

University of Liege
Stochastic Methods Department

(versions 2.2 and 3.0)

- Draft 1.0 -

21 February 2002

Cristina Olaru

 2

1 INTRODUCTION TO THE FIELD..6

1.1 DATA MINING ..6
1.1.1 Definitions and objectives ...6
1.1.2 The process ..7

1.2 MAIN DM TASKS..8
1.3 DM SUCCESS FACTORS ...9

2 INTRODUCTION TO THE SOFTWARE ...11

2.1 ABOUT THE SOFTWARE ...11
2.2 SOFTWARE ORGANIZATION...11
2.3 AVAILABLE METHODS IN ATDIDT 3.0...12
2.4 GET STARTED. ATDIDT RUN AND DATABASE LOAD ..14

2.4.1 Start running ATDIDT...14
2.4.2 Database load..14
2.4.3 Restart ATDIDT...16

3 DATA HANDLING...17

3.1 OBJECTS SET SELECTION...17
3.2 ATTRIBUTES SELECTION ...17

3.2.1 Types of attributes ...17
3.2.2 Attributes values ..17
3.2.3 Inputs selection..18
3.2.4 Output selection...19

3.3 DEFINE NEW ATTRIBUTES ...20
3.4 HANDLING TEMPORAL ATTRIBUTES ..21

4 SOFTWARE DM METHODS ...22

4.1 GRAPHICAL TOOLS ...22
4.1.1 Histogram ..22
4.1.2 Conditional histogram...22
4.1.3 Multiple conditional histograms..23
4.1.4 Scatter-plot ..24
4.1.5 Conditional scatter-plot...24
4.1.6 Colored scatter-plot...24
4.1.7 Scatter-plot with values ...25
4.1.8 Cumulative distribution ...25
4.1.9 Dendrogram ..26
4.1.10 Temporal curves ..26
4.1.11 Temporal curves for a set of objects..27

4.2 DECISION TREE...31
4.2.1 What is it?..31
4.2.2 Selections to make before starting...31
4.2.3 Apply the method ...31
4.2.4 Test the model..32
4.2.5 Improve the model ...32
4.2.6 Results visualization / interpretation...34

 3

4.2.7 Other possible actions ...35
4.3 REGRESSION TREE ..40

4.3.1 What is it?..40
4.3.2 Selections to make before starting...40
4.3.3 Apply the method ...41
4.3.4 Test the model..41
4.3.5 Improve the model ...42
4.3.6 Results visualization / interpretation...43
4.3.7 Other possible actions ...44

4.4 LINEAR REGRESSION ..49
4.4.1 What is it?..49
4.4.2 Selections to make before starting...49
4.4.3 Apply the method ...49
4.4.4 Test the model..50
4.4.5 Results visualization / interpretation...50

4.5 LINEAR HINGES MODEL ...52
4.5.1 What is it?..52
4.5.2 Selections to make before starting...52
4.5.3 Apply the method ...52
4.5.4 Test the model..52
4.5.5 Results visualization / interpretation...53

4.6 REGRESSION TREE BAGGING ..55
4.6.1 What is it?..55
4.6.2 Selections to make before starting...55
4.6.3 Apply the method ...56
4.6.4 Test the model..56
4.6.5 Results visualization / interpretation...56

4.7 REGRESSION TREE BOOSTING...58
4.7.1 What is it?..58
4.7.2 Selections to make before starting...58
4.7.3 Apply the method ...59
4.7.4 Test the model..59
4.7.5 Results visualization / interpretation...59

4.8 MULTILAYER PERCEPTRON ..61
4.8.1 What is it?..61
4.8.2 Selections to make before starting...61
4.8.3 Apply the method ...62
4.8.4 Test the model..63
4.8.5 Results visualization / interpretation...63
4.8.6 Features extraction..64
4.8.7 Other possible actions ...66

4.9 K-NEAREST NEIGHBORS...72
4.9.1 What is it?..72
4.9.2 Selections to make before starting...72
4.9.3 Apply the method ...73
4.9.4 Test the model..73
4.9.5 Results visualization / interpretation...74
4.9.6 Other possible actions ...74

 4

4.10 K-MEANS ...78
4.10.1 What is it?..78
4.10.2 Selections to make before starting...78
4.10.3 Apply the method ...78
4.10.4 Results visualization / interpretation...79

4.11 COMPARATIVE TABLE...81

5 OPERATIONAL, PRACTICAL AND USEFUL INFORMATION82

5.1 DM TIPS ...82
5.2 IDEAS FOR HYBRID METHODS..82
5.3 USEFUL FUNCTIONS/COMMANDS ..83

6 USER INTERFACE..85

7 REFERENCES ..85

8 APPENDIX ..86

8.1 EXAMPLE OF DATABASE...86
8.1.1 Data file ...86
8.1.2 Database declaration file – long-way database load..87

8.2 EXAMPLE OF NON-LINEAR FUNCTION DETECTED BY A MLP MODEL...........................88
8.2.1 Nonlinear regression (MLP of Figure 32) ..88
8.2.2 Nonlinear classification (MLP of Figure 33) ..89

 5

About this document

This document is confidential.

This guide intents to be a useful tool for those persons who are:

• Beginners in the Data Mining field and/or beginner users of ATDIDT software;
• Current users of ATDIDT of previous versions of the tool;
• Individuals interested in a particular method of the software;
• Peoples (organisms) interested in a software evaluation;
• People interested in trying out various data mining methods in the context of a demo

loaded-in database (Tutorial version of the software).

The document covers all ATDIDT old and new functionalities, with an emphasis on
operational aspects. For each data mining method practical aspects are distinguished: the
proper sequence of actions to be done, parameters to choose, which are the “seen” and
“unseen” effects of the method use, how to interpret the graphics/results, all completed by
practical counsels. Some adjacent Lisp and Emacs tips are also included. Where possible,
general features of all methods are grouped together, but still one may find redundant
information in this guide, mainly for reasons of completeness at method level. The user
interested in a certain Data Mining method may directly read the corresponding chapter,
hyperlinks helping him to find in other chapters subsequent information if necessary.

The guide will be soon updated with a section dedicated to the user interface.

 6

1 Introduction to the field

1.1 Data Mining

1.1.1 Definitions and objectives

‘Data Mining’ (DM) is a folkloric denomination of a complex activity, which aims at
extracting synthesized and previously unknown information from large databases. It denotes
also a multidisciplinary field of research and development of algorithms and software
environments to support this activity in the context of real life problems, where often, huge
amounts of data are available for mining. There is a lot of publicity in this field and also
different ways to see the things. Hence, depending on the viewpoints, DM is sometimes
considered as just a step in a broader overall process called Knowledge Discovery in
Databases (KDD), or as a synonym of the latter as we do in this guide. Thus, according to this
less purist definition DM software includes tools of automatic learning from data, such as
machine learning and artificial neural networks, plus the traditional approaches to data
analysis such as query-and-reporting, on-line analytical processing or relational calculus, so as
to deliver the maximum benefit from data.

The general purpose of data mining is to process the information from the enormous

stock of data we have or that we may generate, so as to develop better ways to handle data and
support future decision-making. Sometimes, the patterns to be searched for, and the models to
be extracted from data are subtle, and require complex calculus and/or significant specific
domain knowledge. Or even worse, there are situations where one would like to search for
patterns that humans are not well suited to find, even if they are good experts in the field. For
example, in power systems related problems one is faced with high dimensional data sets that
cannot be easily modeled and controlled on the whole, and therefore automatic methods
capable of synthesizing structures from such data become a necessity.

By definition, data mining is the nontrivial process of extracting valid, previously

unknown, comprehensible, and useful information from large databases and using it. It is an
exploratory data analysis, trying to discover useful patterns in data that are not obvious to the
data user. DM takes 2 forms: verification driven data mining, which extracts information in
the process of validating a hypothesis postulated by a user, and discovery-driven data mining,
which automatically extracts information novel for the user.

What is a database (DB)? It is a collection of objects (called tuples in the DB jargon,

examples in machine learning, or transactions in some application fields), each one of which is
described by a certain number of attributes, which provide detailed information about each
object. Certain attributes are selected as input attributes for a problem, certain ones as outputs
(i.e. the desired objective: a class, a continuous value…).

Usually, one of the first tasks of a data mining process consists of summarizing the

information stored in the database, in order to understand well its content. This is done by
means of statistical analysis or query-and-reporting techniques. Then more complex
operations are involved such as to identify models that may be used to predict information

 7

about future objects. The term “supervised learning” (known as “learning with a teacher”) is
implied in mining data in which for each input of the learning objects, the desired output
objective is known and implicated in learning. In “unsupervised learning” approaches
(“learning by observation”) the output is not provided or not considered at all, and the method
learns by itself only from input attribute values.

What is a data miner? - some person, usually with background in computer science or in

statistics and in the domain of interest, or a couple of two specialists, one in data mining, one
in the domain of interest, able to perform the steps of the data mining process. The miner is
able to decide how much iterative to be the whole process and to interpret the visual
information he gets at every sub-step.

1.1.2 The process

In general, the data mining process iterates through five basic steps:

q Data selection. This step consists of choosing the goal and the tools of the data mining
process, identifying the data to be mined, then choosing appropriate input attributes and
output information to represent the task.

q Data transformation. Transformation operations include organizing data in desired ways,

converting one type of data to another (e.g. from symbolic to numerical) defining new
attributes, reducing the dimensionality of the data, removing noise, “outliers”,
normalizing, if appropriate, deciding strategies for handling missing data.

q Data mining step per se. The transformed data is subsequently mined, using one or more

techniques to extract patterns of interest. The user can significantly aid the data mining
method by correctly performing the preceding steps.

q Result interpretation and validation. For understanding the meaning of the synthesized

knowledge and its range of validity, the data mining application tests its robustness, using
established estimation methods and unseen data from the database. The extracted
knowledge is also assessed (more subjectively) by comparing it with prior expertise in the
application domain.

q Incorporation of the discovered knowledge. This consists of presenting the results to the

decision maker who may check/resolve potential conflicts with previously believed or
extracted knowledge and apply the new discovered patterns.

The whole data mining process is iterative, interactive, and very much a trial and error

activity. DM techniques are different one form another in terms of problem representation,
parameters to optimize, accuracy, complexity, run time, transparency, interpretability. The
quality of the extracted knowledge is a function both of the effectiveness of the data mining
techniques and the quality (often size) of the available database.

 8

Visualization plays an important role. It may provide preliminary understanding of
data, domain specific visualizations or can present the results of the mining techniques.

From the point of view of software structure, there are two types of possible

implementations:
q Data mining “in place” (version 3.0 of ATDIDT): the learning system accesses the data

through a data base management system (DBMS) and the user is able to interact with both
the database (by means of queries) and the data mining tools. The advantage is that the
approach may handle very large databases and may exploit the DBMS facilities (e.g. the
handling of distributed data).

q Data mining “offline” (version 2.2 of ATDIDT): the objects are first loaded in the DM
software, with a translation into a particular form, outside the database, and the user is
interacting mainly with the data mining software. They may be faster but are generally
limited to handle medium sized data sets that can be represented in main memory (up to
several hundred Mbytes).

1.2 Main DM tasks

Depending mainly on the application domain and on the interest of the miner, one can
identify several types of data mining tasks for which data mining offers possible answers. We
present them in the order they are usually implied in the process.

Summarization. It aims at producing compact and characteristic descriptions for a given set
of data. It can take multiple forms: numerical (simple descriptive statistical measures like
means, standard deviations…), graphical forms (histograms, scatter plots…), or the form of
“if-then” rules. It may provide descriptions about objects in the whole database or in selected
subsets of it. Example of summarization: “the minimum unitary price for all the transactions
with energy is 70 price units”.

Clustering. A clustering problem is an unsupervised learning problem, which aims at finding
in the data clusters of similar objects sharing a number of interesting properties. It may be
used in data mining to evaluate similarities among data, to build a set of representative
prototypes, to analyze correlations between attributes, or to automatically represent a data set
by a small number of regions, preserving the topological properties of the original input space.
Example of a clustering result: “from the seller B point of view, buyers A and E are similar
customers in terms of total price of the transactions done in 1998”.

Classification. A classification problem is a supervised learning problem where the output
information is a discrete classification, i.e. given an object and its input attributes, the
classification output is one of the possible mutually exclusive classes of the problem. The aim
of the classification task is to discover some kind of relationship between the input attributes
and the output class, so that the discovered knowledge can be used to predict the class of a
new unknown object. Example of a derived rule, which classifies sales made early in the day
(a sale is said to be early if it was made between 6 a.m. and 12 a.m.): “if the product is energy
then the sale is likely to be early”.

 9

Regression. A regression problem is a supervised learning problem of building a more or less
transparent model, where the output information is a continuous numerical value or a vector of
such values rather than a discrete class. Then given an object, it is possible to predict one of its
attributes by means of the other attributes, by using the built model. The prediction of numeric
values may be done by classical or more advanced statistical methods and by “symbolic”
methods often used in the classification task. Example of a model derived in a regression
problem: “when buyer A buys energy, there exists a linear dependence between the
established unitary price and the quantity he buys: pricequantity *5.1170 −= ”.

Dependency modeling. A dependency modeling problem consists in discovering a model
which describes significant dependencies among attributes. These dependencies are usually
expressed as “if-then” rules in the form “if antecedent is true then consequent is true”, where
both the antecedent and the consequent of the rule may be any combination of attributes,
rather than having the same output in the consequent like in the case of the classification rules.
Example: such a rule might be “if product is energy then transaction price is larger than 2000
price units”.

