequence of
intermediary trees and based on these trees’ error rates (computed on TS) the best tree is
chosen following the n-standard-error-rule, i.e. the less complex tree not significantly less
reliable than the best one is selected.

Note that the pruning procedure, in order to be effective, should be applied on a complete tree,
i.e. a fully-grown tree. In this respect, the model’s parameters should be chosen in
consequence: *alfa*=1.0 (and *h-min*=0.0 evenatually).

To do before starting. For pruning a tree the user must before test the tree. The errors of the
intermediary trees are computed on the global variable *test-set*. In order to use the
cross-validation approach, the user should settle variable *test-set® as a set independent
of LS and TS and test the original tree (on this set called usually pruning set) before pruning it.

Set method parameters. Method parameters are *sigma-multiplier* and
*maximum-tree-prune-complexity®.

sigma-multiplier

- Necessary in n-standard-error-rule.

- Usual values: 0.0, 1.0, 2.0, 3.0, ...

- Default value 1.0

- Examples: if *sigma-multiplier#*=2.0, the procedure chooses the tree with the
error smaller or equal to the best error plus two times its standard deviation; if
sigma-multiplier=0.0, the procedure chooses the tree with the smallest error

- Example of lisp command: (setf *sigma-multiplier¥ 2.0)

maximume-tr ee-pr une-complexity
- Settles the maximum complexity of the pruned tree
- Takes integer values between 0 and 10.000
- Default value 10.000
- Settled as a very large value this parameter has no influence on the process
- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :SET_*C-MAX-PRUNE*

Command. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command : PRUNE_TREE

Interesting displayed information while pruning the tree: some information concerning
every intermediary tree (complexity, terminal nodes, the next node to prune, test set error rate,
corresponding *alfa* parameter), information about the chosen tree.

Effects of the method employment. If the original decision tree name is xx, the *goal-
classification*isyyand *sigma-multiplier®is1.0:
- The pruned decision tree has the name xx-BPR-1.0

34

- The new functional attribute created by default once the tree is pruned has the name
approx-xx-BPR-1.0-of-yy

- The created file containing information about the pruning process has the name xx-
BPR-1.0.log and islocated in the current directory

- The new decision tree xx-BPR-1.0 is pushed in the global variable *decision-
trees¥

- Thegloba variable *current-dt* keeps the pruned tree xx-BPR-1.0

ATDIDT 2.2 command :DRW_PR_SEQ provides a graphic of pruning sequence curves
displaying the evolution of decision trees’ complexity, information, test error rate and quality
with parameter *alfa*. Two files named xx-BPR-1.0.pruning and xx-BPR-1.0-pruning-
seg.ps are created in the current directory. The postscript one contains these graphics that may
be visualized at any time by using GhostView tool.

4.2.6 Results visualization / interpretation

Describe tree. ATDIDT 2.2 command : DESCRIBE_TREE displays a résumé of the current
decision tree growing and testing results (if the tree has been tested before). By current tree we
understand the tree indicated by the global variable *current-dt*, i.e. the last built tree,
or the last pruned tree, or the last tree chosen with the command :CHOOSE_TREE. The
command may be applied at any time, once a (decision or regression) tree is stored in the
variable *current-dt*.

Display tree. ATDIDT 2.2 command :DISPLAY_TREE displays the current tree on a single
page. Command :MY_DISPLAY_TREE displays the tree on multiple pages, on the first page
only the upper levels of the tree and on the other pages, the rest of the subtrees. It should be
used for very complex trees (too complex to be displayed on a single sheet). Both commands
generate a postscript file (named xx.ps for a DT called xx) located in the current directory that
may be visualized at any time using the GhostView tool.

ATDIDT 2.2 command : DRAW_TEST_SET enables or disables the representation of the test
results on the tree graphic. Figure 16 presents an example of a decision tree display without
test results, and Figure 17, with test results.

Figure 16 and Figure 17 draw a decision tree for a *goal-classification* called
“security” (see the attribute definition in database declaration file example of appendix), built
on a learning set of 1000 objects, pruned and tested on a independent test set of 1000 objects.
Figure 16 presents every node of the tree by a box area proportional to the size of the learning
subset corresponding to this node (the exact size of this subset together with the name of the
node are indicated above the box) and the horizontal division of each box shows the
proportion of the objects from this subset in each class. In Figure 17, each node box is divided
into two parts, the upper one corresponding to the learning set, the lower one to the test set.
The part corresponding to the test set is horizontally divided indicating the proportion of
misclassified objects in each local test set. In both figures, the test of each test node is written
under the node’s box and each arc leading to a successor is labeled with a possible answer to

35

this test (Yes and No). Above the root node, the total number of test nodes (Txx), leaves
(Lxx), and deadends (Dxx) is indicated.

HTML format. ATDIDT 2.2 commands : SAVE_TREE and : INSPECT_TREE give another
way of visualizing results, in html format. For a decision tree named xx, the first command
creates a new directory called /Sav/ixx/ in the current directory, and puts 7 files concerning the
tree in this new directory. The second command opens a Welcome.html file that displays
genera information about the tree together with hyperlinks for all the created files:

- xx-rules.html — displays the IF-THEN rule base derived from the tree

- xx-prunelst (for a pruned tree) or xx-grown.Ist (for the original tree) — displays

information that describe the pruning / growing processes

- xx.dump - outputs the internal lisp structure of the tree xx

- xx.Isp - contains the lisp function of the new created functional attribute

- xx-mp.pdf and xx-sg.pdf — are single page and multiple page displays of the tree.

Afterwards, at every new session, the ATDIDT 2.2 command : LOAD_TREE may load this
built tree (model) based on the xx.dump file, thus releasing the user from building it again.

Derived rule-base. For every terminal node of a decision tree, an IF-THEN rule is generated.
The file xx-rules.html indicates for every rule of type “if antecedent then class A”, extracted
from the xx decision tree, the next coefficients:
- support of rule — percentage of all objects in LS for which this rule is active
- cover of rule - percentage of all objects of class A in the LS for which this rule is
active (the total of the covers for all the rules concluding a given class is 100%)
- certainty factor — percentage of objects of class A among those for which the rule is
active
- summary — number of objects for which the rule is active counted by class.

Example of rule deducted from decision tree of Figure 16:

Rule T3: IF Pu>1096.4 and Qu < 392.11 THEN class = INSECURE
Support = 22%
Cover = 63.2%
Certainty factor = 89.1%
Summary: insecure — 196, secure — 24.

Other ideas for graphics. If the decision tree name is xx and the *goal-
classification®isyy:
- Conditional scatter-plot (approx-xx-of-yy, yy) on LS (see Figure 18) or TS
- Conditional histogram for approx-xx-of-yy on LS (see Figure 19), TS
- Settle LS as the objects misclassified by the tree (see command : GET_DT-ERRORS)
and apply a conditional histogram for approx-xx-of-yy

4.2.7 Other possible actions

36

All the commands having the format :XXX_TREE are available both for regression and
decision trees and are regarding the tree stored in the global variable *current-dt*.

Other useful available commands;

:BEST_FIRST? and :SET_*C-MAX-GROW* - concern the node development in a
decision tree growing. :BEST_FIRST? alows to change the order of node development,
either best first or depth first (default mode). In the case of best first strategy, command
:SET_*C-MAX-GROW* fixes the globa variable *maximum-tree-grow-
complexity®, an upper bound on complexity, that takes integer values between 0 and
10.000, default value is 10.000.

:SELECT-DT-TEST-ATTS - settles the global variable *candidate-attributes® as
the list of all the attributes chosen by the current decision tree. This command becomes very
useful when decision tree technique is used in a hybrid approach together with other methods.
A decision tree has the ability to reduce the input space to the relevant attributes for a given
problem.

:GET_DT_ERRORS - select the global variable *Tearning-set* as the objects from
test-set misclassified by the tree in the last testing and stored in the global variable
*classification-errors®. If the tree has not yet been tested, the *Tearning-
set* is settled to the empty set.

37

T6+ LO4+ D7

Pu > 1096.4
T2: 336.0 % N 17:664.0

Qu <392.11 Qu< 2336
T3: 2207 . 1160 T8: 185 L 4810

V1< 1.0412 Pu > 956,04

m 53] Iﬁi: 630 Ty, 6T T%. 115.0

V1< 10798

DE: 4§ﬁ ﬁq 200

Leaming set classification (w.rt. SECURITY)
. Insecure: 310 P(lnsecure) = 0.3100
[] Secure: 630 P{Secure) = 0.6900

OMIE - 10000 objects - L. Wehenkel Fri Dec 12 1997
DT5-BPR-1.0. N=1000 M=0 alfa =0.00010 Pe ="%

Figure 16

Te+ LO+ DT

Qu <392.11
T3: 2204 : 116.0

Vi< 1.0412 Pu > 956.04
Té: sﬁi ﬁi 630 1o, 6Sf Tf'

V1< 1.0798

D&: 4§ﬁ E: 200

Leaming set classification (w.rt. SECURITY)

. Insecure: 310 P(lusecure) = 0.3100
[] Secure: 690 PiSecure) = 0.6900
Test set classification
Non detection costs : Insecure: 1.0 Secure: 1.0
Reference Decision Tree Class
Security Insecure Secure Total
Insecure 254 51 1 305
Secure | __ 60 635 . 695 |
Total 314 636 r 1000

OMIB - 10000 objects - L. Wehenkel Fri Dec 12 1997

DT5-BPR-1.0. N=1000 M = 1000 alfa=0.00010 Pe=11.1%

Figure 17

38

SECURE|:

Correlation (APPROX-DT5-BPR-1.0-OF-SECURITY SECURITY) vs. SECURITY

SECURITY

-
"INSECURE

--- APFROX-DT5-BPR-1.0-OF-BECURITY -

Total: 1000 rho =- 7
APPROX-DT5-BPR-1.0-OF-SECURITY mu= 1317 ad= 0.4873
SECURITY mu= 1. 0.4808

g
Insecure: 310_rho =021
APPROX-DT5-BPR-1
SEGURITY mu= 1.005

Secure: BE0 rho = (2866
APPROX-DT5-BPR-1.0-OF-SECGURITY mu= 1068 sd- 0.2886
SEGURITY mu= 2002 sd= 0.1421

FSECURITY mu= 1863 sd= 0.3550
d= 0.1388

GDS 1.0 - 13272002 =l 18h26
OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

Figure 18

500}

500

400

300

200

100}

0.0

Conditional histograms of Approx-Di5-Bpr-1.0-Of-Security Vs Security
Approximation Of Dt5-Bpr-1.0 Of Security
Nb.cas

=
c

"SECURE 'INSECURE
- Approx-Dt5-Bpr-1.0-Of-Security -

1000 objects (Total}
Mn="1.000 ° Mx= 2000
mu= 1321 sd= 04669
210 INSECURE objects
Mn= 1000 Mx= 2000
mu= 1887 sd= 02186
690 SECLRE objects
M= 1.000 Mae 2000
mu= 1.067 sd= 02484

GDT 1.0 - 13272002 = 18h25
CMIB - 10000 chjacts - L Wahenkal Fri Daz 12 1967

Figure 19

39

4.3 Regression Tree

4.3.1 What is it?

Definition. Regression trees (RT) are tools used in regression problems. They are concerned
with the automatic design of if-then rules. They have a numerical output and symbolic and/or
numerical inputs.