Deviation detection. This is the task focusing on discovering the most significant changes or
deviations in the data between the actual content of the data and its expected content
(previously measured) or normative values. It includes searching for temporal deviations
(important changes in data with time), and searching for group deviations (unexpected
differences between two subsets of data). As an example, deviation detection could be used in
order to find main differences between sales patterns in different periods of the year.

Temporal problems. In certain applications it is useful to produce rules that take into account
explicitly the role of time. There are data bases containing temporal information which may be
exploited by searching for similar temporal patterns in data or learn to anticipate some
abnormal situations in data. Examples: “a customer buying energy will buy spinning reserve
later on)”, or “if total quantity of daily transactions is less than 100 price units during at least
1 month for a client, the client is likely to be lost”.

Causation modeling. This is a problem of discovering relationships of cause and effect
among attributes. A causal rule of type “if-then” indicates not only that there is a correlation
between the antecedent and the consequent of the rule, but also that the antecedent causes the
consequent. Example: “decreasing energy price will result in more sold energy daily”.

1.3 DM success factors

The success of mining some data is induced by a list of factors:

The right tools. A distinctive feature of a DM software is the quality of its algorithms, the
effectiveness of the techniques, and sometimes their speed. In addition, the efficiency of using
the hardware, the operating system, the database resources and the parallel computing are
influencing the process. Moreover, it turns out that the particular set of tools useful in a given
application are highly dependent on the practical problem. Thus at the prototyping step, it is
useful to have available a broad enough set of techniques so as to identify interesting

 10

applications. However, in the final product used for actual field implementation it is often
possible to use only a small subset of the latter tools. Customizing data mining techniques to
the application domain and using methods that are reliable means to the proposed goal may
enhance the process of extracting useful information.

The right data. The data to be mined should contain information worth mining: consistent,
cleaned, and representative for the application. Of course, it is useless to apply data mining to
an invalid database with high measurement or estimation data errors, or to try to precisely
estimate numerical outputs that present a priori high noise. A data mining tool ideally explains
as much information as is stored in the data which is mined (a derived model is strongly
dependent on the learning set used), and sometimes it is not what is in the data that matters for
an application (wrong attributes, wrong selected sample).

An important part of data mining result errors are due to uncertainties in modeling and
generation of objects in certain databases in discordance with the real probabilities of
phenomena appearances in the system. That is why the data mining errors often do not have a
meaning by themselves; they just provide a practical means to compare efficiencies of
different criteria applied to the same database.

The right people. Regardless of what many producers of data mining tools claim, data mining
is not (yet) an “automatic” operation with little or no human intervention. On the contrary, the
human analyst plays an important role, mostly in the areas of data selection and data /
knowledge interpretation. The data miner should have an understanding of the data under
analysis and the domain or industry to which it pertains. It is more important for the mining
process to embrace the problems of the application meant to solve, than to incorporate in the
data mining software the hottest technologies.

The right application. Almost always a problem well posed is already a partially solved
problem. It is important to clearly define the goals and choose the appropriate objectives so as
to yield a significant impact on the underlying decision making process.

The right questions. An important issue: how does the data miner structure a data analysis
problem so that the right question can be asked, knowing how easy and useless it is to give the
right answer to the wrong question?

The right sense of uncertainty. Data miners are more interested in understandability than
accuracy or predictability per se. Often, even the best methods of search will leave the data
miner with a range of uncertainties about the correct model or the correct prediction.

2 Introduction to the software

2.1 About the software

ATDIDT software is a “Data Mining” software. It has been developed at the University of
Liège for research, teaching and applications of automatic learning. The acronym stands for
"Acl Top Down Induction of Decision Trees". The software is partly written in Allegro
Common Lisp (ACL) and partly in GNU Emacs Lisp.

Requirements. For running ATDIDT software on your machine you need to have installed,
besides GNU Emacs (version 19.29 or higher) and ACL, also the next auxiliary tools, freely
distributed on the web: GUNZIP, GHOSTVIEW, XFIG (3.2 of higher), TRANSFIG (same
version as XFIG), NETSCAPE and ACROBAT READER. Recent versions of Linux
distributions contain all what is required.

Copyright. University of Liège owns the software. Only authorized people may use this
software. Of course, if you use this software, you do it on your own responsibility.

2.2 Software organization

The software has three main parts:

Data Handling allows manipulating partially or entirely one or more databases, to prepare
them off-line for loading, to load them every time one needs to explore them. Also data
selection and data transformation steps of the data mining process are concerned here: a set of
attributes as inputs, the task output variable, and a sample of objects (a part of the loaded
objects) are selected, and new attributes are defined.

Graphics allows the visualization task: preliminary brute data visualization, customizable
representation of objects, method results visualization.

Automatic Learning allows the interactive and iterative use of data mining methods. Some of
these methods will produce a model, which expresses the relationships between the input
attributes and the output variable. This model is added on-line to the database as a new
functional attribute, which can be used in turn as input or output variable in subsequent steps
of the data mining process.

Data mining process starts always with the data handling stage. Then any automatic learning
method may be tried. Graphics part is needed at every intermediary stage of the process, be it
data handling or automatic learning.

 12

2.3 Available methods in ATDIDT 3.0

Table 1 synthesizes all the learning methods available in ATDIDT software. Following the
commands organization within the software, we grouped them into six categories of methods.
For each method the supported inputs and outputs are indicated, together with the type of the
learning problem (task) it is able to accomplish.

Besides these methods, the software supports hybrid methods.

Table 1

CLASS

OF

METHODS

METHOD

INPUTS

OUTPUTS

DM

LEARNING

TASK

Graphical Tools

Dendrogram

Histogram

Cumulative Distribution

Scatter -plot

Temporal Curves

non-constant numerical

symbolic and numerical

symbolic and numerical

symbolic and numerical

temporal

--

--, symbolic or numerical

--

--, symbolic or numerical

--

Clustering

Summarization

Summarization

Summarization

Summarization

Tree Induction
Decision Tree

Regression Tree

symbolic and numerical

symbolic and numerical

symbolic

numerical

Classification

Regression

Linear Regression
Linear Regression

Linear Hinges Model1

non-constant numerical

non-constant numerical

numerical

numerical

Regression

Regression

Non Linear

Regression

MLP

MLP

Features Extraction

numerical

numerical

numerical

symbolic

numerical

--

Classification

Regression

Clustering

Similarity

KNN

KNN

K-Means

numerical

numerical

numerical

symbolic

numerical

--

Classification

Regression

Clustering

Meta Learning
Regression Tree Bagging2

Regression Tree Boosting

non-constant numerical

non-constant numerical

numerical

numerical

Regression

Regression

1 Only in version 2.2 of ATDIDT
2 Only in version 3.0 of ATDIDT

2.4 Get started. ATDIDT run and database load

Cautions. ATDIDT produces a lot of output files, temporary or permanent. The names of the
files have been chosen so as to limit the risk of destroying other files. However, we
recommend that you “create a new empty directory” and start the software while being in this
directory, in order to make sure that none of your own files is “destroyed”.

2.4.1 Start running ATDIDT

Once positioned in the directory of your choice (with rights to write on it) you tape in an
[WHUP window one of the next commands:

- For ATDIDT-2.2:

�VVW��VRIW�DWGLGW�ELQ�DWGLGW�VFULSW�	�
- For ATDIDT-TUTORIAL-2.2:

�XS��OZK�JWGLGW�WXWRULDO�JWGLGW�GHPR�VFULSW�	�
- For ATDIDT-TUTORIAL-3.0:

�XS��OZK�JWGLGW�WXWRULDO�DWGLGW�WXWRULDO�VFULSW�	�
�

where you change the path if different in your case.

2.4.2 Database load

The first thing to do in order to use the program is to load a database. Once the data is loaded,
the data mining process is followed as in section 1.1.2. All the data mining techniques may be
applied iteratively and independently one of each other.

ATDIDT-TUTORIAL-2.2

In the tutorial version, a database is already loaded into the program. The user skips therefore
this database-loading step.

ATDIDT-2.2

This ATDIDT version is organized as an offline data mining software. The database is loaded
once in the beginning and kept entirely in the main memory during the data mining process.

There are two possible ways of handling a database loading:

Long-way. It presumes that the user dispose of / create two types of files:

- Data files - files where explicit attribute values are stored (see example in appendix
8.1.1, long-way database load). These files are organized as tables where a column is
associated with an attribute and a raw with an object. There are two possible versions

 15

of these data files according to insertion of not of the object numbers. The user already
disposes of these files when he starts the data mining process.

- Database declaration file – a lisp code file, providing information about what explicit
attributes have to be loaded (name, short doc, type, default value (optional), possible
values), in which format and what are their corresponding data files; the file may also
define functional attributes. The file may load only a part of the available attributes or
a part of the available objects provided in the data files. The user does not dispose of
this file when he gets started. He has to create it. See in appendix 8.1.2 an example of a
database declaration file. The possible attribute types may be found in section 3.2.1

This database declaration file is then loaded using the command �/2$'B'%�� in menu�
�'7B%$6(�

Short-way. It presumes that the user dispose of / create only one type of file:

- Data files - files where explicit attribute values are stored (see example in appendix
8.1.1, short-way database load). They are called javadb files. These files are organized
exactly as in the long-way case, plus the following adding:

o The lines starting with a semicolon are comments and may appear anywhere in
the file, except for the first line which is mandatory and must be exactly as in
the provided example;

o The first non-comment line must give the database name;
o The second non-comment line contains attribute names immediately followed

by their type: numerical (for ordered numerical attributes) or symbolic (for
qualitative or ordered symbolic attributes);

o Both versions 1 and 2 are possible, being not mandatory to add the object
names, given that anyway if no name is specified, it will be computed on the
fly based on the line number.

 These data files are then loaded using the same command �/2$'B'%�� in menu�
�'7B%$6(�

Once the database has been loaded using this short way, the user may type the following lisp
command in the command line (lisp buffer):

�VDYH�GE���

The following two files are automatically created and located in the current work directory:

- Data file (database-name.att, e.g. OMIB.att) in the version 2 of short-way format
- Database declaration file (database-name.db. e.g. OMIB.db) as in the appendix

example

At any new session, the database loading may be effectuated by the long-way loading of this
new created database declaration file.

 16

If the user defines new functional attributes or redefines/modifies old ones (as indicated in
section 3.3) and adds them to the new created database declaration file, once re-loaded this file
using the long-way loading, the new attributes will be also considered, at any new session.

Get data file in the right format. The user may not necessarily dispose of a data file in text
format or javadb as we indicated in appendix. If data is stored in Microsoft Excel or Access
format, the user has to save these files in “commas” format data-file.cvs and then type in an
[WHUP window the command

FVY�MGE�SO�²L�GDWD�ILOH�FVY�²R�GDWD�ILOH�GDW�

in order to obtain the data in javadb format. csv2jdb.pl script is written in Pearl. It interprets
the first raw of the Microsoft table as the attribute names. For every column, i.e. explicit
attribute, the script asks a confirmation concerning the attribute type (numerical or symbolic)
and makes a conversion type if necessary, from numerical to symbolic, by adding a prefix “S-
“ to numerical values.

ATDIDT-3.0

This ATDIDT version is organized as an in place data mining software. The database is
accessed every time some data is necessary for a data mining manipulation. The loading
process comports two stages:

- Preparing the database. The user disposes of a javadb data file format (called external
format), applies the command �35(3$5(B'% and gets internal format files, a
compiled version of the database. This step is accomplished only once for a database,
not for every new ATDIDT session. Once the internal format files obtained, the user
do not need anymore the external format files. Among the generated files there is one
called DBNAME-project.xml that represents the project description file.

- Loading the database. The user applies the command �/2$'B352-(&7 in order to
load the project description file DBNAME-project.xml. This step has to be done at each
new session of the program. Presently, the software core does not manage more than
one database per session and does not check for conflicts between attribute names.

In this way, the attribute values are progressively loaded in the main memory when they are
needed for a data mining technique. This permits a faster manipulation of the data at the
loading step. It permits to configure the memory space allocated to the data loading and to
reduce the garbage collection waste of time. It allows the handling of larger and almost
unlimited-size databases.

2.4.3 Restart ATDIDT

ATDIDT 2.2 command is:

- popup menu *7','7, submenu 5(67$57
- emacs menu��5(67$57�

3 Data handling

3.1 Objects set selection

Once a database is loaded into the program, the user must select an objects subset of the
loaded data, as being the current working set for the most data mining techniques and
graphics. The global variable that contains the selected objects set on which the methods are
trained or the graphics are drawn, is called
OHDUQLQJ�VHW
 (LS)� The global variable
that contains the selected objects set on which the methods are tested is called
WHVW�VHW

(TS)�

It is mandatory to a priori choose
OHDUQLQJ�VHW
 of objects before using one method.

WHVW�VHW
 must be defined only if the user needs to test its methods.

ATDIDT 2.2 commands are:

- popup menu :6HOHFWLRQV, submenu 6HOHFW� OHDUQLQJ� VHW and 6HOHFW�
WHVW�VHW, or

- emacs menu �68%6(76B6(/(&7,21, submenus �/($51,1*B6(7 and
�7(67B6(7�

Commands for learning and/or test set selection are found also in every submenu of a data
mining method that uses the two variables. Both selections have the same syntax, even if they
use different commands. Table 2 collects all the possible alternatives for this objects set
selection. In the sequel, we will call LS the variable
OHDUQLQJ�VHW
 and TS the variable

WHVW�VHW
�

3.2 Attributes selection

3.2.1 Types of attributes

• Explicit attributes: attributes values are specified explicitly for each object in some
data file;

• Functional attributes: attributes values are computed from the values of other (explicit
or functional) attributes. They are defined by the user (as lisp functions) or
automatically generated by the learning methods.

3.2.2 Attributes values

• Ordered: numerical (integer or real valued e.g. pu, qu, cct-sbs, pu+b*qu) or symbolic
(e.g. cct-disk)

• Qualitative: unordered symbolic (e.g. security)
• Temporal: numerical time series or sequences of events (e.g. delta)

 18

• Any lisp type: a complex number, a scalar attribute function of a temporal one (e.g.
delta-after-fault), etc.

Table 3 shows the correspondent type of each attribute in the database declaration file example
of appendix 8.1.2.

Table 2

Command syntax

Selected objects

Examples

(first n)

(first n set)

n first objects of the entire
database

n first objects of set

(first 100)
(first 100 t)

(first 50 *learning-set*)
(last n)

(last n set)

n last objects of the entire
database

n last objects of set

(last 100)
(last 100 t)

(last 50 *test-set*)
(random n)

(random n set)

n objects selected randomly
from the entire database

n objects selected randomly
from set

(random 50)

(random 500 *learning-set*)

(not-in set) all the objects which are not
in set

(not-in *learning-set*)

(member o1 o2 …) objects o1, o2 … (member op1 op250 op12)
(such-that att cond set) objects from set for which

att respects the condition
cond

(suchthat pu (float 1000.0 1100.0) t)
(suchthat security (member secure)

learning-set)
(from n1 n2) objects from n1 to n2 (from 5001 6000)

(union set1 set2) union of objects from set1
and set2

(union (first 10) (last 10))
(union *learning-set* *test-set*)

(atnode node of dt in set) objects from set which
would go to node node of dt

tree

(atnode “L1” of “DT1” in t)

set objects from set *learning-set*
pruning-set

test-set
validation-set

last-selected-subset
classification-errors
knn-reference-set

t

3.2.3 Inputs selection

It is mandatory to a priori choose the list of attribute inputs before using the majority of
methods. The global variable that contains the selected attributes considered as inputs is called
*cDQGLGDWH�DWWULEXWHV
.

 19

ATDIDT 2.2 commands are:

- popup menu $WWV, submenu 6HOHFW�$WWULEXWHV, or
- emacs menu �$775,%87(6B6(/(&7,21, submenu �&$1','$7(B$775,%87(6�

With these commands, all the available attributes are displayed and any attribute may be
added or deleted from the list of inputs. Command for candidate attributes selection is found
also in every submenu of a data mining method that uses this variable.

If there exists predefined lists of attributes, the user may use the command
�$775,%87(6B&+2,&(from menu �$775,%87(6B6(/(&7,21 in order to directly
select as inputs one predefined such list or to merge the current list of inputs with a predefined
one.

When applying the majority of data mining techniques, the list of
FDQGLGDWH�
DWWULEXWHV
 is expanded by replacing temporal attributes by a list of scalar ones and
filtered to remove attributes which type is not handled by the technique.

Table 3

Attribute type

Database declaration type

ordered ordonne
linear-combination

qualitative qualitatif-quinlan
temporal (ordonne time)
lisp type ordonne

etc.

3.2.4 Output selection

It is mandatory to a priori choose the output before using the majority of methods.
The global variable
JRDO�FODVVLILFDWLRQ
 indicates the output for methods used in
classification task and must be a symbolic type of attribute. The global variable
JRDO�
UHJUHVVLRQ
 indicates the output for methods used in regression task and must be of
numerical type. These goals are chosen among the available attributes in the loaded database.

ATDIDT 2.2 commands are:

- popup menu $WWV, submenu 6HOHFW�JRDO�FODVVLILFDWLRQ, or
- emacs menu �$775,%87(6B6(/(&7,21, submenus �*2$/B&/$66,),&$7,21�

and �*2$/B5(*5(66,21�

Commands for regression/classification goal selection are found also in every submenu of a
data mining method that uses these variables.

 20

3.3 Define new attributes

New functional attributes may be defined/modified in three ways. Once defined/modified a
new functional attribute, its definition may be stored in a lisp file file.lsp and this file loaded at
any new session, or anytime during the current session, but always after the explicit attributes
loading, by using one of the commands:

• (load “file.lsp”) or
• popup menu /RDG, submenu /RDG�D�OLVS�ILOH, or
• emacs menu �'7B%$6(, submenu �/2$'B'%, or
• (compile “file.lsp”) together with (load “file.fsl”) when the user wants to load the

compiled version of the file
In this way, only the new defined/modified attributes have to be loaded, not all the database
declaration file, fact which for large databases saves a lot of loading time.

1. Using the lisp macro def-fun-att

Example: (def-fun-att mva (object) (sqrt (+ (sqr (pu object)) (sqr (qu object)))))
See the effect with: (mva object-name)

2. Using an ATDIDT command

ATDIDT 2.2 command is:

- emacs menu �$775,%87(6B6(/(&7,21, submenus �'(),1(B$775,%87(�

�

This command allows the user to define new attributes by using def-fun-att macro as in the
above example. The definition of the new attribute is valid during the current session, and it is
lost for future sessions.

3. Using the lisp macro declare-function-attributes

Example:
(declare-function-attributes
 OMIB
 :attributs-conserves t
 :attributs-fonctions-scalaires
 ((mva "Apparent power [MVA]"
 :type ordonee
 :valeurs (real * *)
 :fonction (sqrt (+ (sqr (pu objet)) (sqr (qu objet)))))
 (symbolic-pu "Pu>1000MW"
 :type qualitatif-quinlan
 :valeurs (member <1000 >=1000)
 :par-defaut <1000
 :fonction (if (< (pu objet) 1000.0) '<1000 '>=1000))))

 21

See the effect with: (mva object-name)
 (symbolic-pu object-name)

The slot �SDU�GHIDXW is optional. The slot �DWWULEXWV�FRQVHUYHV indicates the list
of the newly defined attributes that will be loaded: W�value means all the defined attributes,
QLO�means none of them.

In order to visualize the function of a functional attribute attribute-name, at any moment the
user may tape in the lisp buffer the lisp command:

(print (get attribute-name ’fonction))

3.4 Handling temporal attributes

The global variable
FDQGLGDWH�DWWULEXWHV
 is specifying a list of scalar attributes.
Thus, temporal attributes must be transformed into scalar ones according to a sampling
strategy. This is done automatically by the software each time the
FDQGLGDWH�
DWWULEXWH
 list is used in some option. Table 4 presents the scalar attributes created when
the
FDQGLGDWH�DWWULEXWHV
 list is activated in a command, for the temporal attribute
delta.

Table 4

Temporal attribute in
candidate-attributes

Function of the corresponding
created scalar attribute

delta (delta < object> *present-time*)
(delta 0.3) (delta <object> 0.3)

(delta (time 0.0 0.2 nbsteps 5)) ((delta 0.0)(delta 0.04)…(delta 0.2))
(delta (time 0.0 0.2)) ((delta 0.0)(delta 0.2))

(delta (time)) (delta (time to tf *time-steps*))

ATDIDT parameters that control the temporal attributes handling are:

present-time

- Default value 0.0
- ATDIDT 2.2 command: menu :'7B%$6(, menu �$775,%87(6B6(/(&7,21,

command :35(6(17B7,0(

time-steps

- Default value 50
- ATDIDT 2.2 command: menu :'7B%$6(, menu �$775,%87(6B6(/(&7,21,

command :7,0(B67(36

4 Software DM methods

4.1 Graphical Tools

All the graphical tools available in ATDIDT software use a postscript curve-drawing program
called GDC (version 4.3).
All the graphics are computed on and representing the objects found in the current

OHDUQLQJ�VHW
, and when necessary, are based on current
JRDO�
FODVVLILFDWLRQ
. When statistics are displayed below a graphic they are as follows:

- Mu – average
- Mn – minimum
- Mx – maximum
- Sd – standard deviation
- Rho – correlation coefficient between abscissa and ordinate attributes

4.1.1 Histogram

Definition. The histogram is a statistical tool that performs non-parametric density estimation.
It is a frequency diagram. The 2D graphic displays the estimated number of objects for each
interval of values of the chosen attribute (interval-region called bar).
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
Set parameters. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:180%(5B2)B%$56 changes the number of intervals (bars) in which the attribute is split for
computing frequencies (40 by default).
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:+,672*5$0�
The command prompts for:

- a numerical (see Figure 1) or symbolic (see Figure 2) att attribute
Effect.

- The created graphic is computed on LS for attribute att
- A postscript graphic is generated named abs_freq-tem.ps located in the current

directory
- Statistics on LS for attribute att are displayed below the graphic.

4.1.2 Conditional histogram

Definition. It is a histogram colored according to the value of the
JRDO�
FODVVLILFDWLRQ
�
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
- Choose *JRDO-FODVVLILFDWLRQ* (symbolic or numerical attribute)

 23

Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal
as a numerical attribute
Set parameters. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:180%(5B2)B%$56 changes the number of intervals (bars) in which the attribute is split for
computing frequencies (40 by default).
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:COND_+,672*5$0�
The command prompts for:

- a numerical attribute (see Figure 3 for symbolic goal, see Figure 5 for numerical goal)
or a symbolic attribute (see Figure 2 for symbolic goal, see Figure 4 for numerical
goal) att

Effect.
- The created graphic is computed on LS for attribute att and is conditioned by
JRDO�

FODVVLILFDWLRQ
 variable. If the goal is numerical, it is automatically split in
classes of values and the graphic represents each class in a different color.

- A postscript graphic is generated named cond_freq-tem.ps located in the current
directory

- Statistics on LS for att attribute are displayed below the graphic for each of the
symbolic values of the
JRDO�FODVVLILFDWLRQ
 if the goal is symbolic, or for
each of the generated classes, if the goal is numerical.

4.1.3 Multiple conditional histograms

Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
- Choose *JRDO-FODVVLILFDWLRQ* (symbolic or numerical attribute)
- Choose
FDQGLGDWH�DWWULEXWHV

Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal
as a numerical attribute
Set parameters. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:180%(5B2)B%$56 changes the number of intervals (bars) in which the attribute is split for
computing frequencies (40 by default).
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:DB_STATS�
Effect.

- For each attribute from
FDQGLGDWH�DWWULEXWHV
, a conditional histogram is
built

- The created graphics are computed on LS and based on
JRDO�
FODVVLILFDWLRQ
 variable

- A postscript graphic is generated named db_stats-tem.ps located in the current
directory

- Statistics on LS for each attribute are displayed below the graphics, for each of the
symbolic values of the
JRDO�FODVVLILFDWLRQ
 if the goal is symbolic, or for
each of the generated classes, if the goal is numerical

- For a very large
FDQGLGDWH�DWWULEXWHV
 list, this option will take some time.

 24

4.1.4 Scatter-plot

Definition. It is a 2D graphic representing one attribute yy function of another attribute xx.
Attributes xx and yy may be symbolic or numerical.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:SCATTER_PLOT�
The command prompts for:

- a numerical or symbolic attribute xx
- a numerical or symbolic attribute yy

Effect.
- A graphic (xx, yy) computed on LS is displayed (see Figure 6)
- A postscript graphic is generated named correl-tem.ps located in the current directory
- Statistics on LS for xx and yy attributes are displayed below the graphic.

4.1.5 Conditional scatter-plot

Definition. It is a scatter-plot colored according to the value of the
JRDO�
FODVVLILFDWLRQ
�
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
- Choose *JRDO-FODVVLILFDWLRQ* (symbolic or numerical attribute)

Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal
as a numerical attribute
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:COND_6&$77(5B3/27�
The command prompts for:

- a numerical or symbolic attribute xx
- a numerical (see Figure 7) or symbolic (see Figure 8) attribute yy

Effect.
- A graphic (xx, yy) computed on LS and conditioned by
JRDO�FODVVLILFDWLRQ

variable is displayed. If the goal is numerical, it is automatically split in classes of
values and the graphic represents each class in a different color.

- A postscript graphic is generated named cond_correl-tem.ps located in the current
directory

- Statistics on LS for xx and yy attributes are displayed below the graphic for each of the
symbolic values of the
JRDO�FODVVLILFDWLRQ
 if the goal is symbolic, or for
each of the generated classes, if the goal is numerical.

4.1.6 Colored scatter-plot

 25

Definition. It is a scatter-plot colored according to the value of a third attribute.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:COLOUR_6&$77(5B3/27�
The command prompts for:

- a numerical or symbolic attribute xx
- a numerical or symbolic attribute yy
- a numerical (see Figure 9 and Figure 10) or symbolic (see Figure 7) attribute zz

Effect.
- A graphic (xx, yy) computed on LS and conditioned by attribute zz is displayed. If zz is

numerical, it is automatically split in classes of values and the graphic represents each
class in a different color.

- A postscript graphic is generated named colour_correl-tem.ps located in the current
directory

- Statistics on LS for xx, yy and zz attributes are displayed below the graphic.

4.1.7 Scatter-plot with values

Definition. It is a scatter-plot where each point is market on the graphic by the value of a third
attribute.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS) – a small one, for example 100 objects
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:SCATTER_PLOT_VAL�
The command prompts for:

- a numerical attribute xx
- a numerical attribute yy
- a numerical or symbolic attribute zz

Effect.
- A graphic (xx, yy) computed on LS is displayed where values of zz (if numerical) or

classes of zz (if symbolic) are market on the graphic for each point (object) of LS
- A postscript graphic is generated named val_correl-tem.ps located in the current

directory
- Statistics on LS for xx and yy attributes are displayed below the graphic.

4.1.8 Cumulative distribution

Definition. The cumulative distribution is a statistical tool that performs a cumulative
frequency diagram (the integral of the histogram). The 2D graphic displays points (x,y) where
x represents the percentage of objects for which attribute value is at more y.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)

 26

Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:&808/$7,9(B',67�
The command prompts for:

- a numerical (see Figure 11) or symbolic (see Figure 12) att attribute
Effect.