Method characteristics. The main strength of RT is its interpretability. Another asset is the
ability to identify the most relevant attributes for a problem: the model itself selects a part of
the attributes from the list of candidate attributes as the model inputs. It is more complex than
a decision tree and thus the generated rule base is larger. It is a computationally efficient tool,
comparatively fast to a decision tree and much faster than a neural network. It is less accurate
than a neural network and in many cases less accurate than a linear regression technique. It
may be used in association with aneural network in a hybrid approach.

4.3.2 Selections to make before starting

Define the problem. Choose *goal-regression* and choose *candidate
attributes*. Admissible input attribute types are: “ordonee” and “qualitatif-quinlan”.
Note that the model does not handle linear-combination attribute values, they being excluded
from the *candidate-attributes® list prior to model building. Temporal attribute
values are replaced by a list of scalar ones.

Select data. Choose *learning-set* and *test-set* (if you also want to test or
prune the model).

Set method parameters. Method parameters are *alfa-rt*, *v-min* and *total-
variance-min¥,

alfa-rt

- Necessary to detect deadens in regression trees, based on a Kolmogorov-Smirnov
probability in node

- Takes real values between 0.0 (trivial tree) and 1.0 (full grown tree)

- Default value 0.0001

- Use value 0.000001 for strong pre-pruning

- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :SET_*ALFA-RT¥*

v-min
- Necessary to detect leaves in regression trees, based on variance in node
Takes any real value between 0.0 and 1.0e+11
Default value 0.0 (complete tree)
ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :SET_*V-MIN*

total-variance-min

41

- Necessary to detect deadens in regression trees, based on total variance in node

- Takesany real value between 0.0 and 1.0e+11

- Default value 0.0 (compl ete tree)

- ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :SET_*TTVM*

4.3.3 Apply the method

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command :BUILD_RT

Effects of the method employment. If the regression tree name is xx (the default name is
RT<i>) and the *goal-regression*isyy:
- the new functional attribute created by default once the model is built has the name
approx-xx-of-yy
- the created file containing information about the building process has the name xx.log
and islocated in the current directory
- Thenew regression tree xx is pushed in the global variable *decision-trees*
- Thegloba variable *current-dt* keepsthelast built (decision or regression) tree

Interesting displayed information while building the tree: status variables, LS size at every
node, type of node, statistics of the output in node (mean, max, min, standard deviation),
variance of node, possible tests, their scores, and the reduction of the variance each test brings,
the correlation coefficient of each attribute’s optimal test with the optimal test of the selected
attribute, chosen test, CPU time.

Interesting displayed information while describing the results: a résumé of used
parameters and settings, total variance of LS and total variance reduction realized by RT, RT
complexity, the percentage of the total variance reduction explained by the tree by every
chosen attribute (a measure of the relevance of every attribute in the model), the name of the
new created functional attribute, the name and the path of the crated file containing the
displayed information. All these information may be redisplayed anytime by using the
command :DESCRIBE_TREE from : TREE_INDUCTION menu.

4.3.4 Test the model

Command. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command : TEST_TREE

The program detects when TS and LS are overlapping and asks the user if he wants to
eliminate this overlap objects or not from TS before performing the testing.

42

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors, absolute errors, squared errors, positive and
negative errors;, CPU time.

4.3.5 Improve the model

The pruning procedure generates a sequence of intermediary trees from the original complete
tree and based on these trees’ mean absolute errors (computed on TS) the best tree is chosen
following the n-standard-error-rule, i.e. the less complex tree not significantly less reliable
than the best one is selected.

Note that the pruning procedure, in order to be effective, should be applied on a complete tree,
i.e. a fully-grown tree. In this respect, the model’s parameters should be chosen in
consequence: *alfa-rt*=1.0and *v-min*=0.0, *total-variance-min*=0.0.

To do before starting. For pruning a tree the user must before test the tree. The errors of the
intermediary trees are computed on the global variable *test-set*. In order to use the
cross-validation approach, the user should settle variable *test-set* as a set independent
of LS and TS and test the original tree (on this set called usually pruning set) before pruning it.

Set method parameters. Method parameters are *sigma-multiplier® and
maximum-tree-prune-complexity. See pruning of decision trees for details on
how to settle these parameters.

Command. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
: TREE_INDUCTION, command : PRUNE_TREE

Interesting displayed information while pruning the tree: some information concerning
every intermediary tree (complexity, terminal nodes, the next node to prune, mean absolute
error on TS, mean squared error on TS, corresponding *alfa-rt* parameter), information
about the chosen tree.

Effects of the method employment. If the original regression tree name is xx, the *goal-
regression¥®isyyand *sigma-multiplier®is 1.0:
- The pruned regression tree has the name xx-BPR-1.0
- The new functional attribute created by default once the tree is pruned has the name
approx-xx-BPR-1.0-of-yy
- The created file containing information about the pruning process has the name xx-
BPR-1.0.log and is located in the current directory
- The new regression tree xx-BPR-1.0 is pushed in the global variable *decision-
trees®
- The global variable *current-dt* keeps the pruned tree xx-BPR-1.0

ATDIDT 2.2 command :DRW_PR_SEQ provides a graphic of pruning sequence curves
displaying the evolution of regression trees’ complexity, variance reduction, mean absolute
error and quality with parameter *alfa*. Two files named xx-BPR-1.0.pruning and xx-

43

BPR-1.0-pruning-seq.ps are created in the current directory. The postscript one contains these
graphics that may be visualized at any time by using GhostView tool.

4.3.6 Results visualization / interpretation

Describe tree. ATDIDT 2.2 command : DESCRIBE_TREE displays a résumé of the current
regression tree growing and testing results (if the tree has been tested before). By current tree
we understand the tree indicated by the global variable *current-dt*, i.e. the last built
tree, or the last pruned tree, or the last tree chosen with the command :CHOOSE_TREE. It may

be applied at any time, once a (decision or regression) tree is stored in the variable
current-dt.

Display tree. ATDIDT 2.2 command : DISPLAY_TREE displays the current tree on a single
page. Command :MY_DISPLAY_TREE displays the tree on multiple pages, on the first page
only the upper levels of the tree and on the other pages, the rest of the subtrees. It should be
used for very complex trees (too complex to be displayed on a single sheet). Both commands
generate a postscript file (named xx.ps for a RT called xx) located in the current directory that
may be visualized at any time using the GhostView tool.

ATDIDT 2.2 command :DRAW_TEST_SET enables or disables the representation of the test
results on the tree graphic. Figure 20 presents an example of a regression tree display without
test results, and Figure 21, with test results.

Figure 20 and Figure 21 draw a regression tree for a *goal-regression* called “cct-sbs”
(see the attribute definition in database declaration file example of appendix), built on a
learning set of 1000 objects, pruned and tested on a independent test set of 1000 objects. Each
node of the tree is represented by a box. Above the box appears the name of the node, test (T),
leaf (L) or deadend (D) and the number of node learning states. The total number of different
nodes is indicated above the root node. Below every test node, the corresponding test is
indicated and each arc leading to a successor is labeled with a possible answer to this test (Yes
and No). In Figure 20, each node’s box corresponds only to the learning set results. The node
box area is proportional to the node’s local learning set size. Inside each node box, the mean
value of the regression tree approximation together with its standard deviation (in brackets)
computed on local LS is marked. The horizontal splits in nodes simulate this mean value
plus/minus one standard deviation. In this way, the variance reduction from root node to
terminal nodes becomes graphically visible. In Figure 21, the node’s box is divided into two
parts, the upper one corresponding to the learning set as explained already, the lower one to
the test set. Their relative heights are proportional to the relative sizes of the learning and test
sets at the node. The part corresponding to the test set displays the mean value and its standard
deviation for the node’ subtree absolute error computed on TS. Root node test part gives the
mean value for the absolute error of the entire tree.

HTML format. ATDIDT 2.2 commands : SAVE_TREE and : INSPECT_TREE give another
way of visualizing results, in html format. For a regression tree named xx, the first command
creates a new directory called /Sav/xx/ in the current directory, and puts 7 files concerning the

44

tree in this new directory. The second command opens a Welcome.html file that displays
genera information about the tree together with hyperlinks for all the created files:

- xx-rules.html — displays the IF-THEN rule base derived from the tree

- xx-prunelst (for a pruned tree) or xx-grown.Ist (for the original tree) — displays

information that describe the pruning / growing processes

- xx.dump - outputs the internal lisp structure of the tree xx

- xx.Isp - contains the lisp function of the new created functional attribute

- xx-mp.pdf and xx-sg.pdf — are single page and multiple page displays of the tree.

Afterwards, at every new session, the ATDIDT 2.2 command : LOAD_TREE may load this
built tree (model) based on the xx.dump file, thus releasing the user from building it again.

Derived rule-base. For every terminal node of a regression tree, an IF-THEN rule is
generated. The file xx-ruleshtml indicates for every rule of type “if antecedent then
output=value”, extracted from the xx decision tree, the next coefficients:

- support of rule — percentage of all objects in LS for which this rule is active

- output estimation when the rule is active.

Example of rule deducted from regression tree of Figure 20:

Rule T4: IF Pu>1135.9 and Qu <-205.0 THEN CCT-SBS = 0.076139
Support = 7.4%

Other ideasfor graphics. If the regression tree name is xx, the *goal-regression® isyy
and ww is one input attribute:
- Scatter-plot (approx-xx-of-yy, yy) on LS (see Figure 22) or TS
- Histogram for approx-xx-of-yy on LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of RT and
visualize a scatter-plot for (yy, zz) or a histogram for zzon LS, TS
- Scatter-plot (approx-xx-of-yy, ww) on LS (see Figure 23) or TS.

4.3.7 Other possible actions

All the commands having the format :XXX_TREE are available both for regression and
decision trees and are regarding the tree stored in the global variable *current-dt*.

Other useful available commands:

:SELECT-DT-TEST-ATTS - settles the global variable *candidate-attributes® as
the list of all the attributes chosen by the current decision tree. This command becomes very
useful when decision tree technique is used in a hybrid approach together with other methods.
A regression tree has the ability to reduce the input space to the relevant attributes for a given
problem.

:GET_DT_ERRORS - select the global variable *Tearning-set* as the objects from
*test-set® for which the regression tree approximation is different from the *goal-

45

regression® used to build the tree. Asit is often the case for regression trees, this option is
not very useful for regression trees context, since often here the new LS is similar with the
origina LS.