- The created graphic is computed on LS for attribute att
- A postscript graphic is generated named cum_freq-tem.ps located in the current

directory
- Statistics on LS for attribute att are displayed below the graphic
- Percentages corresponding to ordinate line are market in yellow on the graphic.

4.1.9 Dendrogram

Definition. The dendrogram is the graphical representation of a statistical tool called
hierarchical agglomerative clustering. It is used to cluster attributes, the similarity between
two subsets of attributes being defined as the minimum similarity of pairs of attributes of the
two subsets. This tool is particularly interesting for the analysis of attribute similarities,
detecting and eliminating the attributes too correlated, or detecting important correlation
sbetween a goal attribute and input attributes.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
- Choose
FDQGLGDWH�DWWULEXWHV
. Make sure you insert in the list all the

attributes, including regression goal. Constant numerical and non-numerical attributes
are not handled and excluded from the attributes list prior to dendrogram building.

Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:'(1'52*5$06�
Effect.

- The dendrogram is computed on LS
- The coefficients displayed on the graphic represent the minimum correlation

coefficients between one attribute and a group of attributes or between two groups of
attributes. Correlations with a coefficient more that 0.5 are depicted in red.

- A postscript graphic is generated named dendrogram.ps located in the current directory
- Statistics on LS for each attribute are displayed together with correlation coefficients

for every two-by-two pairs of attributes.

4.1.10 Temporal curves

Definition. They represent evolution in time of temporal attributes for a given object.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS)
- Choose
FDQGLGDWH�DWWULEXWHV
. Insert all the temporal attributes for which

you wish a curve on the same graphic.
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:7(0325$/B&859(6B2�

 27

The command prompts for:
- An object name obj

Effect.
- A curve for each temporal attribute in the list of
FDQGLGDWH�DWWULEXWHV
 is

represented on the same graphic for object obj (see Figure 13)
- A postscript graphic is generated named scenario-tem.ps located in the current

directory.

4.1.11 Temporal curves for a set of objects

Definition. They represent evolution in time of one temporal attribute for a set of objects.
Selections.

- Choose
OHDUQLQJ�VHW
 (LS) – a small one, for example 50 objects
Command. ATDIDT 2.2 command: menu :'7B%$6(, menu �*5$3+,&6, command
:7(0325$/B&859(6B6(7�
The command prompts for:

- A temporal attribute att
Effect.

- A curve for each object in
OHDUQLQJ�VHW
 is represented on the same graphic for
attribute att (see Figure 14)

- A postscript graphic is generated named scenarios-tem.ps located in the current
directory.

 28

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

 29

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

 30

Figure 13

Figure 14

Figure 15

4.2 Decision Tree

4.2.1 What is it?

Definition. Decision trees (DT) are tools used in classification problems. They are concerned
with the automatic design of if-then rules. They have a symbolic output and symbolic and/or
numerical inputs.

Method characteristics. The main strength of DT is its interpretability. Another asset is the
ability to identify the most relevant attributes for a problem: the model itself selects a part of
the attributes from the list of candidate attributes as the model inputs. Finally, it is a
computationally efficient tool. As a counter part, it is less accurate than a neural network. It
may be used in association with a neural network or a KNN method in a hybrid approach.

4.2.2 Selections to make before starting

Define the problem. Choose
JRDO�FODVVLILFDWLRQ
 and choose
FDQGLGDWH�
DWWULEXWHV
. $dmissible input attribute types are: “ordonee”, “linear-combination” and
“qualitatif-quinlan”. Note that the model does not handle temporal attribute values, they being
replaced by a list of scalar ones in
FDQGLGDWH�DWWULEXWHV
 list prior to model
building.
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test or
prune the model).
Set method parameters. Method parameters are
DOID
 and
K�PLQ
.

alfa

- Necessary to detect deadens in decision trees, i.e. impure terminal nodes
- Takes values between 0.00005 and 1.0 (complete tree, maximum complexity)
- Accepted values: 1.0 0.25 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 0.00025 0.0001

0.00005
- Default value 0.0001
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�75((B,1'8&7,21, command :6(7B
$/)$

h-min

- Necessary to detect leaves in decision trees, i.e. pure terminal nodes
- Takes any real value between 0.0 (trivial tree, 0 complexity, 0 test nodes, 1 terminal

node) and 10.0 (fully grown tree)
- Default value 0.028
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�75((B,1'8&7,21, command :6(7B
+�0,1

4.2.3 Apply the method

 32

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�75((B,1'8&7,21, command �%8,/'B'7

Effects of the method employment. If the decision tree name is xx (the default name is
DT<i>) and the
JRDO�FODVVLILFDWLRQ
 is yy:

- The new functional attribute created by default once the model is built has the name
approx-xx-of-yy

- The created file containing information about the building process has the name xx.log
and is located in the current directory

- The new decision tree xx is pushed in the global variable
GHFLVLRQ�WUHHV

- The global variable
FXUUHQW�GW
 keeps the last built (decision or regression) tree.

Interesting displayed information while building the tree: status variables, prior class
probabilities in LS and at every node, LS size at every node, type of node, entropy of node,
possible tests, their scores (the best score is 1.0, the worst one is 0.0) and the scores’ standard
deviations, chosen test, the correlation coefficient of each attribute’s optimal test with the
optimal test of the selected attribute, CPU time.

Interesting displayed information while describing the results: a résumé of used
parameters and settings, total entropy of DT in LS (= total entropy of root node), DT
complexity (number of test, leaf and deadend nodes), the percentage of the total information
explained by the tree by every chosen attribute (a measure of the relevance of every attribute
in the model), the name of the new created functional attribute, the name and the path of the
created file containing the displayed information. All these information may be redisplayed
anytime by using the command �'(6&5,%(B75((from �75((B,1'8&7,21 menu.

4.2.4 Test the model

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�75((B,1'8&7,21, command �7(67B75((

The program detects when TS and LS are overlapping and asks the user if he wants to
eliminate this overlap objects or not from TS before performing the testing.

Interesting displayed information while describing the results: non-detection costs (values
between 0 and 1), confusion matrix on TS (number of objects correctly classified and
misclassified), classification error rate on TS, CPU time.

Effects of the method employment. After testing, the global variable
FODVVLILFDWLRQ�
HUURUV
 contains all the misclassified objects.

4.2.5 Improve the model

 33

Once build and tested, a tree may be pruned in order to improve the model’s compromise
between accuracy and complexity. The new resulted tree has less complexity than the original
tree and better or comparative error rate. The pruning procedure generates a sequence of
intermediary trees and based on these trees’ error rates (computed on TS) the best tree is
chosen following the n-standard-error-rule, i.e. the less complex tree not significantly less
reliable than the best one is selected.

Note that the pruning procedure, in order to be effective, should be applied on a complete tree,
i.e. a fully-grown tree. In this respect, the model’s parameters should be chosen in
consequence: *alfa*=1.0 (and *h-min*=0.0 evenatually).

To do before starting. For pruning a tree the user must before test the tree. The errors of the
intermediary trees are computed on the global variable
WHVW�VHW
� In order to use the
cross-validation approach, the user should settle variable
WHVW�VHW
 as a set independent
of LS and TS and test the original tree (on this set called usually pruning set) before pruning it.

Set method parameters. Method parameters are
VLJPD�PXOWLSOLHU
 and

PD[LPXP�WUHH�SUXQH�FRPSOH[LW\
��
�
sigma-multiplier

- Necessary in n-standard-error-rule.
- Usual values: 0.0, 1.0, 2.0, 3.0, …
- Default value 1.0
- Examples: if
VLJPD�PXOWLSOLHU
=2.0, the procedure chooses the tree with the

error smaller or equal to the best error plus two times its standard deviation; if

VLJPD�PXOWLSOLHU
=0.0, the procedure chooses the tree with the smallest error

- Example of lisp command: (setf
VLJPD�PXOWLSOLHU
 2.0)

maximum-tree-prune-complexity

- Settles the maximum complexity of the pruned tree
- Takes integer values between 0 and 10.000
- Default value 10.000
- Settled as a very large value this parameter has no influence on the process
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�75((B,1'8&7,21, command :6(7B
&�0$;�3581(

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�75((B,1'8&7,21, command �3581(B75((

Interesting displayed information while pruning the tree: some information concerning
every intermediary tree (complexity, terminal nodes, the next node to prune, test set error rate,
corresponding *alfa* parameter), information about the chosen tree.

Effects of the method employment. If the original decision tree name is xx, the
JRDO�
FODVVLILFDWLRQ
 is yy and
VLJPD�PXOWLSOLHU
 is 1.0:

- The pruned decision tree has the name xx-BPR-1.0

 34

- The new functional attribute created by default once the tree is pruned has the name
approx-xx-BPR-1.0-of-yy

- The created file containing information about the pruning process has the name xx-
BPR-1.0.log and is located in the current directory

- The new decision tree xx-BPR-1.0 is pushed in the global variable
GHFLVLRQ�
WUHHV

- The global variable
FXUUHQW�GW
 keeps the pruned tree xx-BPR-1.0

ATDIDT 2.2 command �'5:B35B6(4� provides a graphic of pruning sequence curves
displaying the evolution of decision trees’ complexity, information, test error rate and quality
with parameter
DOID
� Two files named xx-BPR-1.0.pruning and xx-BPR-1.0-pruning-
seq.ps are created in the current directory. The postscript one contains these graphics that may
be visualized at any time by using GhostView tool.

4.2.6 Results visualization / interpretation

Describe tree. ATDIDT 2.2 command �'(6&5,%(B75((displays a résumé of the current
decision tree growing and testing results (if the tree has been tested before). By current tree we
understand the tree indicated by the global variable
FXUUHQW�GW
� i.e. the last built tree,
or the last pruned tree, or the last tree chosen with the command :&+226(B75((. The
command may be applied at any time, once a (decision or regression) tree is stored in the
variable
FXUUHQW�GW
�

Display tree. ATDIDT 2.2 command �',63/$<B75((displays the current tree on a single
page. Command �0<B',63/$<B75((displays the tree on multiple pages, on the first page
only the upper levels of the tree and on the other pages, the rest of the subtrees. It should be
used for very complex trees (too complex to be displayed on a single sheet). Both commands
generate a postscript file (named xx.ps for a DT called xx) located in the current directory that
may be visualized at any time using the GhostView tool.

ATDIDT 2.2 command �'5$:B7(67B6(7 enables or disables the representation of the test
results on the tree graphic. Figure 16 presents an example of a decision tree display without
test results, and Figure 17, with test results.

Figure 16 and Figure 17 draw a decision tree for a
JRDO�FODVVLILFDWLRQ
 called
“security” (see the attribute definition in database declaration file example of appendix), built
on a learning set of 1000 objects, pruned and tested on a independent test set of 1000 objects.
Figure 16 presents every node of the tree by a box area proportional to the size of the learning
subset corresponding to this node (the exact size of this subset together with the name of the
node are indicated above the box) and the horizontal division of each box shows the
proportion of the objects from this subset in each class. In Figure 17, each node box is divided
into two parts, the upper one corresponding to the learning set, the lower one to the test set.
The part corresponding to the test set is horizontally divided indicating the proportion of
misclassified objects in each local test set. In both figures, the test of each test node is written
under the node’s box and each arc leading to a successor is labeled with a possible answer to

 35

this test (Yes and No). Above the root node, the total number of test nodes (Txx), leaves
(Lxx), and deadends (Dxx) is indicated.

HTML format. ATDIDT 2.2 commands �6$9(B75((and �,163(&7B75((give another
way of visualizing results, in html format. For a decision tree named xx, the first command
creates a new directory called /Sav/xx/ in the current directory, and puts 7 files concerning the
tree in this new directory. The second command opens a Welcome.html file that displays
general information about the tree together with hyperlinks for all the created files:

- xx-rules.html – displays the IF-THEN rule base derived from the tree
- xx-prune.lst (for a pruned tree) or xx-grown.lst (for the original tree) – displays

information that describe the pruning / growing processes
- xx.dump – outputs the internal lisp structure of the tree xx
- xx.lsp – contains the lisp function of the new created functional attribute
- xx-mp.pdf and xx-sg.pdf – are single page and multiple page displays of the tree.

Afterwards, at every new session, the ATDIDT 2.2 command �/2$'B75((may load this
built tree (model) based on the xx.dump file, thus releasing the user from building it again.

Derived rule-base. For every terminal node of a decision tree, an IF-THEN rule is generated.
The file xx-rules.html indicates for every rule of type “if antecedent then class A”, extracted
from the xx decision tree, the next coefficients:

- support of rule – percentage of all objects in LS for which this rule is active
- cover of rule - percentage of all objects of class A in the LS for which this rule is

active (the total of the covers for all the rules concluding a given class is 100%)
- certainty factor – percentage of objects of class A among those for which the rule is

active
- summary – number of objects for which the rule is active counted by class.

Example of rule deducted from decision tree of Figure 16:

Rule T3: IF Pu > 1096.4 and Qu < 392.11 THEN class = INSECURE
 Support = 22%
 Cover = 63.2%
 Certainty factor = 89.1%
 Summary: insecure – 196, secure – 24.

Other ideas for graphics. If the decision tree name is xx and the
JRDO�
FODVVLILFDWLRQ
 is yy:

- Conditional scatter-plot (approx-xx-of-yy, yy) on LS (see Figure 18) or TS
- Conditional histogram for approx-xx-of-yy on LS (see Figure 19), TS
- Settle LS as the objects misclassified by the tree (see command �*(7B'7�(55256)

and apply a conditional histogram for approx-xx-of-yy

4.2.7 Other possible actions

 36

All the commands having the format �;;;B75((are available both for regression and
decision trees and are regarding the tree stored in the global variable
FXUUHQW�GW
�

Other useful available commands:

�%(67B),567" and �6(7B
&�0$;�*52:
� - concern the node development in a
decision tree growing. �%(67B),567" allows to change the order of node development,
either best first or depth first (default mode). In the case of best first strategy, command
�6(7B
&�0$;�*52:
� fixes the global variable�
PD[LPXP�WUHH�JURZ�
FRPSOH[LW\
, an upper bound on complexity, that takes integer values between 0 and
10.000, default value is 10.000.�
�
�6(/(&7�'7�7(67�$776 – settles the global variable
FDQGLGDWH�DWWULEXWHV
 as
the list of all the attributes chosen by the current decision tree. This command becomes very
useful when decision tree technique is used in a hybrid approach together with other methods.
A decision tree has the ability to reduce the input space to the relevant attributes for a given
problem.
�
�*(7B'7B(55256 – select the global variable
OHDUQLQJ�VHW
 as the objects from

WHVW�VHW
 misclassified by the tree in the last testing and stored in the global variable

FODVVLILFDWLRQ�HUURUV
� If the tree has not yet been tested, the
OHDUQLQJ�
VHW* is settled to the empty set.

 37

Figure 16

 38

Figure 17

 39

Figure 18

Figure 19

4.3 Regression Tree

4.3.1 What is it?

Definition. Regression trees (RT) are tools used in regression problems. They are concerned
with the automatic design of if-then rules. They have a numerical output and symbolic and/or
numerical inputs.

Method characteristics. The main strength of RT is its interpretability. Another asset is the
ability to identify the most relevant attributes for a problem: the model itself selects a part of
the attributes from the list of candidate attributes as the model inputs. It is more complex than
a decision tree and thus the generated rule base is larger. It is a computationally efficient tool,
comparatively fast to a decision tree and much faster than a neural network. It is less accurate
than a neural network and in many cases less accurate than a linear regression technique. It
may be used in association with a neural network in a hybrid approach.

4.3.2 Selections to make before starting

Define the problem. Choose
JRDO�UHJUHVVLRQ
 and choose
FDQGLGDWH�
DWWULEXWHV
�� $dmissible input attribute types are: “ordonee” and “qualitatif-quinlan”.
Note that the model does not handle linear-combination attribute values, they being excluded
from the
FDQGLGDWH�DWWULEXWHV
 list prior to model building. Temporal attribute
values are replaced by a list of scalar ones.�
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test or
prune the model).
Set method parameters. Method parameters are
DOID�UW
,
Y�PLQ
�DQG�
WRWDO�
YDULDQFH�PLQ
.

alfa-rt

- Necessary to detect deadens in regression trees, based on a Kolmogorov-Smirnov
probability in node

- Takes real values between 0.0 (trivial tree) and 1.0 (full grown tree)
- Default value 0.0001
- Use value 0.000001 for strong pre-pruning
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�75((B,1'8&7,21, command :6(7B
$/)$�57

v-min

- Necessary to detect leaves in regression trees, based on variance in node
- Takes any real value between 0.0 and 1.0e+11
- Default value 0.0 (complete tree)
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�75((B,1'8&7,21, command :6(7B
9�0,1

total-variance-min

 41

- Necessary to detect deadens in regression trees, based on total variance in node
- Takes any real value between 0.0 and 1.0e+11
- Default value 0.0 (complete tree)
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�75((B,1'8&7,21, command :6(7B
7790

4.3.3 Apply the method

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�75((B,1'8&7,21, command �%8,/'B57

Effects of the method employment. If the regression tree name is xx (the default name is
RT<i>) and the
JRDO�UHJUHVVLRQ
 is yy:

- the new functional attribute created by default once the model is built has the name
approx-xx-of-yy

- the created file containing information about the building process has the name xx.log
and is located in the current directory

- The new regression tree xx is pushed in the global variable
GHFLVLRQ�WUHHV

- The global variable
FXUUHQW�GW
 keeps the last built (decision or regression) tree

Interesting displayed information while building the tree: status variables, LS size at every
node, type of node, statistics of the output in node (mean, max, min, standard deviation),
variance of node, possible tests, their scores, and the reduction of the variance each test brings,
the correlation coefficient of each attribute’s optimal test with the optimal test of the selected
attribute, chosen test, CPU time.

Interesting displayed information while describing the results: a résumé of used
parameters and settings, total variance of LS and total variance reduction realized by RT, RT
complexity, the percentage of the total variance reduction explained by the tree by every
chosen attribute (a measure of the relevance of every attribute in the model), the name of the
new created functional attribute, the name and the path of the crated file containing the
displayed information. All these information may be redisplayed anytime by using the
command �'(6&5,%(B75((from �75((B,1'8&7,21 menu.

4.3.4 Test the model

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�75((B,1'8&7,21, command �7(67B75((

The program detects when TS and LS are overlapping and asks the user if he wants to
eliminate this overlap objects or not from TS before performing the testing.

 42

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors, absolute errors, squared errors, positive and
negative errors; CPU time.

4.3.5 Improve the model

The pruning procedure generates a sequence of intermediary trees from the original complete
tree and based on these trees’ mean absolute errors (computed on TS) the best tree is chosen
following the n-standard-error-rule, i.e. the less complex tree not significantly less reliable
than the best one is selected.

Note that the pruning procedure, in order to be effective, should be applied on a complete tree,
i.e. a fully-grown tree. In this respect, the model’s parameters should be chosen in
consequence:
DOID�UW
=1.0 and
Y�PLQ
=0.0,
WRWDO�YDULDQFH�PLQ
=0.0.

To do before starting. For pruning a tree the user must before test the tree. The errors of the
intermediary trees are computed on the global variable
WHVW�VHW
� In order to use the
cross-validation approach, the user should settle variable
WHVW�VHW
 as a set independent
of LS and TS and test the original tree (on this set called usually pruning set) before pruning it.

Set method parameters. Method parameters are
VLJPD�PXOWLSOLHU
 and

PD[LPXP�WUHH�SUXQH�FRPSOH[LW\
� See pruning of decision trees for details on
how to settle these parameters.

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�75((B,1'8&7,21, command �3581(B75((

Interesting displayed information while pruning the tree: some information concerning
every intermediary tree (complexity, terminal nodes, the next node to prune, mean absolute
error on TS, mean squared error on TS, corresponding
DOID�UW
 parameter), information
about the chosen tree.

Effects of the method employment. If the original regression tree name is xx, the
JRDO�
UHJUHVVLRQ
 is yy and
VLJPD�PXOWLSOLHU
 is 1.0:

- The pruned regression tree has the name xx-BPR-1.0
- The new functional attribute created by default once the tree is pruned has the name

approx-xx-BPR-1.0-of-yy
- The created file containing information about the pruning process has the name xx-

BPR-1.0.log and is located in the current directory
- The new regression tree xx-BPR-1.0 is pushed in the global variable
GHFLVLRQ�

WUHHV

- The global variable
FXUUHQW�GW
 keeps the pruned tree xx-BPR-1.0

ATDIDT 2.2 command �'5:B35B6(4� provides a graphic of pruning sequence curves
displaying the evolution of regression trees’ complexity, variance reduction, mean absolute
error and quality with parameter
DOID
� Two files named xx-BPR-1.0.pruning and xx-

 43

BPR-1.0-pruning-seq.ps are created in the current directory. The postscript one contains these
graphics that may be visualized at any time by using GhostView tool.

4.3.6 Results visualization / interpretation

Describe tree. ATDIDT 2.2 command �'(6&5,%(B75((displays a résumé of the current
regression tree growing and testing results (if the tree has been tested before). By current tree
we understand the tree indicated by the global variable
FXUUHQW�GW
� i.e. the last built
tree, or the last pruned tree, or the last tree chosen with the command :&+226(B75((. It may
be applied at any time, once a (decision or regression) tree is stored in the variable

FXUUHQW�GW
�

Display tree. ATDIDT 2.2 command �',63/$<B75((displays the current tree on a single
page. Command �0<B',63/$<B75((displays the tree on multiple pages, on the first page
only the upper levels of the tree and on the other pages, the rest of the subtrees. It should be
used for very complex trees (too complex to be displayed on a single sheet). Both commands
generate a postscript file (named xx.ps for a RT called xx) located in the current directory that
may be visualized at any time using the GhostView tool.

ATDIDT 2.2 command �'5$:B7(67B6(7 enables or disables the representation of the test
results on the tree graphic. Figure 20 presents an example of a regression tree display without
test results, and Figure 21, with test results.

Figure 20 and Figure 21 draw a regression tree for a
JRDO�UHJUHVVLRQ
 called “cct-sbs”
(see the attribute definition in database declaration file example of appendix), built on a
learning set of 1000 objects, pruned and tested on a independent test set of 1000 objects. Each
node of the tree is represented by a box. Above the box appears the name of the node, test (T),
leaf (L) or deadend (D) and the number of node learning states. The total number of different
nodes is indicated above the root node. Below every test node, the corresponding test is
indicated and each arc leading to a successor is labeled with a possible answer to this test (Yes
and No). In Figure 20, each node’s box corresponds only to the learning set results. The node
box area is proportional to the node’s local learning set size. Inside each node box, the mean
value of the regression tree approximation together with its standard deviation (in brackets)
computed on local LS is marked. The horizontal splits in nodes simulate this mean value
plus/minus one standard deviation. In this way, the variance reduction from root node to
terminal nodes becomes graphically visible. In Figure 21, the node’s box is divided into two
parts, the upper one corresponding to the learning set as explained already, the lower one to
the test set. Their relative heights are proportional to the relative sizes of the learning and test
sets at the node. The part corresponding to the test set displays the mean value and its standard
deviation for the node’ subtree absolute error computed on TS. Root node test part gives the
mean value for the absolute error of the entire tree.

HTML format. ATDIDT 2.2 commands �6$9(B75((and �,163(&7B75((give another
way of visualizing results, in html format. For a regression tree named xx, the first command
creates a new directory called /Sav/xx/ in the current directory, and puts 7 files concerning the

 44

tree in this new directory. The second command opens a Welcome.html file that displays
general information about the tree together with hyperlinks for all the created files:

- xx-rules.html – displays the IF-THEN rule base derived from the tree
- xx-prune.lst (for a pruned tree) or xx-grown.lst (for the original tree) – displays

information that describe the pruning / growing processes
- xx.dump – outputs the internal lisp structure of the tree xx
- xx.lsp – contains the lisp function of the new created functional attribute
- xx-mp.pdf and xx-sg.pdf – are single page and multiple page displays of the tree.

Afterwards, at every new session, the ATDIDT 2.2 command �/2$'B75((may load this
built tree (model) based on the xx.dump file, thus releasing the user from building it again.

Derived rule-base. For every terminal node of a regression tree, an IF-THEN rule is
generated. The file xx-rules.html indicates for every rule of type “if antecedent then
output=value”, extracted from the xx decision tree, the next coefficients:

- support of rule – percentage of all objects in LS for which this rule is active
- output estimation when the rule is active.

Example of rule deducted from regression tree of Figure 20:

Rule T4: IF Pu > 1135.9 and Qu < -205.0 THEN CCT-SBS = 0.076139
 Support = 7.4%

Other ideas for graphics. If the regression tree name is xx, the
JRDO�UHJUHVVLRQ
 is yy
and ww is one input attribute:

- Scatter-plot (approx-xx-of-yy, yy) on LS (see Figure 22) or TS
- Histogram for approx-xx-of-yy on LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of RT and

visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS
- Scatter-plot (approx-xx-of-yy, ww) on LS (see Figure 23) or TS.

4.3.7 Other possible actions

All the commands having the format :XXX_TREE are available both for regression and
decision trees and are regarding the tree stored in the global variable
FXUUHQW�GW
�

Other useful available commands:

�6(/(&7�'7�7(67�$776 – settles the global variable
FDQGLGDWH�DWWULEXWHV
 as
the list of all the attributes chosen by the current decision tree. This command becomes very
useful when decision tree technique is used in a hybrid approach together with other methods.
A regression tree has the ability to reduce the input space to the relevant attributes for a given
problem.
�
�*(7B'7B(55256 – select the global variable
OHDUQLQJ�VHW
 as the objects from

WHVW�VHW
 for which the regression tree approximation is different from the
JRDO�

 45

UHJUHVVLRQ
 used to build the tree. As it is often the case for regression trees, this option is
not very useful for regression trees context, since often here the new LS is similar with the
original LS.

Figure 20

 47

Figure 21

Figure 22

Figure 23

4.4 Linear Regression

4.4.1 What is it?

Definition. Linear regression tool is used in regression problems. The model predicts one
attribute (the output) by means of other attributes (the inputs) by a linear function. It is a least
squares linear combination of all the inputs with respect to the output.

KK inputcinputcinputccoutput22110 +++=

 The model has a numerical output and non-constant numerical inputs.

Method characteristics. The main strength of linear regression is its computational efficiency
for reasonable sized input spaces. It is much faster then regression trees or neural networks.
When the input space dimension K (number of input attributes) is high, the method is less
efficient, due to a K*K matrix manipulation (inverse matrix computation) that is quadratic in
K. The model complexity is given by the input space size K and the model free parameters are
the K coefficients. In a hybrid approach and large sized input spaces, a dendrogram, a
decision or regression tree may reduce the input space and then a linear regression technique
may find the linear combination for predicting a certain output.