TiIS5+ L0+ D16

21| [omn

Pu 2> 963144
T2: 5670 T11:4330
Limied[mmz =17 (o)
Pu > 829.64

T12: 243.0%

Pu> 1135.9
k'

T3: 261.0

R

.1 1837 L=

Qu < 47,49 Qu < 33.614
T13: 97.4

g Lo
Qu < 606.62 V1< 10274 Vinf < 1.0277 Vinf < 1.0233 Vinf < 1.0293 Yinf < 10538
600 Do 4% 89, : y 1180 DiL¥o DW¥:e30 T15: 50 000 DIE:&0 DW:si0
1 zim Loz) 1 (o |:=|m=mam 19 (oot 1T T LT smiase I“““"w’l

Vinf < 1.04 Pu>1021.7

D3: 634 : 65.0 D7: 5% D 30.0

Learning set regression (w.ri. CCT-SBS)

[] very Negative : 04466 > Mean-Sigma (= . 11808 In Ls)
[l Negative : Mean-Sigma > Mean (= 20611 In Ls)

. Positive : Mean -» Mean+Sigma (= .294 14 1n Ls}

[[] Very Positive : Mean+Sigma -> 40944

OMIB - 10000 objects - L. Wehenkel Fri Dec 12 1997
RT12-BPR-1.0. N = 1000 {v-min = 0.0 t-v-min = 0.0 alfa = 1.0e-7) M = 1000 (MAE = 0.029563)

Figure 20

TI5+LO+ Dl

2011 [omnY)

I

Pu > 963.14

T2: 5670
A mm
armLmmn
/ Pu>1135.9
T3: 2610 %
RELEJEE L]
omH (mm oz (o.oEm
Qu < -205.0 Qu < 18.112

10: 174.0

-ZEILOMIT)

NEE-ETE T L1413 (o

T mmy i o)

Qu < 606.62 Vi< 1.0274 Vinf < 1.0277

:60.0 D& 4%l DN 1180

.21 Loxe i 1m0l [om 101 (o amim Lodma b pomA

FE-ETTETE T .nzzalnm O (a4 o (omn 0313 (mdt I

Vinf < 1.04 Pux> 1021.7
D3: %4 : 65.0 D’f_:Sﬁ’ﬁ DR 30.0

T] A Lo ALy .m?r,mu;
ozl Lormn @l o) .mETzLomid)

Learning set regression (w.ri. CCT-SBS)

[[] Very Negative : 04466 -> Mean-Sigma (= . 11808 1n Ls}
Bl Negative : Mean-Sigma -> Mean (= 20611 1n Ls)

[l Positive : Mean -> Mean+Sigma (= .29414 1n Ls)

[] Very Positive : Mean+Sigma -> 40944

Test sel regression

Qu < 4749
T13: 974

|

Vinf < 1.0233

D1l:34.0
.mma[om)
oA [

oz oy

D 630 115 &0

E- I

Vinf < 1.0293

RILE IR]

Qu < 33.614
$44: 1460 D16: 750

T B

Vinf« 1.0538

DWY: 53.0

IHm LEE araimid)

FEETCREE] 231 7 [EOR)

Ermror-Type| Number Mean Min Max Sigma St. B
Negative 457 J027232582.000043332. 148345339.01 9944 859 000932982
Positive 543 0315241 720.00000423. 127954659.024079901 001033367

Total 1000 0295629150.00000423 . 148345339 022387898 000707968

OMIB - 10000 objects - L. Wehenkel Fri Dec 12 1997
RT12-BPR-1.0. N = 1000 {v-min = 0.0t-v-min = 0.0 alfa = 1.0e-7) M = 1000 (MAE = 0.029563)

Figure21

oN%: 000 D17 0

EEE T

Oxm [0z

Lo ET)

47

CCT-5BS

D45

Correlation (APPROX-RT12-BPR-1.0-OF-CCT-SBS,CCT-SBS)

& 1000 objects

rho = 92683

APPROX-RT12-BPR-1.0-0F-CCT-SBS
M 7.6136d-2 Mx=_0.3770

n=

mu= 02081

CCT-SBS
Mn=

mu= 02081

-2Mx=_0.
sd= 8.1601d-2

1.5100d-2 Mx=_0.4429

=d= 8.8030d-2

0.2 '0.25
--- APPROX-RT12-BPR-1.0-OF-CCT-5B5 —

Figure 22

GDC 1.0- 132720021 18018
OMIB - 10000 objacts - L Wehenkal Fri Dec 12 1997

1300,

1200,

1000.]

ool

Correlation (APPROX-RT12-BPR-1.0-OF-CCT-SBS,PU)

00 |

800 |

7o0,|4

& 1000 objects
APPROX-RT12-BPR-1.0-OF-CCT-8BS
Mn= 781 4]

rho =-.83408

0d-2 Mx=_ 0377
mu= 02061 sd= &1B01d-2
PU
Mn= 701.7 Mx= 1300
mu= 1003. sd= 1662

0.2 '0.25
--- APPROX-RT12-BFR-1 0-OF-CCT-888 -

Figure 23

GDC 1.0 - 1322002 al 18M7F
CMIB - 10000 objects - L Wehenkal Fri Dec 12 1997

4.4 Linear Regression

4.4.1 What is it?

Definition. Linear regression tool is used in regression problems. The model predicts one
attribute (the output) by means of other attributes (the inputs) by alinear function. It is aleast
squares linear combination of all the inputs with respect to the output.

output = ¢, + c,input, + C,input, +....c input,
The model has a numerical output and non-constant numerical inputs.

Method characteristics. The main strength of linear regression is its computational efficiency
for reasonable sized input spaces. It is much faster then regression trees or neura networks.
When the input space dimension K (number of input attributes) is high, the method is less
efficient, due to a K*K matrix manipulation (inverse matrix computation) that is quadratic in
K. The model complexity is given by the input space size K and the model free parameters are
the K coefficients. In a hybrid approach and large sized input spaces, a dendrogram, a
decision or regression tree may reduce the input space and then a linear regression technique
may find the linear combination for predicting a certain output.

4.4.2 Selections to make before starting

Define the problem. Choose *goal-regression* and choose *candidate
attributes”*. Admissible input attribute type is “ordonee”. Note that the model does not
handle constant attribute values, qualitative or linear-combination attributes, all being
excluded from the *candidate-attributes® list prior to model building. Temporal
attribute values are replaced by a list of scalar ones.

Select data. Choose *learning-set* and *test-set* (if you also want to test the
model).

Set method parameters. Method parameter is *weight-decay*.

welght-decay

- Penalization term in the “ridge-regression” model

- Takes positive real values

- Default value 0.00001 (almost no penalization)

- If the user wants to reduce the variance of the linear regression he should use larger
values, say 1.0.

- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: LINEAR_REGRESSION, command :SET_WEIGHT_DECAY

4.4.3 Apply the method

50

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:LINEAR_REGRESSION, command
:LEARN_LINEAR_REGRESSION_APPROXIMATION.

Effects of the method employment If the *goal-regression¥® isyy:
- The new functional attribute created by default once the model is built has the name
linear-regression-yy, or any hame given by the user
- The created file containing information about the model building process has the name
linear-regression-yy.log, and is located in the current directory. If it already exists, the
new information is appended to the old one in thefile.

Interesting displayed information while building the model: status variables, CPU times, a
description of the new created attribute, its explicit function giving the linear dependence.

4.4.4 Test the model

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:LINEAR_REGRESSION, command : TEST_REGRESSION_APPROXIMATION

Interesting displayed infor mation while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors;, CPU time.

4.4.5 Results visualization / interpretation

Explicit function. An example of the linear model function detected by ATDIDT is:

cct — sbs = 0.62587 — 0.00043Pu + 0.00008Qu .

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created linear regression attribute), to be compared with the *goal-
regression® yy. After testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see
Figure 24). The corresponding created postscript file is named linear_regtst-tem.ps and is
located in the current directory.

Other ideasfor graphics. If the *goal-regression¥* isyy and xx is one input attribute:
- Scatter-plot (linear-regression-yy, yy) onLS
- Histogram for linear-regression-yyon LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of the linear
model and visualize a scatter-plot for (yy, zz) or ahistogram for zzon LS, TS
- Scatter-plot (linear-regression-yy, xx) on LS (see Figure 25) or TS.

Correlation (LINEAR-REGRESSION-CCT-SBS,CCT-SBS)

CCT-5BS

--- LINEAR-REGRESSION-CCT-5BS -
& 1000 objects rho = 92732
LINEAR-REGRESSION-GCT-SBS
Mn= 253754-2 Mx=_0.3930
mu= 02083 sd= 8.2850d-2
COT-3BS

Mn="2.4000d-3 Mx=_0.4585
mu= 02136 sd= 9.1704d-2

GDGC 1.0 - 12:2/2002 a1 13h29
OMIE - 10000 abjecks - L Wehenkel Fri Dec 12 1997

Figure24

Correlation (LINEAR-REGRESSION-CCT-SBS,PU)

0.2 '0.25
— LINEAR-REGRESSION-CCT-SBS -
® 1000 objects rho = BB5BE

LINEAR-REGRESSION-CCT-SBS
Mn=1.8406d-2 M 3841

. -2 Mx=_0.
mu= 02061 sd= 8.0862d-2
PU
Mn= Mx= 1300

GDT 1.0 - 132/2002 =i 14h52
CMIB - 10000 cbjact - L Wahenkal Fri Dec 12 1987

Figure25

4.5 Linear Hinges Model
4.5.1 Whatis it?

Definition. Linear Hinges model is a one-dimensional regression problem, i.e. curve fitting
from two-dimensional scatter-plot data. The model predicts one attribute (the output) by
means of other attribute (the input) by a piecewise linear model. It has a numerical output and
non-constant numerical inputs.

Method characteristics. The model is very computationally efficient. The number of linear

pieces of the model gives the model complexity.

4.5.2 Selections to make before starting

Definethe problem. Choose *goal-regression®.
Select data. Choose *learning-set* and *test-set® (if you also want to test the
model).

4.5.3 Apply the method

Command. ATDIDT 22 command> menu :AUTOMATIC_LEARNING, menu
: LINEAR_REGRESSION, command :HINGES.

The command prompts for the attribute name considered as input for the model. Admissible
input attribute type is “ordonee”. Note that the model does not handle constant attribute
values, qualitative, linear combination or temporal attributes.

Effects of the method employment. If the input attribute is xx and *goal-regression*
IS yy:
- The new functional attribute created by default once the model is built has the name
linear-hinges-xx-yy
- No log file is generated.

I nteresting displayed information while building the model: number of knots, learning and
pruning set sizes, new created attribute name, CPU time.

45.4 Test the model

Command. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
:LINEAR_REGRESSION, command : TEST_REGRESSION_APPROXIMATION

3 Model not availablein ATDIDT 3.0 version

53

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors;, CPU time.

4.5.5 Results visualization / interpretation

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created linear hinges attribute), to be compared with the *goal-
regression¥ yy. After testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see
Figure 26). The corresponding created postscript file is named linear_regtst-tem.ps and is
located in the current directory.

Other ideasfor graphics. If theinput attributeis xx and *goal-regression® isyy:
- Histogram for linear-hinges-xx-yyon LS, TS
- Scatter-plot (linear-hinges-xx-yy, yy) on LS
- Define a functional attribute zz as the error / absolute error / squared error of the linear
model and visualize a scatter-plot for (yy, zz) or ahistogram for zzon LS, TS
- Scatter-plot (linear-hinges-xx-yy, xx) on LS (see Figure 27) or TS.

Correlation (LINEAR-HINGES-PU-CCT-SBS,CCT-SBS)
CCT-8BS
e
; : : : : : : : : : ‘v e
o4l : : : : : : : : ! e
T I .- o«
Y T et SO
. ey 3 *, "
..............,.........,.........;.‘,.;,:.o,..::.:',.r.'-ﬁ.'-"-.'.s
. & e % PR "'y
R . s TV, é P
. .--.’ v ? t ‘. e . '.'" H -
¢ ‘.;, R A ot bl b 3 MR P
. (Y s = g . - . :
A L IR T, SNPAT
B ERARL 4 PN Ll e
S0 PN e te v e L,
e .:“-'-‘-:" Tew v - " . cet -t s 4
cami T ab e . ‘
Tate , L . . » LA
R AT AR ,""'-T.;""""T -------
. .« T I
£ : :
T S
* * g
"""""""""""""""" 025 0a
— LINEAR-HINGES-PU-CCT-8BS —
& 1000 objects rho =.83434
LINEAR-HINGES-PU-GGT-SBS
Mn= 7 885300 Mx= 0.3358
mu= 02068 sd= 7543542
GOT-9BS
Rn="24000d-3 Mx= 04595
mu= 02138 sd= ©.170dd-2
1 GDZ 1.0 - 1322002 a1 13h50

OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

Figure 26

Correlation (LINEAR-HINGES-PU-CCT-SBS,PU)

PU
1300 . R o L - e e
1200
1100)
1000 |
900
800
7004 . RO oL Sovs U ST L N A

0.1 015 0.2 0.25 EE]
— LINEAR-HINGES-PU-GCT-8BS —
& 1000 objecis rho =-1.00000

LINEAR-HINGES-PU-CCT-SBS

Mn= 7 8813d-2 Mx= 0.3358

mu= 02061 sd= 7.1438d-2

PL

Mn= 7017 Mx= 1300

mu= 1002 sd= 1662

Figure 27

GDS 1.0 - 132/2002 =l 14h55
OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

4.6 Regression Tree Bagging
4.6.1 Whatis it?

Definition. Regression tree bagging is used in regression problems. The model predicts one
attribute (the output) by means of other attributes (the inputs) by averaging multiple regression
trees estimations. The model has a numerical output and numerical inputs. A number of
regression trees are built in the iterative way: a random subset of the *1earning-set® is
internally selected (size = 50% of the *1earning-set* size), then aregression tree is built
on this subset. At the end, a new model is constructed by aggregating all these trees, and the
model’s prediction is the average prediction of the trees.

Method characteristics. It provides more accurate output estimators than single regression
tree building and less accurate than neural networks or regression tree boosting. With respect
to regression trees, the averaged model looses the interpretability character. The CPU time is
rather high with respect to other regression methods.

4.6.2 Selections to make before starting

Define the problem. Choose *goal-regression* and choose *candidate
attributes®. Admissible input attribute type is “ordonee”. Note that the model does not
handle linear-combination or constant attribute values, they being excluded from the
candidate-attributes list prior to regression tree model building. Equally, the
model does not handle qualitative attributes. Temporal attribute values are replaced by a list of
scalar ones.

Select data. Choose *learning-set* and *test-set* (if you also want to test the
model).

Set method parameters. Method parameters are *size-of-trees-for-bagging*
and *number-of-bagging-terms*. Also, the model is based on the regression trees
intrinsic parameters: *alfa-rt*, *v-min* and *total-variance-min*.

size-of-trees-for-bagging
- The upper bound of regression tree complexity during bagging
- Takes integer values between 0 (trivial tree) and 10.000 (large tree)
- Default value 500
- Typically, it is preferable to build large trees so as to reduce bias as much as possible
- ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu :META_LEARN,
command :BAGG_COMPLEXITY.

number -of-bagging-ter ms
- The number of regression trees which are built during bagging
- Takes integer values between 0 (no model) and 50
- Default value 20
- ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu :META_LEARN,
command :BAGG_NUMBER.

56

4.6.3 Apply the method

Command. ATDIDT 3.0 command* menu :AUTOMATIC_LEARNING, menu
:META_LEARN, command : TREE_BAGGING

Effects of the method employment.
- The new functional attribute created by default once the model is built has the name
RT-BAGG<i>
- Nologfileis generated.

Interesting displayed information while building the model: status variables, summary
description of each intermediary regression tree, CPU times.

4.6.4 Test the model

Command. ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu
*META_LEARN, command : TEST_REGRESSION_APPROXIMATION

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors;, CPU time.

4.6.5 Results visualization / interpretation

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created model), to be compared with the *goal-regression* yy. After
testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see Figure 28). The
corresponding created postscript file is named linear_regtst-tem.ps and is located in the
current directory.

Other ideasfor graphics. If the *goal-regression¥ isyy, ww is the model’s name and
XX IS one input attribute:
- Scatter-plot (ww, yy) on LS
- Histogram for wwon LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of the linear
model and visualize a scatter-plot for (yy, zz) or a histogram for zzon LS, TS
- Scatter-plot (ww, xx) on LS (see Figure 29) or TS.

4 Modd not availablein ATDIDT 2.2 version

Correlation (RT-BAG2,CCT-SBS)

CCT-5BS

— RT-BAGZ -
& 1000 objects rho =92228
RT-BAG2
Mn= B 8370d-2 Mx=_0.3766
mu= 02080 sd= 7.9287d-2
CCT-5BS
Mn="24000d-3 Mx=_ 04595
mu= 02136 =d= §.1704d-2
GDS 1.0 - 1322002 1 61
M - 10000 objacts - L Wahenkal Fri Dz 12 1987
Figure 28

Correlation (RT-BAG2,PU)

GE D15 D2
- RT-BAG2 -

& 1000 objects rho =-.88115

RT-BAGZ2
Mn= B.9370d-2 Mx=_0.3775
mu= 02060 sd= 7.73b8d-2

GDT 1.0 - 13272002 =i 16HS
CMIB - 10000 chjacts - L Wahenkal Fri Daz 12 1967

Figure29

4.7 Regression Tree Boosting

4.7.1 What is it?

Definition. Regression tree boosting is used in regression problems. The model has a
numerical output and numerical inputs. A number of regression trees are built in the iterative
way: first a linear regression is built to fit the *goal-regression®; then a number of
small regression treesis built using an iterative residual fitting method; finally, the tree-models
and attributes are combined in a generalized linear model to fit the *goal-regression®.

Method characteristics. The interpretability character islost with respect to regression trees.
It is computationally efficient. It provides more accurate output estimators than single
regression tree building or regression tree bagging, and comparative results with neural
networks.

4.7.2 Selections to make before starting

Define the problem. Choose *goal-regression* and choose *candidate
attributes®. Admissible input attribute type is “ordonee”. Note that the model does not
handle linear-combination or constant attribute values, they being excluded from the
*candidate-attributes® list prior to model building. Equally, the model does not
handle qualitative attributes. Temporal attribute values are replaced by a list of scalar ones.
Select data. Choose *1learning-set* and *test-set® (if you also want to test the
model).

Set method parameters. Method parameters are *size-of-trees-for-boosting*
and *number-of-boosting-terms*. Also, the model is based on the regression trees
intrinsic parameters. The user cannot control them, they being settled by default as *alfa-
rt*=0.1, *v-min*=0.0 and *total-variance-min#*=0.0.

size-of-trees-for-boosting

- The upper bound of regression tree complexity during boosting

- Takes integer values between 0 (trivial tree) and 10.000 (large tree)

- Default value 10

- ltis preferable to build small trees so as to reduce variance as much as possible

- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: LINEAR_REGRESSION, command :BOOST_COMPLEXITY

- ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu :META_LEARN,
command :BOOST_COMPLEXITY.

number -of-boosting-ter ms
- The number of regression trees which are built during boosting
- Takes integer values between 0 (no model) and 50
- Default value 10
- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
: LINEAR_REGRESSION, command :BOOST_NUMBER

59

- ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu :META_LEARN,
command :BOOST_NUMBER.

4.7.3 Apply the method

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:LINEAR_REGRESSION, command : TREE_BOOSTING

ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu :META_LEARN, command
: TREE_BOOSTING

Effects of the method employment.
- The new functional attribute created by default once the model is built has the name
RT-BOOST<i>
- Nolog fileis generated.

Interesting displayed information while building the model: status variables, summary
description of each intermediary regression tree and linear regression, CPU times.

4.7.4 Test the model

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:LINEAR_REGRESSION, command : TEST_REGRESSION_APPROXIMATION

ATDIDT 3.0 command: menu :AUTOMATIC_LEARNING, menu :META_LEARN, command
:TEST_REGRESSION_APPROXIMATION

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors;, CPU time.

4.7.5 Results visualization / interpretation

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created model), to be compared with the *goal-regression* yy. After
testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see Figure 30). The
corresponding created postscript file is named linear_regtst-tem.ps and is located in the
current directory.

Other ideasfor graphics. If the *goal-regression¥ isyy, ww is the model’s name and
XX IS one input attribute:
- Scatter-plot (ww, yy) on LS
- Histogram forwwon LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of the linear
model and visualize a scatter-plot for (yy, zz) or a histogram for zzon LS, TS
- Scatter-plot (ww, xx) on LS (see Figure 31) or TS.

Correlafion (RT-BOOST9,CCT-SBS)

CCT-5BS

LA i o P
"'.V wor F ey
L Al LI W

— RT-BOOSTY -
& 1000 objects rho =98276
RT-BOOSTY
Mn= 48218d-2 Mx= 04115
mu= 02084 sd= B.3822d-2
CCT-5BS
Mn="24000d-3 Mx=_ 04595
mu= 02136 =d= §.1704d-2
GDS 1.0 - 1422002 21 1417
M - 10000 objacts - L Wahenkal Fri Dz 12 1987
Figure 30

Correlation (RT-BOOSTS9,PU)

1300.]
1zo0)i

1100}

1000
900 |
800

700]

015 02 '0.25 0.3
-~ RT-BOOSTE -

& 1000 objects rho =-.87671
RT-BOOSTY

Mn= 3.9222d-2 Mx=_ 04183
mu= 02061 sd= 8148bd-2

Figure 31

GDT 1.0 - 142/2002 = 14h39
CMIB - 10000 chjacts - L Wahenkal Fri Daz 12 1967

60

4.8 Multilayer Perceptron
4.8.1 What is it?

Definition. Multilayer perceptrons (MLP) are tools used in nonlinear regression and in
nonlinear classification problems. The model predicts one attribute (the output) by means of
other attributes (the inputs) by a nonlinear function. It supports numerical inputs and symbolic
or numerical output depending on the problem.