4.4.2 Selections to make before starting

Define the problem. Choose
JRDO�UHJUHVVLRQ
 and choose
FDQGLGDWH�
DWWULEXWHV
��$dmissible input attribute type is “ordonee”. Note that the model does not
handle constant attribute values, qualitative or linear-combination attributes, all being
excluded from the
FDQGLGDWH�DWWULEXWHV
 list prior to model building. Temporal
attribute values are replaced by a list of scalar ones.�
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test the
model).
Set method parameters. Method parameter is
ZHLJKW�GHFD\
��
�
weight-decay

- Penalization term in the “ridge-regression” model
- Takes positive real values
- Default value 0.00001 (almost no penalization)
- If the user wants to reduce the variance of the linear regression he should use larger

values, say 1.0.
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�/,1($5B5(*5(66,21, command :6(7B:(,*+7B'(&$<

4.4.3 Apply the method

 50

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�/,1($5B5(*5(66,21, command
�/($51B/,1($5B5(*5(66,21B$3352;,0$7,21�

Effects of the method employment If the
JRDO�UHJUHVVLRQ
 is yy:

- The new functional attribute created by default once the model is built has the name
linear-regression-yy, or any name given by the user

- The created file containing information about the model building process has the name
linear-regression-yy.log, and is located in the current directory. If it already exists, the
new information is appended to the old one in the file.

Interesting displayed information while building the model: status variables, CPU times, a
description of the new created attribute, its explicit function giving the linear dependence.

4.4.4 Test the model

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors; CPU time.

4.4.5 Results visualization / interpretation

Explicit function. An example of the linear model function detected by ATDIDT is:

QuPusbscct 00008.000043.062587.0 +−=− .

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created linear regression attribute), to be compared with the
JRDO�
UHJUHVVLRQ
 yy. After testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see
Figure 24). The corresponding created postscript file is named linear_regtst-tem.ps and is
located in the current directory.

Other ideas for graphics. If the
JRDO�UHJUHVVLRQ
 is yy and xx is one input attribute:

- Scatter-plot (linear-regression-yy, yy) on LS
- Histogram for linear-regression-yy on LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of the linear

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS
- Scatter-plot (linear-regression-yy, xx) on LS (see Figure 25) or TS.

 51

Figure 24

Figure 25

4.5 Linear Hinges Model

4.5.1 What is it?

Definition. Linear Hinges model is a one-dimensional regression problem, i.e. curve fitting
from two-dimensional scatter-plot data. The model predicts one attribute (the output) by
means of other attribute (the input) by a piecewise linear model. It has a numerical output and
non-constant numerical inputs.

Method characteristics. The model is very computationally efficient. The number of linear
pieces of the model gives the model complexity.

4.5.2 Selections to make before starting

Define the problem. Choose
JRDO�UHJUHVVLRQ
���
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test the
model).

4.5.3 Apply the method

Command. ATDIDT 2.2 command3: menu :$8720$7,&B/($51,1*, menu
�/,1($5B5(*5(66,21, command �+,1*(6�

The command prompts for the attribute name considered as input for the model. $dmissible
input attribute type is “ordonee”. Note that the model does not handle constant attribute
values, qualitative, linear combination or temporal attributes.�

Effects of the method employment. If the input attribute is xx and
JRDO�UHJUHVVLRQ

is yy:

- The new functional attribute created by default once the model is built has the name
linear-hinges-xx-yy

- No log file is generated.

Interesting displayed information while building the model: number of knots, learning and
pruning set sizes, new created attribute name, CPU time.

4.5.4 Test the model

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21

3 Model not available in ATDIDT 3.0 version

 53

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors; CPU time.

4.5.5 Results visualization / interpretation

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created linear hinges attribute), to be compared with the
JRDO�
UHJUHVVLRQ
 yy. After testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see
Figure 26). The corresponding created postscript file is named linear_regtst-tem.ps and is
located in the current directory.

Other ideas for graphics. If the input attribute is xx and
JRDO�UHJUHVVLRQ
 is yy:

- Histogram for linear-hinges-xx-yy on LS, TS
- Scatter-plot (linear-hinges-xx-yy, yy) on LS
- Define a functional attribute zz as the error / absolute error / squared error of the linear

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS
- Scatter-plot (linear-hinges-xx-yy, xx) on LS (see Figure 27) or TS.

Figure 26

 54

Figure 27

4.6 Regression Tree Bagging

4.6.1 What is it?

Definition. Regression tree bagging is used in regression problems. The model predicts one
attribute (the output) by means of other attributes (the inputs) by averaging multiple regression
trees estimations. The model has a numerical output and numerical inputs. A number of
regression trees are built in the iterative way: a random subset of the
OHDUQLQJ�VHW
 is
internally selected (size = 50% of the
OHDUQLQJ�VHW
 size), then a regression tree is built
on this subset. At the end, a new model is constructed by aggregating all these trees, and the
model’s prediction is the average prediction of the trees.

Method characteristics. It provides more accurate output estimators than single regression
tree building and less accurate than neural networks or regression tree boosting. With respect
to regression trees, the averaged model looses the interpretability character. The CPU time is
rather high with respect to other regression methods.

4.6.2 Selections to make before starting

Define the problem. Choose
JRDO�UHJUHVVLRQ
 and choose
FDQGLGDWH�
DWWULEXWHV
��$dmissible input attribute type is “ordonee”. Note that the model does not
handle linear-combination or constant attribute values, they being excluded from the

FDQGLGDWH�DWWULEXWHV
 list prior to regression tree model building. Equally, the
model does not handle qualitative attributes. Temporal attribute values are replaced by a list of
scalar ones. �
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test the
model).
Set method parameters. Method parameters are
VL]H�RI�WUHHV�IRU�EDJJLQJ
�
and�
QXPEHU�RI�EDJJLQJ�WHUPV
��Also, the model is based on the regression trees
intrinsic parameters:
DOID�UW
,
Y�PLQ
�and
WRWDO�YDULDQFH�PLQ
.

size-of-trees-for-bagging

- The upper bound of regression tree complexity during bagging
- Takes integer values between 0 (trivial tree) and 10.000 (large tree)
- Default value 500
- Typically, it is preferable to build large trees so as to reduce bias as much as possible
- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51,

command :%$**B&203/(;,7<�

number-of-bagging-terms

- The number of regression trees which are built during bagging
- Takes integer values between 0 (no model) and 50
- Default value 20
- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51,

command :%$**B180%(5�

 56

4.6.3 Apply the method

Command. ATDIDT 3.0 command4: menu :$8720$7,&B/($51,1*, menu
�0(7$B/($51, command �75((B%$**,1*�

Effects of the method employment.

- The new functional attribute created by default once the model is built has the name
RT-BAGG<i>

- No log file is generated.

Interesting displayed information while building the model: status variables, summary
description of each intermediary regression tree, CPU times.

4.6.4 Test the model

Command. ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu
�0(7$B/($51, command �7(67B5(*5(66,21B$3352;,0$7,21

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors; CPU time.

4.6.5 Results visualization / interpretation

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created model), to be compared with the
JRDO�UHJUHVVLRQ
 yy. After
testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see Figure 28). The
corresponding created postscript file is named linear_regtst-tem.ps and is located in the
current directory.

Other ideas for graphics. If the
JRDO�UHJUHVVLRQ
 is yy, ww is the model’s name and
xx is one input attribute:

- Scatter-plot (ww, yy) on LS
- Histogram for ww on LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of the linear

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS
- Scatter-plot (ww, xx) on LS (see Figure 29) or TS.

4 Model not available in ATDIDT 2.2 version

 57

Figure 28

Figure 29

4.7 Regression Tree Boosting

4.7.1 What is it?

Definition. Regression tree boosting is used in regression problems. The model has a
numerical output and numerical inputs. A number of regression trees are built in the iterative
way: first a linear regression is built to fit the
JRDO�UHJUHVVLRQ
� then a number of
small regression trees is built using an iterative residual fitting method; finally, the tree-models
and attributes are combined in a generalized linear model to fit the
JRDO�UHJUHVVLRQ
�

Method characteristics. The interpretability character is lost with respect to regression trees.
It is computationally efficient. It provides more accurate output estimators than single
regression tree building or regression tree bagging, and comparative results with neural
networks.

4.7.2 Selections to make before starting

Define the problem. Choose
JRDO�UHJUHVVLRQ
 and choose
FDQGLGDWH�
DWWULEXWHV
��$dmissible input attribute type is “ordonee”. Note that the model does not
handle linear-combination or constant attribute values, they being excluded from the

FDQGLGDWH�DWWULEXWHV
 list prior to model building. Equally, the model does not
handle qualitative attributes. Temporal attribute values are replaced by a list of scalar ones. �
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test the
model).
Set method parameters. Method parameters are
VL]H�RI�WUHHV�IRU�ERRVWLQJ
�
and�
QXPEHU�RI�ERRVWLQJ�WHUPV
��Also, the model is based on the regression trees
intrinsic parameters. The user cannot control them, they being settled by default as
DOID�
UW
=0.1,
Y�PLQ*=0.0 and�
WRWDO�YDULDQFH�PLQ
=0.0.

size-of-trees-for-boosting

- The upper bound of regression tree complexity during boosting
- Takes integer values between 0 (trivial tree) and 10.000 (large tree)
- Default value 10
- It is preferable to build small trees so as to reduce variance as much as possible
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�/,1($5B5(*5(66,21, command :%2267B&203/(;,7<
- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51,

command :%2267B&203/(;,7<�

number-of-boosting-terms

- The number of regression trees which are built during boosting
- Takes integer values between 0 (no model) and 50
- Default value 10
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�/,1($5B5(*5(66,21, command :%2267B180%(5

 59

- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51,
command :%2267B180%(5�

4.7.3 Apply the method

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�/,1($5B5(*5(66,21, command �75((B%2267,1*�
ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, command
�75((B%2267,1*�

Effects of the method employment.

- The new functional attribute created by default once the model is built has the name
RT-BOOST<i>

- No log file is generated.

Interesting displayed information while building the model: status variables, summary
description of each intermediary regression tree and linear regression, CPU times.

4.7.4 Test the model

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21�
ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, command
�7(67B5(*5(66,21B$3352;,0$7,21�

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors; CPU time.

4.7.5 Results visualization / interpretation

Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for
example the new created model), to be compared with the
JRDO�UHJUHVVLRQ
 yy. After
testing, a scatter-plot is automatically displayed, (xx, yy) on TS (see Figure 30). The
corresponding created postscript file is named linear_regtst-tem.ps and is located in the
current directory.

Other ideas for graphics. If the
JRDO�UHJUHVVLRQ
 is yy, ww is the model’s name and
xx is one input attribute:

- Scatter-plot (ww, yy) on LS
- Histogram for ww on LS, TS
- Define a functional attribute zz as the error / absolute error / squared error of the linear

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS
- Scatter-plot (ww, xx) on LS (see Figure 31) or TS.

 60

Figure 30

Figure 31

4.8 Multilayer Perceptron

4.8.1 What is it?

Definition. Multilayer perceptrons (MLP) are tools used in nonlinear regression and in
nonlinear classification problems. The model predicts one attribute (the output) by means of
other attributes (the inputs) by a nonlinear function. It supports numerical inputs and symbolic
or numerical output depending on the problem.

Method characteristics. The main strength of MLP is its universal approximation capability.
Among the ATDIDT data mining methods it is probably the most accurate one. Unfortunately,
from the point of view of interpretability it is perceived as a black box. It is heavy in terms of
CPU time concerning the training stage and may become cumbersome for highly dimensioned
input spaces. That is why, it is advisable to be used in conjunction with other methods that
firstly reduce the input space, like decision/regression trees or dendrograms (hybrid
approaches). The criterion used for training is the minimum squared error without weight-
decay term.

4.8.2 Selections to make before starting

Define the problem. Choose
JRDO�UHJUHVVLRQ
� or�
JRDO�FODVVLILFDWLRQ
�
and choose
FDQGLGDWH�DWWULEXWHV
��$dmissible input attribute type is “ordonee”.
Note that the model does not handle linear-combination or qualitative attribute values, they
being excluded from the
FDQGLGDWH�DWWULEXWHV
 list prior to model building.
Temporal attribute values are replaced by a list of scalar ones.�
Select data. Choose
OHDUQLQJ�VHW
 and
WHVW�VHW
 (if you also want to test the
model).
Set method parameters. Method parameters are
RXWSXW�DFWLYDWLRQ�IXQFWLRQ�
QDPH
,
KLGGHQ�OD\HUV
��
POS�WHVW�VHW�PRQLWRULQJ
��
POS�F\FOH�
QXPEHU
�

output-activation-function-name

- Indicates the type of the activation function of the output layer (note that at hidden
layers the activation function is always tanh)

- Possible choices: “identite” (linear function), “tanh” (hyperbolic tangent), and
“echelon” (Heaviside threshold function)

- Default type: “identite”
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�121B/,1($5B5(*5(66,21, command :287387B/$<(5B$&7,9$7,21�

hidden-layers

- Determines the structure of the MLP
- Default structure: one hidden layer with 10 neurons
- Multiple hidden layers are supported

 62

- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command :6(7B0/3B+,''(1B6758&785(

mlp-test-set-monitoring

- Takes values t (if the
WHVW�VHW
 is not empty, monitoring of the test set error
during training) or nil (monitoring of the learning set error during training)

- Default value nil
- If the toggle is on, the program returns the MLP approximation found during training

which obtained the least error on the test set, otherwise it returns the last MLP obtained
during training

- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command :021,725B7(67B6(7�

mlp-cycle-number

- Defines the maximum number of iterations for MLP training; the training stops either
when it converged (from the point of view of the mean squared error function) or when
a given number of cycles have been scrolled out

- Takes integer values
- Default value 500
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�121B/,1($5B5(*5(66,21, command :0/3B67233,1*B3$56�

Other parameters settled also by the command :0/3B67233,1*B3$56, used to decide when
to stop the iterative gradient descent, are: the minimum error (default value 1.0e-10) and the
minimum gradient size (default value 1.0e-10).