Method characteristics. The main strength of MLP is its universal approximation capability.
Among the ATDIDT data mining methods it is probably the most accurate one. Unfortunately,
from the point of view of interpretability it is perceived as a black box. It is heavy in terms of
CPU time concerning the training stage and may become cumbersome for highly dimensioned
input spaces. That is why, it is advisable to be used in conjunction with other methods that
firstly reduce the input space, like decision/regression trees or dendrograms (hybrid
approaches). The criterion used for training is the minimum squared error without weight-
decay term.

4.8.2 Selections to make before starting

Define the problem. Choose *goal-regression®* or *goal-classification*
and choose *candidate attributes*. Admissible input attribute type is “ordonee”.
Note that the model does not handle linear-combination or qualitative attribute values, they
being excluded from the *candidate-attributes® list prior to model building.
Temporal attribute values are replaced by a list of scalar ones.

Select data. Choose *learning-set* and *test-set* (if you also want to test the
model).

Set method parameters. Method parameters are *output-activation-function-
name*, *hidden-layers*, *mlp-test-set-monitoring*, *mlp-cycle-
number¥®.

output-activation-function-name

- Indicates the type of the activation function of the output layer (note that at hidden
layers the activation function is always tanh)

- Possible choices: “identite” (linear function), “tanh” (hyperbolic tangent), and
“echelon” (Heaviside threshold function)

- Default type: “identite”

- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command :OUTPUT_LAYER_ACTIVATION.

hidden-layer s
- Determines the structure of the MLP
- Default structure: one hidden layer with 10 neurons
- Multiple hidden layers are supported

62

- ATDIDT 2.2 command: menu AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command :SET_MLP_HIDDEN_STRUCTURE

mlp-test-set-monitoring

- Takes valuest (if the *test-set® is not empty, monitoring of the test set error
during training) or nil (monitoring of the learning set error during training)

- Default value nil

- If the toggle is on, the program returns the MLP approximation found during training
which obtained the least error on the test set, otherwise it returns the last MLP obtained
during training

- ATDIDT 2.2 command: menu ‘AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command :MONITOR_TEST_SET.

mlp-cycle-number

- Defines the maximum number of iterations for MLP training; the training stops either
when it converged (from the point of view of the mean squared error function) or when
agiven number of cycles have been scrolled out

- Takesinteger values

- Default value 500

- ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command :MLP_STOPPING_PARS.

Other parameters settled also by the command :MLP_STOPPING_PARS, used to decide when
to stop the iterative gradient descent, are: the minimum error (default value 1.0e-10) and the
minimum gradient size (default value 1.0e-10).

4.8.3 Apply the method

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu

:NON_LINEAR_REGRESSION, command : TRAIN_MLP_REGRESSION or
:TRAIN_MLP_CLASSIFICATION.

Effects of the method employment. If the MLP name is xx and the *goal-regression*

isyy:
- The new functiona attribute created by default once the model is built has the name xx

(by default the name is MLP<a>--yy if the model has two hidden layers, <a>

neurons on the first layer and neurons on the second |ayer)

- The created file containing information about the training process has the name xx.log
and islocated in the current directory

- Thenew MLP xx is pushed in the global variable *m1p-structures*

- The globa variable *current-mlp* keeps the last built (classification or
regression) MLP model

- A postscript file named xx.ps is generated in the local directory and automatically
displayed, representing the MLP structure for one object (by default for the first object
inthe current *1earning-set¥®).

63

Interesting displayed information while training the ML P: status variables, training stage
with mean squared errors on LS and TS (if test set error monitoring is on) for every cycle,
CPU time.

4.8.4 Test the model

Regr ession

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command : TEST_REGRESSION_APPROXIMATION

Before testing, the user is prompted for a numerical attribute name xx (for example the new
created MLP model), to be compared with the *goal-regression® yy. After testing, a
scatter-plot is automatically displayed, (xx, yy) on TS (see Figure 36). The corresponding
created postscript fileis named linear_regtst-tem.ps and is located in the current directory.

Interesting displayed infor mation while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors;, CPU time.

Classification

Command. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu

:NON_LINEAR_REGRESSION, command
:TEST_CLASSTFICATION_APPROXIMATION

Before testing, the user is prompted for a symbolic attribute name xx (for example the new
created MLP model), to be compared with the *goal-classification* yy.

I nteresting displayed information while describing the results: non-detection costs (values
between 0 and 1), confusion matrix on TS (number of objects correctly classified and
misclassified), classification error rate on TS, CPU time.

After testing, the global variable *classification-errors* contains al the
misclassified objects.

4.8.5 Results visualization / interpretation

Display MLP. ATDIDT 2.2 command : DRAW_MLP prompts for an object name and displays
the current MLP for this object. The command generates a postscript file (named xx.ps for a
MLP called xx) located in the current directory that may be visualized at any time using the
GhostView tool. Note that this file is generated and displayed automatically just after each
new MLP model training / retraining (but only for the first object in *1earning-set®).

64

Figure 32 draws a regression MLP model for a *goal-regression* called “cct-shs” and
Figure 33 draws a classification MLP model for a *goal-classification* called
“security” (see the attribute definitions in database declaration file example of appendix), both
MLPs built on a learning set of 1000 objects and tested on a independent test set of 1000
objects. The networks have as many neurons in the input layer as inputs in both cases, one
output neuron in regression and as many output neurons as classes in classification. The
numbers marked in each neuron in red colors are valid only for the object the network is
applied to, all the others are valid for any object. The lowest number in each neuron represents
a measure of the neuron’s importance in the model.

Display training curves. ATDIDT 2.2 command : SHOW_TRAINING_CURVES prompts for
a MLP name and displays training curves on learning and test sets. The test set error will
always be zero if the test set monitoring is not enabled. Figure 34 and Figure 35 give the
curves for training the regression and classification models of Figure 32 and Figure 33
respectively.

HTML format. ATDIDT 2.2 commands :SAVE_MLP and : INSPECT_MLP give another
way of visualizing results, in html format. For a MLP model named xx, the first command
creates a new directory called /Sav/ixx/ in the current directory, and puts 5 files concerning the
MLP in this new directory. The second command opens a Welcome.html file that displays
general information about the model together with hyperlinks for all the created files:

- xx-trainlst - displays information that describe the training processes

- xx.dump - outputs the internal lisp structure of the MLP model xx

- xx.Isp - contains the lisp function of the new created functional attribute

- Xx-sp.pdf — is the MLP structure display.

Explicit function. Example of nonlinear regression and classification functions deducted from
MLP model of Figure 32 and Figure 33 are given in appendix.

Other ideas for graphics. If the MLP name is xx, the *goal-regression® is yy and ww
is one input attribute:
- Conditional scatter-plot (xx, yy) on LS (see Figure 38) or TS
- Conditional histogram for xx on LS (see Figure 39), TS
- Settle LS as the objects misclassified by the tree (*classification-errors*)
and apply a conditional histogram for xx
- Define a functional attribute zz as the error / absolute error / squared error of MLP and
visualize a scatter-plot for (yy, zz) or a histogram for zzon LS, TS
- Scatter-plot (xx, ww) on LS (see Figure 37) or TS.

4.8.6 Features extraction

Definition. Feature extraction methods aim at defining a set of feature (attribute)
combinations. The objective is to transform the initial attributes in order to concentrate the
maximum amount of information in a minimum number of transformed attributes.

65

Features extraction by MLP. A MLP is build having the input attributes as MLP inputs and
equally as MLP outputs. The hidden neuron activations give thus the compressed set of new
functional attributes that concentrate the information of all input attributes. The approach
becomes really useful when the number of input attributes is more less than the number of
neurons in the hidden layers.

Step 1. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command : EXTRACT_FEATURES

Effects. If the MLP nameis xx:

- The new functiona attribute created by default once the model is built has the name xx
(by default the name is MLP<a>--compress if the model has two hidden layers,
<a> neurons on thefirst layer and neurons on the second layer)

- The created file containing information about the training process has the name xx.log
and islocated in the current directory

- Thenew MLP xxispushed in the global variable *mlp-structures*

- Thegloba variable *current-mlp* keepsthe last built MLP model

- A postscript file named xx.ps is generated in the local directory and automatically
displayed, representing the MLP structure for one object (by default for the first object
inthe current *1earning-set¥®).

Interesting displayed information while training the MLP: status variables, training stage
with mean squared errors on LS and TS (if test set error monitoring is on) for every cycle,
CPU time.

The commands for testing cannot be employed here. All the others commands related to
neural networks may be useful.

Step 2. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:NON_LINEAR_REGRESSION, command :GET_HIDDEN_NEURON_ACTIVATIONS

Effects. The command creates <i> new functional attributes, where i is the number of the
hidden neurons of the current MLP (stored in the variable *current-mlp*) . If the MLP
name is xx and the (regression or classification) goal is yy, the new attributes have the name
MLP<a>--yy-tanh<i> if the model has two hidden layers, <a> neurons on the first layer
and neurons on the second layer.

Example of the function for such functional attribute (of neural network of Figure 33):

Command: (print (get 'mlpl0-security-tanh8 fonction))

Effect: (COERCE (MULTI-OR (LET ((I1
(+ (* 0.006016299369492383d0 (PU OBJET))
-6.036782344305822d0))
(12
(+ (* 0.0020852237395437285d0 (QU OBJET))
-0.3143199907124104d0)))
(TANH (+ -3.47635289612401d0

66

(* -0.466619969236949640 | 1)
(* -2.830416533641814d0 [2))))
'0.0)
FLOAT)

4.8.7 Other possible actions

:RETRAIN_MLP - retrains *current-mlp* with the currently selected *1earning-
set* and *test-set*. It produces a new attribute, symbolic or numerical depending on
the *current-mlp* type, and a log file with the training information (or append this

information to an already existent log file). The training process is restarted from where it
stopped not from the scratch.

:CHOOSE_MLP - chooses a MLP model; the command may be applied at any time, once a
(classification or regression) MLP model is stored in the variable *current-mlp¥*.

DE : OMIE

MULTHAYER PERCEPTRON MLP10-CCT-565
saxportdar Iolaraidbumid i WK om ib.db

— -

Tanh3 A
s

-3.1058 =

o]

OD2ES

- —
Lin CCT-5BS

FIUB4 | g3 | 08L1E

350425 (3805

1000

00a0LG

——
Tanhg
143827
O3

QFS00) CCT-SES=0.2612,

Figure 32

67

68

MULTHAYER PERCEPTRON MLPI0-SECURITY DA : OMIB
saxportdar Iolaraidbumid i WK om ib.db

——

Tanh2

354335

Q4EL52

1423

——
#Tanh3™,

-198m ‘f%
03783 Rt
3B

k4
— G
Tanh?
-1 A5E2
-HEIT
Ly g

—_——
Lin CLASS-TO-REGRESS-S-SECURE

DONES A1
S511E%
1000
BU LinCLASS-TC-REGRESS-SINSECURE
C0G0LG Ad431a3 38333 o031
EM0ld =53313 .Ca3a3s
1030

QFS00) - CLASS-TO-REGRESS-5-INSECURE=0.0, CLASS-TO-RECGRESS-5-SECURE=1.0,

Figure 33

2 5e-2|

2.e-2|

1.5e-2|

1.e-2|

5.e-3|

0.0

Training curves of MLP10-CCT-SBS

Training emrer of MLP10-CCT-SBS
Test set eror of MLP 10-CCT-SBS

150 '200. '250 '300. '350.
-~ Epoch -

GDS 1.0 - 152/2002 al 12h11
OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

Figure 34

0.0

Training curves of MLP10-SECURITY

oo

Training emror of MLP10-SECURITY
Test set eror of MLP 10-SEGURITY

200 '300. ‘400 '500.
--- Epoch ---

GDC 1.0 - 15272002 a1 12M0
CMIB - 10000 chjacts - L Wahenkal Fri Daz 12 1967

Figure 35

69

CCT-5BS

Correlation {(MLP10-CCT-SBS,CCT-SBS)

& 1000 objects

o1 ‘015 ‘02
- MLP10-GCT-8B5 —
rho =92358

MLP10-CCT-SBS

Mn= 48348d
mu= 02098

GGT-8BS

Mn="24000d-3 Mx=

mu= 02136

-2 Mx= 1
sd= B8.4086d-2

04100

0.4595
sd= 8.1704d-2

Figure 36

GDS 1.0 - 14272002 =l 1620
OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

1300 |

1200 |

1100,

Correlation (MLP10-CCT-SBS,PU)

1000,

900 |

800

700]

L B S

562

& 1000 objects

GE] 018 02 '0.25 0.3
- MLP10-CCT-8BS -

rho =-.87740

MLP10-GGT-SBS

Mn= 481956d
mu= 02061

-2 Mx=_04119
sd= 8.1412d-2

'0.35

GDT 1.0 - 14272002 = 17H35

Figure 37

CMIB - 10000 chjacts - L Wahenkal Fri Daz 12 1967

70

Correlation (MLP10-SECURITY SECURITY) vs. SECURITY
SECURITY
EGURE| ;.5 o sl Beffn “opuet o0 0 b b
ECURE[: %% @
iR 3 3
INSECURE
— MLP10-SECURITY -
Total 1000 _ rhio =- 70280
MLPTO-SECURITY mu= 1.300 sd- 0.4870
SECURITY mu= 1.886 sd= 0.4876
Insecure: 310 rho =- 03271
MLP10-8ECURITY mu= 1820 sd= 0.4165
SECURITY mu- 0.0858 sd- 0.1309
Secure: B80 rho = 01075
MLPTO-SECURITY mu- 1.077 sd= 0.2039
ECURITY mu= 2001 sd= 0.1450
1 GDC 1.0 - 152/2002 al 11h58
OMIB - 10000 abjacts - L Wahankal Fri Dex 12 1887
Figure 38
I
Conditional histograms of Mip10-Security Vs Security
Mip-10- Approximation Of Security
Nb.cas
soo] L h L h
500
400,)
300,
200.)
100}
0.0 :
"SECURE "INSECURE

- MIp1 0-Becurity ---

— 1000 objects (Total)
M= 1000 ° Mx= 2.000
mu= 1303 sd= 04586
- 210 INSECURE objects
Mn= 1000 Mx= 2000
mu= 1819 =d= 03847

D 680 SECURE ol’ylects
Mn="1.000 x=2.000
mu= 1071 =d= 0.2568

1 GDC 10 - 15272002 =i 12h0
CMIB - 10000 chjacts - L Wahenkal Fri Daz 12 1967

Figure 39

71

72

4.9 K-Nearest Neighbors

4.9.1 What is it?

Definition. K-Nearest Neighbors technique is a statistical tool that consists in matching an
unseen situation (object) with similar situations (objects) present in the database called nearest
neighbors. The unseen object inherits all these nearest neighbors’ characteristics, as the value
of the numerical output attribute (in regression problems) or the class (in classification
problems), also the distance to these nearest neighbors, and generally, any type of information
attached to the nearest neighbors. The model supports only numerical attributes and symbolic
or numerical output depending on the problem.

Method characteristics. The method is very simple and similar to human reasoning (recalling
similar situations seen in the past) thus interpretable. It is less accurate than a MLP and more
accurate that regression trees. It is a very slow method. The main disadvantage is that it
requires a large number of learning objects. In particular, for high dimensional attribute spaces
the method may require prohibitively large samples. Thus, to be effective, a prior feature
selection may reduce the input spac (hybrid approaches). For a symbolic output the method
uses majority voting among the nearest neighbors, and for numerical output interpolation by
the inverse of the squared distance.

4.9.2 Selections to make before starting

Define the problem.

- Choose *candidate attributes*. Admissible input attribute type is
“ordonee”. Note that the model does not handle linear-combination or qualitative
attribute values, they being excluded from the *candidate-attributes® list
prior to attributes’ normalization. Temporal attribute values are replaced by a list of
scalar ones.

- Choose *knn-output®*, i.e. the output for the KNN model, a symbolic or
numerical attribute. ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
:SIMILARITY, command :SET_KNN_OUTPUT.

Select data.

- Choose *knn-reference-set¥, i.e. the set of objects used as learning set. The
selection is done exactly as a *1earning-set* selection. ATDIDT 2.2 command:
menu AUTOMATIC_LEARNING, menu :SIMILARITY, command
:SET_KNN_REFERENCE_SET.

- Choose *test-set* (if you also want to test the model).

Transform data. Normalize the attributes from *candidate-attributes* list, by
computing their standard-deviation in the *knn-reference-set*. A list called *knn-
attributes® is built used to define the Euclidian distance. ATDIDT 2.2 command: menu

73

‘AUTOMATIC_LEARNING, menu :SIMILARITY, command
:NORMALIZE_KNN_ATTRIBUTES.

Set method parameters. Method parameter is *knn-k* .

knn-k

Indicates the number of neighbors effectively used

Default value 1

Maximum value 15 (knn-k-max)

May be settled manually by a command, or automatically by a cross-validation method
Manually setting by ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
:SIMILARITY, command :SET_KNN_K

Automatically setting by ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING,
menu :SIMILARITY, command :KNN_CROSS-VALIDATION_TEST. The
command applies |leave-one-out method to *knn-reference-set*, for *knn-k*
increasing from 1 to knn-k-max and automatically sets *knn-k* to the value which
yielded the best accuracy. Note that the algorithm is quadratic computationally in the
size of the *knn-reference-set*, that iswhy thiscommand isvery sow. The
command displays for every value of K: in the case of numerical output, statistics
(mean, max, min, standard deviation, standard error) on errors and absolute errors,
total CPU time, and in the case of symbolic output, confusion matrix, test set error
rates and total CPU time.

4.9.3 Apply the method

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:SIMILARITY, command : FIND_NEAREST_NEIGHBORS

Effects of the method employment.

The command prompts for an object-name and searches the 15 nearest neighbors of
object object-name, selecting in the variable *Tearning-set* the most similar
knn-k objects together with the considered object. These objects may be inspected
afterwards by the ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu
:SIMILARITY, command :VIEW_OBJECTS or by other graphics.

If the *knn-output® isyy, the new functional attribute created by default once the
KNN model is built has the name knn-approx-of-yy (a numerical vaue if yy is
numerical, otherwise a class).

No log file generated.

4.9.4 Test the model

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:SIMILARITY, command : KNN_TEST_SET_TEST

74

The command compares *KNN-output® yy with the output approximated by the KNN
model, knn-approx-of-yy. It displays in the case of numerical output, statistics (mean, max,
min, standard deviation, standard error) on errors and absolute errors, total CPU time and in
the case of symbolic output, confusion matrix, test set error rate andtotal CPU time.

4.9.5 Results visualization / interpretation

Visualizing the *knn-k* nearest neighbors of an object. ATDIDT 2.2 command
'VIEW_OBJECTS displays information and graphics for every of the *knn-k* nearest
neighbors, objects selected in * 1earning-set® once built the model.

Other ideasfor graphics. If the *knn-output® isyy and xx isoneinput attribute:

- Conditional/normal scatter-plot (knn-approx-of-yy, yy) on LS (settled as *knn-
reference-set*, see Figure 40 and Figure 41), TS, or *knn-k* nearest
neighbors

- Conditional/normal histogram for knn-approx-of-yy on LS, TS, or *knn-k* nearest
neighbors

- Scatter-plot (knn-approx-of-yy, xx) on LS (see Figure 42), TS, or *knn-k* nearest
neighbors

Statistics. For a *knn-output® yy, the ATDIDT 2.2 command :KNN_STATISTICS
defines a new functional attribute called error-of-knn-yy reflecting the absolute error between
KNN model output knn-approx-of-yy and the reference output yy. The command also displays
scatter-plots for every nearest neighbor of this error-of-knn-yy attribute, in terms of the
distance to the neighbor (see Figure 43). The corresponding generated postscript file is named
knn_stats-tem.ps and is located in the current directory.

4.9.6 Other possible actions

:HYBRID_DT_KNN - allows to inherit in a single step all the parameters *knn-
reference-set*, *knn-attributes* and *knn-output* from a previously built
decision or regression tree (the *current-dt*). Thus, the next KNN model built will
consider only the attributes selected by the tree. The command is valuable especially for high
dimensional input spaces.

75

SEGURE] :

SECURITY

ECURE]

Correlation (KNN-APPROX-OF-SECURITY,SECURITY) vs. SECURITY

I =-01167
KNN-APPROX-OF-SEGURITY mu= 1.074
SECURITY mu= 2001 sd= 0.1440

--- KNN-APPROX-OF-BECURITY -

Total 1000 rho =- 66834
KNN-APPROX-OF-SEGURITY mu= 1297 sd= 0.4782
SECURITY mu= 1689 sd= 0.4834

Insecure: 310 rho = 00399
KNN-APPROX-OF-SECURITY mu= 1787 sd= 04266
SEGURITY mu= 1.003 sd= 0.1481
Secure: B80 rho
sd= 0.2867

GDS 1.0 - 18272002 =l 12he2

Figure40

OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

CCT-3BS

0.45|.

Correlation (KNN-APPROX-OF-CCT-SBS,CCT-SBS)

'0.25

& 1000 objects

CCT-8BS

02
--- KNN-APPROX-OF-CCT-8BS ---

rho =.91782

KNN-APPROX-OF-CCT-SBS
Mn= 56600d-2 Mx=_ 03843
mu= 02060 sd= 8.0120d-2

Mn=15100d-2 Mx=_ 04420
mu= 02061 sd= 88030d-2

GDT 1.0 - 18272002 = 12H27

Figure4l

- 10000 objacts - L Wahankal Fri Dac 12 1987

g

Correlation (KNN-APPROX-OF-CCT-SBS,PL)

R - 4

IR

U PSR ¥ TR .)