4.8.3 Apply the method

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command �75$,1B0/3B5(*5(66,21 or
�75$,1B0/3B&/$66,),&$7,21�

Effects of the method employment. If the MLP name is xx and the
JRDO�UHJUHVVLRQ

is yy:

- The new functional attribute created by default once the model is built has the name xx
(by default the name is MLP<a>--yy if the model has two hidden layers, <a>
neurons on the first layer and neurons on the second layer)

- The created file containing information about the training process has the name xx.log
and is located in the current directory

- The new MLP xx is pushed in the global variable
POS�VWUXFWXUHV

- The global variable
FXUUHQW�POS
 keeps the last built (classification or

regression) MLP model
- A postscript file named xx.ps is generated in the local directory and automatically

displayed, representing the MLP structure for one object (by default for the first object
in the current
OHDUQLQJ�VHW
).

 63

Interesting displayed information while training the MLP: status variables, training stage
with mean squared errors on LS and TS (if test set error monitoring is on) for every cycle,
CPU time.

4.8.4 Test the model

Regression

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21

Before testing, the user is prompted for a numerical attribute name xx (for example the new
created MLP model), to be compared with the
JRDO�UHJUHVVLRQ
 yy. After testing, a
scatter-plot is automatically displayed, (xx, yy) on TS (see Figure 36). The corresponding
created postscript file is named linear_regtst-tem.ps and is located in the current directory.

Interesting displayed information while describing the results: statistics (mean, max, min,
standard deviation, standard error) on: errors and absolute errors; CPU time.

Classification

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command
�7(67B&/$66,),&$7,21B$3352;,0$7,21

Before testing, the user is prompted for a symbolic attribute name xx (for example the new
created MLP model), to be compared with the
JRDO�FODVVLILFDWLRQ
 yy.

Interesting displayed information while describing the results: non-detection costs (values
between 0 and 1), confusion matrix on TS (number of objects correctly classified and
misclassified), classification error rate on TS, CPU time.

After testing, the global variable
FODVVLILFDWLRQ�HUURUV
 contains all the
misclassified objects.

4.8.5 Results visualization / interpretation

Display MLP. ATDIDT 2.2 command �'5$:B0/3 prompts for an object name and displays
the current MLP for this object. The command generates a postscript file (named xx.ps for a
MLP called xx) located in the current directory that may be visualized at any time using the
GhostView tool. Note that this file is generated and displayed automatically just after each
new MLP model training / retraining (but only for the first object in
OHDUQLQJ�VHW
��

 64

Figure 32 draws a regression MLP model for a
JRDO�UHJUHVVLRQ
 called “cct-sbs” and
Figure 33 draws a classification MLP model for a
JRDO�FODVVLILFDWLRQ
 called
“security” (see the attribute definitions in database declaration file example of appendix), both
MLPs built on a learning set of 1000 objects and tested on a independent test set of 1000
objects. The networks have as many neurons in the input layer as inputs in both cases, one
output neuron in regression and as many output neurons as classes in classification. The
numbers marked in each neuron in red colors are valid only for the object the network is
applied to, all the others are valid for any object. The lowest number in each neuron represents
a measure of the neuron’s importance in the model.

Display training curves. ATDIDT 2.2 command �6+2:B75$,1,1*B&859(6 prompts for
a MLP name and displays training curves on learning and test sets. The test set error will
always be zero if the test set monitoring is not enabled. Figure 34 and Figure 35 give the
curves for training the regression and classification models of Figure 32 and Figure 33
respectively.

HTML format. ATDIDT 2.2 commands �6$9(B0/3 and �,163(&7B0/3 give another
way of visualizing results, in html format. For a MLP model named xx, the first command
creates a new directory called /Sav/xx/ in the current directory, and puts 5 files concerning the
MLP in this new directory. The second command opens a Welcome.html file that displays
general information about the model together with hyperlinks for all the created files:

- xx-train.lst - displays information that describe the training processes
- xx.dump – outputs the internal lisp structure of the MLP model xx
- xx.lsp – contains the lisp function of the new created functional attribute
- xx-sp.pdf – is the MLP structure display.

Explicit function. Example of nonlinear regression and classification functions deducted from
MLP model of Figure 32 and Figure 33 are given in appendix.

Other ideas for graphics. If the MLP name is xx, the
JRDO�UHJUHVVLRQ
 is yy and ww
is one input attribute:

- Conditional scatter-plot (xx, yy) on LS (see Figure 38) or TS
- Conditional histogram for xx on LS (see Figure 39), TS
- Settle LS as the objects misclassified by the tree �
FODVVLILFDWLRQ�HUURUV
�

and apply a conditional histogram for xx
- Define a functional attribute zz as the error / absolute error / squared error of MLP and

visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS
- Scatter-plot (xx, ww) on LS (see Figure 37) or TS.

4.8.6 Features extraction

Definition. Feature extraction methods aim at defining a set of feature (attribute)
combinations. The objective is to transform the initial attributes in order to concentrate the
maximum amount of information in a minimum number of transformed attributes.

 65

Features extraction by MLP. A MLP is build having the input attributes as MLP inputs and
equally as MLP outputs. The hidden neuron activations give thus the compressed set of new
functional attributes that concentrate the information of all input attributes. The approach
becomes really useful when the number of input attributes is more less than the number of
neurons in the hidden layers.

Step 1. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command �(;75$&7B)($785(6

Effects. If the MLP name is xx:

- The new functional attribute created by default once the model is built has the name xx
(by default the name is MLP<a>--compress if the model has two hidden layers,
<a> neurons on the first layer and neurons on the second layer)

- The created file containing information about the training process has the name xx.log
and is located in the current directory

- The new MLP xx is pushed in the global variable
POS�VWUXFWXUHV

- The global variable
FXUUHQW�POS
 keeps the last built MLP model
- A postscript file named xx.ps is generated in the local directory and automatically

displayed, representing the MLP structure for one object (by default for the first object
in the current
OHDUQLQJ�VHW
).

Interesting displayed information while training the MLP: status variables, training stage
with mean squared errors on LS and TS (if test set error monitoring is on) for every cycle,
CPU time.

The commands for testing cannot be employed here. All the others commands related to
neural networks may be useful.

Step 2. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�121B/,1($5B5(*5(66,21, command :*(7B+,''(1B1(8521B$&7,9$7,216

Effects. The command creates <i> new functional attributes, where i is the number of the
hidden neurons of the current MLP (stored in the variable
FXUUHQW�POS
�� If the MLP
name is xx and the (regression or classification) goal is yy, the new attributes have the name
MLP<a>--yy-tanh<i> if the model has two hidden layers, <a> neurons on the first layer
and neurons on the second layer.

Example of the function for such functional attribute (of neural network of Figure 33):

Command: (print (get ’mlp10-security-tanh8 ’fonction))

Effect: (COERCE (MULTI-OR (LET ((I1
 (+ (* 0.006016299369492383d0 (PU OBJET))
 -6.036782344305822d0))
 (I2
 (+ (* 0.0020852237395437285d0 (QU OBJET))
 -0.3143199907124104d0)))
 (TANH (+ -3.47635289612401d0

 66

 (* -0.4666199692369496d0 I1)
 (* -2.830416533641814d0 I2))))
 ’0.0)
 ’FLOAT)

4.8.7 Other possible actions
�
�5(75$,1B0/3 – retrains
FXUUHQW�POS
 with the currently selected
OHDUQLQJ�
VHW
 and
WHVW�VHW
� It produces a new attribute, symbolic or numerical depending on
the
FXUUHQW�POS
 type, and a log file with the training information (or append this
information to an already existent log file). The training process is restarted from where it
stopped not from the scratch.
�
:&+226(B0/3 – chooses a MLP model; the command may be applied at any time, once a
(classification or regression) MLP model is stored in the variable
FXUUHQW�POS
�

 67

Figure 32

 68

Figure 33

 69

Figure 34

Figure 35

 70

Figure 36

Figure 37

 71

Figure 38

Figure 39

 72

4.9 K-Nearest Neighbors

4.9.1 What is it?

Definition. K-Nearest Neighbors technique is a statistical tool that consists in matching an
unseen situation (object) with similar situations (objects) present in the database called nearest
neighbors. The unseen object inherits all these nearest neighbors’ characteristics, as the value
of the numerical output attribute (in regression problems) or the class (in classification
problems), also the distance to these nearest neighbors, and generally, any type of information
attached to the nearest neighbors. The model supports only numerical attributes and symbolic
or numerical output depending on the problem.

Method characteristics. The method is very simple and similar to human reasoning (recalling
similar situations seen in the past) thus interpretable. It is less accurate than a MLP and more
accurate that regression trees. It is a very slow method. The main disadvantage is that it
requires a large number of learning objects. In particular, for high dimensional attribute spaces
the method may require prohibitively large samples. Thus, to be effective, a prior feature
selection may reduce the input spac (hybrid approaches). For a symbolic output the method
uses majority voting among the nearest neighbors, and for numerical output interpolation by
the inverse of the squared distance.

4.9.2 Selections to make before starting

Define the problem.

- Choose
FDQGLGDWH� DWWULEXWHV
�� $dmissible input attribute type is
“ordonee”. Note that the model does not handle linear-combination or qualitative
attribute values, they being excluded from the
FDQGLGDWH�DWWULEXWHV
 list
prior to attributes’ normalization. Temporal attribute values are replaced by a list of
scalar ones.

- Choose
NQQ�RXWSXW
� i.e. the output for the KNN model, a symbolic or
numerical attribute. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�6,0,/$5,7<, command :6(7B.11B287387�

Select data.

- Choose
NQQ�UHIHUHQFH�VHW
, i.e. the set of objects used as learning set. The
selection is done exactly as a *OHDUQLQJ-VHW* selection. ATDIDT 2.2 command:
menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command
:6(7B.11B5()(5(1&(B6(7�

- Choose
WHVW�VHW
 (if you also want to test the model).

Transform data. Normalize the attributes from
FDQGLGDWH�DWWULEXWHV
 list, by
computing their standard-deviation in the
NQQ�UHIHUHQFH�VHW
. A list called
NQQ�
DWWULEXWHV
 is built used to define the Euclidian distance. ATDIDT 2.2 command: menu

 73

:$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command
:1250$/,=(B.11B$775,%87(6�

Set method parameters. Method parameter is
NQQ�N
�

knn-k

- Indicates the number of neighbors effectively used
- Default value 1
- Maximum value 15 (NQQ�N�PD[)
- May be settled manually by a command, or automatically by a cross-validation method
- Manually setting by ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu

�6,0,/$5,7<, command :6(7B.11B.
- Automatically setting by ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*,

menu �6,0,/$5,7<, command :.11B&5266�9$/,'$7,21B7(67. The
command applies leave-one-out method to
NQQ�UHIHUHQFH�VHW
, for
NQQ�N

increasing from 1 to NQQ�N�PD[and automatically sets
NQQ�N
 to the value which
yielded the best accuracy. Note that the algorithm is quadratic computationally in the
size of the
NQQ�UHIHUHQFH�VHW
� that is why this command is very slow��The
command displays for every value of K: in the case of numerical output, statistics
(mean, max, min, standard deviation, standard error) on errors and absolute errors,
total CPU time, and in the case of symbolic output, confusion matrix, test set error
rates and total CPU time.

4.9.3 Apply the method

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�6,0,/$5,7<, command �),1'B1($5(67B1(,*+%256

Effects of the method employment.

- The command prompts for an object-name and searches the 15 nearest neighbors of
object object-name, selecting in the variable
OHDUQLQJ�VHW
 the most similar

NQQ�N
 objects together with the considered object. These objects may be inspected
afterwards by the ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�6,0,/$5,7<, command :9,(:B2%-(&76�or by other graphics.

- If the
NQQ�RXWSXW
 is yy, the new functional attribute created by default once the
KNN model is built has the name knn-approx-of-yy (a numerical value if yy is
numerical, otherwise a class).

- No log file generated.

4.9.4 Test the model

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�6,0,/$5,7<, command �.11B7(67B6(7B7(67�

 74

The command compares
.11�RXWSXW
 yy with the output approximated by the KNN
model, knn-approx-of-yy. It displays in the case of numerical output, statistics (mean, max,
min, standard deviation, standard error) on errors and absolute errors, total CPU time and in
the case of symbolic output, confusion matrix, test set error rate andtotal CPU time.

4.9.5 Results visualization / interpretation

Visualizing the *knn-k* nearest neighbors of an object. ATDIDT 2.2 command
:9,(:B2%-(&76� displays information and graphics for every of the
NQQ�N
 nearest
neighbors, objects selected in
OHDUQLQJ�VHW
 once built the model.

Other ideas for graphics. If the
NQQ�RXWSXW
 is yy and xx is one input attribute:

- Conditional/normal scatter-plot (knn-approx-of-yy, yy) on LS �settled as
NQQ�
UHIHUHQFH�VHW
, see Figure 40 and Figure 41), TS, or
NQQ�N
 nearest
neighbors

- Conditional/normal histogram for knn-approx-of-yy on LS, TS, or
NQQ�N
 nearest
neighbors

- Scatter-plot (knn-approx-of-yy, xx) on LS (see Figure 42), TS, or
NQQ�N
 nearest
neighbors

Statistics. For a
NQQ�RXWSXW
 yy, the ATDIDT 2.2 command :KNN_67$7,67,&6�
defines a new functional attribute called error-of-knn-yy reflecting the absolute error between
KNN model output knn-approx-of-yy and the reference output yy. The command also displays
scatter-plots for every nearest neighbor of this error-of-knn-yy attribute, in terms of the
distance to the neighbor (see Figure 43). The corresponding generated postscript file is named
knn_stats-tem.ps and is located in the current directory.