'0.35

& 1000 objects rho =-.87740
KNN-APPROX-OF-CCT-3BS
Mn="58800d-2 Mx=_ 03842
mu= 02060 sd= B.0130d-2
PU
Mn= 7017 Mx= 1300
mu= 1003 sd= 1662

02 .
--- KNN-APPROX-OF-CCT-8BS

GDS 1.0 - 18272002 &l 12h28

Figure 42

OMIB - 10000 chjacks - L Wahenkal Fri Daz 12 1867

76

Distance to first nearest neighbor vs
ERRCR-OF-KNN-CCT-5B8

Abe. aror

0.125].

: .82] 1.882] 12.8-2 :
weedist, -
100 eigls tho =-.0278E
DISTANGE Min= 4515605 Mg = 238NdEm= 20750d-25= EARAIdE
ERACH-OF-KHN-50T-5 Min= 2OEFdElas= 0126 m= 2MEdis= 2 OmMTdE

Distance to second nearest neighbor vs

. ERRCOR-OFKNN-CCT-5B5
Abes, grror

1000 edgls _ rho =053
Min= 1204044 Max = 37
OF-KNH-GCT-3B3 Min= 29802d-5 Max=

mo
3
=
¥
m

GDC 1.0 - 1822002 al 12h2
OMIB - 10000 cbjects - L. Wehankal Fri Dec 12 1997

Figure43

4.10K-Means

4.10.1 What is it?

Definition. K-Means technique is a statistical tool useful for clustering a large number of
objects into a small number of groups based on numerical input attributes. It is not oriented
towards a particular prediction task. It tries to find by itself, the existing relationships among
objects characterized by a set of input attributes. The procedure determines a set of K clusters,
where K isapriori fixed by the user.

Method characteristics. Like any unsupervised learning method, it becomes really useful in
the context of large-scale databases, with many objects and many attributes. It is a slow
method. Scatter-plots are useful toolsin order to visualize the clusters.

4.10.2 Selections to make before starting

Define the problem. Choose *candidate attributes*. Admissible input attribute
type is “ordonee”. Note that the model does not handle linear-combination or qualitative
attribute values, they being excluded from the *candidate-attributes® list prior to
attributes’ normalization. Temporal attribute values are replaced by a list of scalar ones.

Select data. Choose *knn-reference-set¥, i.e. the set of objects used as learning set.
The selection is done exactly as a *learning-set* selection. ATDIDT 2.2 command: menu
AUTOMATIC_LEARNING, menu :SIMILARITY, command
:SET_KNN_REFERENCE_SET.

Transform data. Normalize the attributes from *candidate-attributes* list, by
computing their standard-deviation in the *knn-reference-set*. A list called *knn-
attributes® is built used to define the Euclidian distance. ATDIDT 2.2 command: menu
AUTOMATIC_LEARNING, menu :SIMILARITY, command
:NORMALIZE_KNN_ATTRIBUTES.

Set method parameters. Method parameter is *k-means-k*.

k-means-k
- Indicates the number of clusters
- Default value 5
- Takes values between 0 and 50
- ATDIDT 2.2 command: menu :AUTOMATIC_LEARNING, menu :SIMILARITY,
command :SET_KMEANS_K

4.10.3 Apply the method

79

Command. ATDIDT 22 command: menu :AUTOMATIC_LEARNING, menu
:SIMILARITY, command : RUN_KMEANS

Effects of the method employment.

- It creates *k-means-k* functiona attributes called distance-to-cluster-<i>, that
give for every object, the distance of the object to the cluster <i>

- It creates the functional attribute nearest-cluster that gives for every object the name of
the nearest cluster to the object: cluster-<i>

- It creates the functional attribute nearest-cluster-yy that gives for every object the
output yy (numerical or symbolic) approximated by the nearest cluster to the object

- Creates a global variable called *cluster-centers® containing statistics on LS
for every created cluster of objects on input attributes

- It generates alisp file cluster-saves.Isp that defines each cluster as alist of objects

- Nolog file generated.

Interesting displayed information while clustering: status variables, statistics for every
created cluster of objects on input attributes.

4.10.4 Results visualization / interpretation

Visualizing the clusters. ATDIDT 2.2 command :DRAW_CLUSTERS generates automatically
a scatter-plot of the clusters taking the *candidate-attributes* two-by-two, thus

resulting 22 graphics if n isthe number of attributes (see Figure 44).

80

Correlation avec PU : QU
Reactive power generated by the machina (MVars)

Qe459
==
==

Taza
a7z

4+ Clheker-3: 134 rho
FU mu:
au mu

QO5EE
==
=

bl
QU mu= 1247
* Cluester-4: 287 1ha

FU mu=

* Clsier-5: 244 rho

=072
1074, == 4286
QU mu= 1EBES =d= 007

FPU mu=

GOS0 - 182/2002 a 14h0

JMIB - 10000 objact - L. Wahankal Fri Dac 12 1967

Figure 44

4.11 Comparative table

All the presented data mining methods have been compared from the point of view of test set
errors and CPU times. Table 5 gives an idea of the comparison. The models were built in the
following conditions:

o Database— OMIB 10.000 objects

0 *goal-regression¥ - cct-shs

0 *goal-classification® - security
0 *learning-set* - (from 5001 6000)
0
0
0

*test-set® - (last 1000)
*candidate-attributes® - (pu, qu)
All the models parameters leaved as by default.

Table5
DM DM Error: CPU time
Method lear ning task MAE or Pe(%) seconds

MLP Classification 11.1% 13.2
KNN Classification 11.3% 1.4
Decision Tree Classification 12.6% 2.0
MLP Regression 0.026495 3.2
Regression Tree Boosting Regression 0.026908 1.1
Linear Regression Regression 0.027909 0.3
KNN Regression 0.028132 1.4
Regression Tree Bagging Regression 0.030672 4.9
Regression Tree Regression 0.031697 1.5
Linear Hinges Model Regression 0.041598 0.4

At a graphical perception, you may compare the DM methods estimators for the same task by
comparing the following graphics:

- Figure 18, Figure 38, Figure 40;

- Figure 19, Figure 39;

- Figure 22, Figure 24, Figure 26, Figure 28, Figure 30, Figure 36, Figure 41;

- Figure 23, Figure 25, Figure 27, Figure 29, Figure 31, Figure 37, Figure 42.

5 Operational, practical and useful information

5.1 DMtips

> It is advisable the user does not include into the input attributes list *candidate-
attributes* the output attribute *goal-regression®* or *goal-
classification® in the case of DM techniques for regression and classification
tasks.

» Make sure that no attribute is repeating in the *candidate-attributes® list,
case in which any model based on this global variable would do the job needlessly for
this attribute more than once.

5.2 ldeas for hybrid methods

In the case of high dimensional input spaces, hybrid methods allow one to significantly reduce
the time required to build models, and/or better tailor the model complexity to the problem at
hand avoiding structure optimization task, and/or improve the model accuracy with respect to
the “pure” methods.

DT+MLPor RT+MLP. First settle as *candidate-attributes* the attributes selected
by a tree and then train a MLP with this inputs. ATDIDT 2.2 commands:
- buildaDToraRT

- menu :AUTOMATIC_LEARNING, menu :TREE_INDUCTION, command
SELECT-DT-TEST-ATTS

- menu :NON_LINEAR_REGRESSION, command :TRAIN_MLP_REGRESSION
or : TRAIN_MLP_CLASSIFICATION

Dendrogram+MLP. First draw a dendrogram and select the most correlated attributes with
the output one and then build a MLP on these attributes. ATDIDT 2.2 commands:
- menu :DATA_BASE, menu : GRAPHICS, command : DENDROGRAMS
- select manually the *candidate-attributes® list based on dendrogram
results
- menu :NON_LINEAR_REGRESSION, command : TRAIN_MLP_REGRESSION
or : TRAIN_MLP_CLASSIFICATION

DT+KNN or RT+KNN. ATDIDT 2.2 command:
- buildaDToraRT

- menu :AUTOMATIC_LEARNING, menu :SIMILARITY, command
:HYBRID_DT_KNN
- menu AUTOMATIC_LEARNING, menu :SIMILARITY, command

: FIND_NEAREST_NEIGHBORS

Dendrogram+KNN. First draw a dendrogram and select the most correlated attributes with
the output one and then build a KNN model on these attributes. ATDIDT 2.2 commands:

83

- menu :DATA_BASE, menu : GRAPHICS, command : DENDROGRAMS
- select manually the *candidate-attributes® list based on dendrogram
results

- menu :AUTOMATIC_LEARNING, menu :SIMILARTITY, command
:FIND_NEAREST_NEIGHBORS

5.3 Useful functions/commands

ATDIDT 2.2. In order to activate a command you may click with the left mouse button on the
command and then enter, or you may click on the middle button of the mouse once positioned
on the command. By clicking on the right button of the mouse you get some help concerning
the command.

inferior-11sp window is the space provided for interactive use of ACL lisp. Any lisp
command should be introduced here.
The lisp commands are not case-sensitive.

(attribute-name object-name) - gives the value of attribute attribute-name
for object object-name;

(describe ‘attribute-name) - provides information about attribute attribute-
name (type, values, file in which is defined, file in which is stored, lisp function if it is a
functional attribute);

(describe ‘function-name) - provides information about ATDIDT function
function-name. The same effect has the command CTRL-C,CTRL-D which prompts
for the function name;

(describe ‘object) - provides information about object object (all its attribute
values);

M-7 — being positioned on a symbol, returns information about the symbol; it has identical
effect as describe.

(apropos ‘string) - prints out all the function / attribute / global variable names that
contain the string of characters string;

M-x describe-function - prompts for a lisp function name and returns short
documentation about it. The same effect has the command CTRL-H,F;

F1,f - prompts for a lisp function name and displays a short documentation about it;
CTRL-H,CTRL-F - prompts for an emacs command and displays a short documentation
about it;

M-/ - finds possible ends for the current string in all the emacs buffers.

CTRL-C,CTRL-K - prompts for an file name and compiles the file;

CTRL-C,CTRL-L - prompts for an file name and loads the file;

? — tape this at any command prompt in *inferior-lisp* buffer or in the *mini-buffer* in order
to get some help about the possible choices;

Interaction with *inferior-1isp* buffer. Once an error occurred in the lisp
environment, the command line changes from DB-name> (e.g. OMIB>) to [humber] DB-
name>. If you want more details on the error (where it has been encountered and its kind)
you may tape :zoom or :dn. In order to exit this debug mode, you may tape :pop

84

number or :reset, (:q inolder versionsof TUTORIAL), and for stepping up one level

1 pop.
To interrupt a current process/ command you may type CTRL-C, CTRL-C.

Create a clone. If the user wishes to interrupt the data mining process, he can save the whole
context in a “clone” (an executable image containing the software modules, the initial data and
the results produced in the meanwhile), and restart the clone later on.

Status variables. The software environment maintains a list of a certain number of global
variables, called status variables, which stores the main information concerning current
selections (of attributes and objects) and methods parameters. They may be consulted at any
time to get the information about the present state of the system settings, by the ATDIDT 2.2
command: menu DATA_BASE, menu :ATTRIBUTES_SELECTION, command
:STATUS_VARIABLES.

ATDIDT 2.2 command: menu :DATA_BASE, menu :ATTRIBUTES_SELECTION,
command : CLEAR_GCL-BUFFER clears the text in *inferior-11sp* buffer.

6 User interface

To be completed.

7 References

Marée R. Fonctionnalités et architecture. University of Liege, Stochastic Methods
Department, July 2001.

Marée R. ATDIDT 3. Description et évaluation du noyau de gestion de données. University of
Liege, Stochastic Methods Department, September 2001.

Olaru C. Geurts P. and Wehenkel L. Data Mining Tools and Applications in Power System
Engineering. In Proceedings of PSCC, Trondheim, Norway, Volume 1, pages 324-330, June 28 - July
2nd, 1999.

Olaru C. and Wehenkel L. Data Mining. IEEE Computer Applications in Power, Volume 12,
Number 3, pages 19-25, July 1999.

Wehenkel L. Automatic learning techniques in power systems. Boston, Kluwer Academic,
1998.

Wehenkel L. and Druet Ch. ATDIDT User’s Guide (version 2.x). University of Liege,
Stochastic M ethods Department, 2000.

Wehenkel L. GTDIDT (Version 1.0). Organisation du logiciel et documentation des structures
de données. University of Liege, Electrical Circuits Department, January 1997.

8 Appendix
8.1 Example of Database

8.1.1 Data file

L ong-way database load - version 1

876.029 -193.66 0.2358
1110.88 -423.19 0.2104
980.132 79.7223 0.2241
974.139 217.073 0.1577

1241.88 -442.25 0.0718
L ong-way database load — version 2 (it contains also object numbers)

1 876.029 -193.66 0.2358
2 1110.88 -423.19 0.2104
3 980.132 79.7223 0.2241
4 974.139 217.073 0.1577

5000 1241.88 -442.25 0.0718

Short-way database load — version 1

;--++ Thisisjavadb typefile

;15 Attribute values of db OMIB2

omib2

pu numerical qu numerical cct-sbs numerical
876.029 -193.66 0.2358

1110.88 -423.19 0.2104

980.132 79.7223 0.2241

974.139 217.073 0.1577

1241.88 -442.25 0.0718

Short-way database load — version 2 (it contains also object names)

;--++ Thisisjavadb typefile

omib3

object name pu numerical qu numerical cct-sbs numerical
OP1 876.029 -193.66 0.2358

OP2 1110.88 -423.19 0.2104

OP3 980.132 79.7223 0.2241

OP4 974.139 217.073 0.1577

OP5000 1241.88 -442.25 0.0718

8.1.2 Database declaration file — long-way database load

;;; Database definition : 5000 objects, 4 explicit attributes, 4 functional attributes

(DECLARE-BD
omib "Example of database declaration”
:OBJETS (integer 1 5000) ;; or in version 2 :OBJETS (prefixes “OP” 1 5000)
:RE-INITIALISER nil
:ATTRIBUTS-EXPLICITES
((pu "Generated active power (MW)"
:valeurs (real 700.0 1300.0) :par-defaut 1000.0 :type ordonne)
(qu "Generated reactive power (MVar)"
:valeurs (real -665.0 990.0) :par-defaut 0.0 :type ordonne)
(cct-sbs "Critical Clearing Time (msec)"
:valeurs (real 0.0 2.0) :par-defaut 0.0 :type ordonne))
:ATTRIBUTS-EXPLICITES-TEMPORELS

((delta "Rotor angle of machine (fault cleared at t=155ms)"
:time (0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 0.66 0.72 0.78 0.84 0.90 0.96 1.02 1.08

1.141201.26 1.32 1.38 1.44 1.50 1.56 1.62 1.68 1.74 1.80 1.86 1.92 1.98 2.04 2.10 2.16 2.22 2.28 2.34 2.40

2.46 2.52 2.58 2.64 2.70 2.76 2.82 2.88 2.94 3.00)
:valeurs (real) :type (ordonne time)))
:ATTRIBUTS-FONCTIONS

((security "Security class, function of cct-sbs and *tau*"
:valeurs (member insecure secure) :par-defaut insecure :type qualitatif-quinlan

:fonction (if (<= (cct-sbs objet) *tau*) 'insecure 'secure))
(Pu+b*Qu "Linear combination between Pu and Qu"
:valeurs (+ pu (* alfa qu)) :type linear-combination
:fonction (+ (pu objet) (* *ponderation* (qu objet))))
(delta-after-fault "Rotor angle after fault clearing at t=155ms"
:valeurs (real 0.0 150.0) :type ordonne
:fonction (delta objet 0.155))
(cct-disk "Discretized CCT, function of cct-sbs and *tau* "
:valeurs (member <80 80...200 200...320 >320)
:par-defaut insecure :type ordonne
:fonction (if (<= (cct-sbs objet) .08) '<80
(if (<= (cct-sbs objet) .20) '80...200
(if (<= (cct-sbs objet) .32) '200...320 '>320)))))
:CHARGEMENT
(((pu qu cct-sbs)
:dans (vms-file "omib-data-file.dat")
:format (objet pu qu cct-sbs))
((delta) :suffix delta-file-name))))

;;; Load attributes instruction

(load-attributes
omib-attribute-values "This set contains all objects for which the attributes have been loaded"
:bd omib
:objets t
;attributs (pu qu cct-sbs delta))

8.2 Example of non-linear function detected by a MLP model
8.2.1 Nonlinear regression (MLP of Figure 32)

;;; Lisp code for MLP10-CCT-SBS

(defun MLP10-CCT-SBS (objet)
(LET (11
(+ (* 0.006016299369492383d0 (PU OBJET))
-6.03678234430582240))
(12
(+ (* 0.002085223739543728500 (QU OBJET))
-0.3143199907124104d0)))
(LET (11
(TANH (+ -1.7405822173950702d0 (* -0.669884835989170540 11)
(* 1.1768705781157776d0 12))))
(12
(TANH (+ -1.297346698294738d0 (* 0.26554690500398404d0 |1)
(* -0.538359657836183740 12))))
(13
(TANH (+ -3.105843858076497500 (* -1.376040755368317d0 11)
(* -0.0727648105513355500 12))))
(14
(TANH (+ -0.405201877505902500 (* 0.757953980013272d0 I1)
(* -1.0086983106073752d0 12))))
(15
(TANH (+ 0.31903477877975633d0 (* 0.08503960764031138d0 1)
(* 0.13047441296479204d0 12))))
(16
(TANH (+ -3.394615949290037d0 (* -0.768056043936303640 11)
(* 2.4015419701771585d0 12))))
7
(TANH (+ -0.5154813092875247d0 (* -2.298915624932903240 11)
(* -1.1589011083475231d0 12))))
(18
(TANH (+ 1.4392749802737381d0 (* -0.64627781470995d0 |1)
(* -0.5382878434723491d0 12))))
(19
(TANH (+ 0.19368775267680255d0 (* 0.30073036955597904d0 11)
(* -0.464435074256342740 12))))
(110
(TANH (+ -0.04894697702940679d0
(* -0.24347791732672294d0 1)
(* 0.87228827947917600 12)))))
(LIST (+ (* (IDENTITE (+ 0.3171044977566709d0
(* 1.722232533874759300 11)
(* -1.3060720016456633d0 12)
(* 1.244677273903397d0 13)
(* -0.892021784325681740 |4)
(* 0.4202916588158187600 15)
(* -0.7071933855383663d0 |6)
(* 0.1725924563090752d0 17)
(* 0.271628179660756700 18)
(* -0.0383843597554318640 [9)
(* -0.9374318275089645d0 110)))

0.08803032940484923d0)
0.2061083002127707d0)))))

;11 value specifications

(setf (get MLP10-CCT-SBS ‘valeurs) ((REAL

0.04966100316211691d0
0.3817045034352309d0)
(get 'MLP10-CCT-SBS 'type) 'ORDONNE)

8.2.2 Nonlinear classification (MLP of Figure 33)

;1 Lisp code for MLP10-SECURITY

(defun MLP10-SECURITY (objet)
(LET (11

(+ (* 0.006016299369492383d0 (PU OBJET))
-6.03678234430582200))

(12

(+ (* 0.0020852237395437285d0 (QU OBJET))
-0.3143199907124104d0)))

(LET (11

(TANH (+ -0.720087833819582600 (* 1.8190459531144412d0 I1)
(* -0.765153719438595840 12))))

(12

(TANH (+ 3.543954299195746d0 (* 0.8269819057655328d0 I1)
(* 0.7975512202163859d0 12))))

(13

(TANH (+ -1.9847264842376473d0 (* 0.5043015904752978d0 11)
(* -0.15990958684410542d0 12))))

(14

(TANH (+ 3.608415340512682d0 (* -2.817942795754988500 | 1)
(* 1.3014296372121061d0 12))))

(15

(TANH (+ 1.12961812911966640 (* 0.10406107510523722d0 11)
(* -0.212230329920794024d0 12))))

(16

(TANH (+ -3.517121724150941d0 (* 5.281359602337313500 11)
(* -3.2944314432399504d0 12))))

7

(TANH (+ -1.4581577308766775d0 (* 1.2875485865854581d0 11)
(* -0.5944495661898753d0 12))))

318

(TANH (+ -3.47635289612401d0 (* -0.466619969236949600 11)
(* -2.8304165336418144d0 12))))

19

(TANH (+ -5.204689741982704d0 (* -0.6137427858633842d0 11)
(* -4.700484361704271d0 12))))

(110

(TANH (+ 0.19639597808687317d0
(* -0.04811135927107651500 11)
(* -0.32793412065387934d0 12)))))

(LIST (+ (* (IDENTITE (+ 0.6431633488498253d0

(* 0.694964375318935500 11)

89

(* 1.667244608169718d0 |2)
(* 1.627834373576402500 13)
(* -0.8915261525469574d0 |4)
(* -0.320542167044154840 I5)
(* 0.4496034707211712d0 16)
(* -1.203447281412647640 | 7)
(* 1.0873295113607544d0 18)
(* -0.7706073427691704d0 |9)
(* 0.12134685684972324d0 110)))
0.4624932431938912d0)
0.31d0)

(+ (* (IDENTITE (+ -0.6257948278927189d0
(* -0.825251755482674640 | 1)
(* -1.86187795947369740 |2)
(* -1.6636560556576392d0 |3)
(* 1.106896239765316600 14)
(* 0.568217271778653600 15)
(* -0.471167809820333940 |6)
(* 1.6176761632614354d0 |7)
(* -1.070087917855041d0 I8)
(* 0.7436995993959763d0 19)
(* -0.15852179717406878d0 110)))

0.4624932431938912d0)
0.69d0)))))

;11 value specifications

(setf (get MLP10-SECURITY ‘valeurs) (MEMBER SECURE INSECURE)
(get 'MLP10-SECURITY 'type) 'ORDONNE)