4.9.6 Other possible actions
�
�+<%5,'B'7B.11 – allows to inherit in a single step all the parameters
NQQ�
UHIHUHQFH�VHW
��
NQQ�DWWULEXWHV
 and
NQQ�RXWSXW
 from a previously built
decision or regression tree (the
FXUUHQW�GW
�� Thus, the next KNN model built will
consider only the attributes selected by the tree. The command is valuable especially for high
dimensional input spaces.

 75

Figure 40

Figure 41

 76

Figure 42

 77

Figure 43

4.10 K-Means

4.10.1 What is it?

Definition. K-Means technique is a statistical tool useful for clustering a large number of
objects into a small number of groups based on numerical input attributes. It is not oriented
towards a particular prediction task. It tries to find by itself, the existing relationships among
objects characterized by a set of input attributes. The procedure determines a set of K clusters,
where K is a priori fixed by the user.

Method characteristics. Like any unsupervised learning method, it becomes really useful in
the context of large-scale databases, with many objects and many attributes. It is a slow
method. Scatter-plots are useful tools in order to visualize the clusters.

4.10.2 Selections to make before starting

Define the problem. Choose
FDQGLGDWH� DWWULEXWHV
�� $dmissible input attribute
type is “ordonee”. Note that the model does not handle linear-combination or qualitative
attribute values, they being excluded from the
FDQGLGDWH�DWWULEXWHV
 list prior to
attributes’ normalization. Temporal attribute values are replaced by a list of scalar ones.

Select data. Choose
NQQ�UHIHUHQFH�VHW
, i.e. the set of objects used as learning set.
The selection is done exactly as a *learning-set* selection. ATDIDT 2.2 command: menu
:$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command
:6(7B.11B5()(5(1&(B6(7�

Transform data. Normalize the attributes from
FDQGLGDWH�DWWULEXWHV
 list, by
computing their standard-deviation in the
NQQ�UHIHUHQFH�VHW
. A list called
NQQ�
DWWULEXWHV
 is built used to define the Euclidian distance. ATDIDT 2.2 command: menu
:$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command
:1250$/,=(B.11B$775,%87(6�

Set method parameters. Method parameter is
N�PHDQV�N
�

k-means-k

- Indicates the number of clusters
- Default value 5
- Takes values between 0 and 50
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<,

command :6(7B.0($16B.

4.10.3 Apply the method

 79

Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu
�6,0,/$5,7<, command �581B.0($16

Effects of the method employment.

- It creates
N�PHDQV�N
� functional attributes called distance-to-cluster-<i>, that
give for every object, the distance of the object to the cluster <i>

- It creates the functional attribute nearest-cluster that gives for every object the name of
the nearest cluster to the object: cluster-<i>

- It creates the functional attribute nearest-cluster-yy that gives for every object the
output yy (numerical or symbolic) approximated by the nearest cluster to the object

- Creates a global variable called
FOXVWHU�FHQWHUV
 containing statistics on LS
for every created cluster of objects on input attributes

- It generates a lisp file cluster-saves.lsp that defines each cluster as a list of objects
- No log file generated.

Interesting displayed information while clustering: status variables, statistics for every
created cluster of objects on input attributes.

4.10.4 Results visualization / interpretation

Visualizing the clusters. ATDIDT 2.2 command :'5$:B&/867(56 generates automatically
a scatter-plot of the clusters taking the
FDQGLGDWH�DWWULEXWHV
 two-by-two, thus
resulting 2

)1(−nn graphics if n is the number of attributes (see Figure 44).

 80

Figure 44

4.11 Comparative table

All the presented data mining methods have been compared from the point of view of test set
errors and CPU times. Table 5 gives an idea of the comparison. The models were built in the
following conditions:

o Database – OMIB 10.000 objects
o
JRDO�UHJUHVVLRQ
 - cct-sbs
o
JRDO�FODVVLILFDWLRQ
 - security
o
OHDUQLQJ�VHW
 - (from 5001 6000)
o
WHVW�VHW
 - (last 1000)
o
FDQGLGDWH�DWWULEXWHV
 - (pu, qu)
o All the models parameters leaved as by default.

Table 5

DM
Method

DM
learning task

Error:
MAE or Pe(%)

CPU time
(seconds)

MLP Classification 11.1% 13.2
KNN Classification 11.3% 1.4

Decision Tree Classification 12.6% 2.0
MLP Regression 0.026495 3.2

Regression Tree Boosting Regression 0.026908 1.1
Linear Regression Regression 0.027909 0.3

KNN Regression 0.028132 1.4
Regression Tree Bagging Regression 0.030672 4.9

Regression Tree Regression 0.031697 1.5
Linear Hinges Model Regression 0.041598 0.4

At a graphical perception, you may compare the DM methods estimators for the same task by
comparing the following graphics:
- Figure 18, Figure 38, Figure 40;
- Figure 19, Figure 39;
- Figure 22, Figure 24, Figure 26, Figure 28, Figure 30, Figure 36, Figure 41;
- Figure 23, Figure 25, Figure 27, Figure 29, Figure 31, Figure 37, Figure 42.

5 Operational, practical and useful information

5.1 DM tips

½ It is advisable the user does not include into the input attributes list
FDQGLGDWH�

DWWULEXWHV
 the output attribute
JRDO�UHJUHVVLRQ
 or
JRDO�
FODVVLILFDWLRQ
 in the case of DM techniques for regression and classification
tasks.

½ Make sure that no attribute is repeating in the
FDQGLGDWH�DWWULEXWHV
� list,
case in which any model based on this global variable would do the job needlessly for
this attribute more than once.

5.2 Ideas for hybrid methods

In the case of high dimensional input spaces, hybrid methods allow one to significantly reduce
the time required to build models, and/or better tailor the model complexity to the problem at
hand avoiding structure optimization task, and/or improve the model accuracy with respect to
the “pure” methods.

DT+MLP or RT+MLP. First settle as
FDQGLGDWH�DWWULEXWHV
 the attributes selected
by a tree and then train a MLP with this inputs. ATDIDT 2.2 commands:

- build a DT or a RT
- menu :$8720$7,&B/($51,1*, menu �75((B,1'8&7,21, command

�6(/(&7�'7�7(67�$776
- menu �121B/,1($5B5(*5(66,21, command �75$,1B0/3B5(*5(66,21

or �75$,1B0/3B&/$66,),&$7,21 �

Dendrogram+MLP. First draw a dendrogram and select the most correlated attributes with
the output one and then build a MLP on these attributes. ATDIDT 2.2 commands:

- menu �'7B%$6(, menu �*5$3+,&6, command �'(1'52*5$06
- select manually the
FDQGLGDWH�DWWULEXWHV
 list based on dendrogram

results
- menu �121B/,1($5B5(*5(66,21, command �75$,1B0/3B5(*5(66,21

or �75$,1B0/3B&/$66,),&$7,21

DT+KNN or RT+KNN. ATDIDT 2.2 command:

- build a DT or a RT
- menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command

�+<%5,'B'7B.11
- menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command

�),1'B1($5(67B1(,*+%256

Dendrogram+KNN. First draw a dendrogram and select the most correlated attributes with
the output one and then build a KNN model on these attributes. ATDIDT 2.2 commands:

 83

- menu �'7B%$6(, menu �*5$3+,&6, command �'(1'52*5$06
- select manually the
FDQGLGDWH�DWWULEXWHV
 list based on dendrogram

results
- menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command

�),1'B1($5(67B1(,*+%256

5.3 Useful functions/commands
�
ATDIDT 2.2. In order to activate a command you may click with the left mouse button on the
command and then enter, or you may click on the middle button of the mouse once positioned
on the command. By clicking on the right button of the mouse you get some help concerning
the command.
�

LQIHULRU�OLVS
 window is the space provided for interactive use of ACL lisp. Any lisp
command should be introduced here.
The lisp commands are not case-sensitive.
�
�DWWULEXWH�QDPH�REMHFW�QDPH� – gives the value of attribute DWWULEXWH�QDPH
for object REMHFW�QDPH�
�GHVFULEH�¶DWWULEXWH�QDPH� – provides information about attribute DWWULEXWH�
QDPH� (type, values, file in which is defined, file in which is stored, lisp function if it is a
functional attribute);
�GHVFULEH� ¶IXQFWLRQ�QDPH� – provides information about ATDIDT function
IXQFWLRQ�QDPH� The same effect has the command�&75/�&�&75/�'�which prompts
for the function name;
�GHVFULEH� ¶REMHFW� – provides information about object REMHFW� (all its attribute
values);
0�" – being positioned on a symbol, returns information about the symbol; it has identical
effect as GHVFULEH�
�DSURSRV�¶VWULQJ� – prints out all the function / attribute / global variable names that
contain the string of characters VWULQJ��
0�[� GHVFULEH�IXQFWLRQ� ²� prompts for a lisp function name and returns short
documentation about it. The same effect has the command�&75/�+�)��
)��I�²�prompts for a lisp function name and displays a short documentation about it;
&75/�+�&75/�)�²�prompts for an emacs command and displays a short documentation
about it;
0�� - finds possible ends for the current string in all the emacs buffers.
&75/�&�&75/�.�²�prompts for an file name and compiles the file;
&75/�&�&75/�/�²�prompts for an file name and loads the file;
? – tape this at any command prompt in *inferior-lisp* buffer or in the *mini-buffer* in order
to get some help about the possible choices;

Interaction with
LQIHULRU�OLVS
 buffer. Once an error occurred in the lisp
environment, the command line changes from '%�QDPH! (e.g. 20,%!� to >QXPEHU@�'%�
QDPH!� If you want more details on the error (where it has been encountered and its kind)
you may tape �]RRP or �GQ� In order to exit this debug mode, you may tape �SRS�

 84

QXPEHU or �UHVHW����T�in older versions of TUTORIAL), and for stepping up one level
�SRS.
To interrupt a current process / command you may type &75/�&�&75/�&��

Create a clone. If the user wishes to interrupt the data mining process, he can save the whole
context in a “clone” (an executable image containing the software modules, the initial data and
the results produced in the meanwhile), and restart the clone later on.

Status variables. The software environment maintains a list of a certain number of global
variables, called status variables, which stores the main information concerning current
selections (of attributes and objects) and methods parameters. They may be consulted at any
time to get the information about the present state of the system settings, by the ATDIDT 2.2
command: menu :'7B%$6(, menu �$775,%87(6B6(/(&7,21, command
�67$786B9$5,$%/(6��

ATDIDT 2.2 command: menu :'7B%$6(, menu �$775,%87(6B6(/(&7,21,
command�&/($5B*&/�%8))(5 clears the text in
LQIHULRU�OLVS
 buffer.

6 User interface

To be completed.

7 References

Marée R. Fonctionnalités et architecture. University of Liege, Stochastic Methods
Department, July 2001.

Marée R. ATDIDT 3. Description et évaluation du noyau de gestion de données. University of
Liege, Stochastic Methods Department, September 2001.

Olaru C. Geurts P. and Wehenkel L. Data Mining Tools and Applications in Power System
Engineering. In Proceedings of PSCC, Trondheim, Norway, Volume 1, pages 324-330, June 28 - July
2nd, 1999.

Olaru C. and Wehenkel L. Data Mining. IEEE Computer Applications in Power, Volume 12,
Number 3, pages 19-25, July 1999.

Wehenkel L. Automatic learning techniques in power systems. Boston, Kluwer Academic,
1998.
 Wehenkel L. and Druet Ch. ATDIDT User’s Guide (version 2.x). University of Liege,
Stochastic Methods Department, 2000.
 Wehenkel L. GTDIDT (Version 1.0). Organisation du logiciel et documentation des structures
de données. University of Liege, Electrical Circuits Department, January 1997.

8 Appendix

8.1 Example of Database

8.1.1 Data file

Long-way database load – version 1

876.029 -193.66 0.2358
1110.88 -423.19 0.2104
980.132 79.7223 0.2241
974.139 217.073 0.1577
…
1241.88 -442.25 0.0718

Long-way database load – version 2 (it contains also object numbers)

1 876.029 -193.66 0.2358
2 1110.88 -423.19 0.2104
3 980.132 79.7223 0.2241
4 974.139 217.073 0.1577
…
5000 1241.88 -442.25 0.0718

Short-way database load – version 1

;--++ This is javadb type file
;;; Attribute values of db OMIB2
omib2
pu numerical qu numerical cct-sbs numerical
876.029 -193.66 0.2358
1110.88 -423.19 0.2104
980.132 79.7223 0.2241
974.139 217.073 0.1577
…
1241.88 -442.25 0.0718

Short-way database load – version 2 (it contains also object names)

;--++ This is javadb type file
omib3
object name pu numerical qu numerical cct-sbs numerical
OP1 876.029 -193.66 0.2358
OP2 1110.88 -423.19 0.2104
OP3 980.132 79.7223 0.2241
OP4 974.139 217.073 0.1577
…
OP5000 1241.88 -442.25 0.0718

8.1.2 Database declaration file – long-way database load

;;; Database definition : 5000 objects, 4 explicit attributes, 4 functional attributes

(DECLARE-BD
 omib "Example of database declaration"
 :OBJETS (integer 1 5000) ;; or in version 2 :OBJETS (prefixes “OP” 1 5000)
 :RE-INITIALISER nil
 :ATTRIBUTS-EXPLICITES
 ((pu "Generated active power (MW)"
 :valeurs (real 700.0 1300.0) :par-defaut 1000.0 :type ordonne)
 (qu "Generated reactive power (MVar)"
 :valeurs (real -665.0 990.0) :par-defaut 0.0 :type ordonne)
 (cct-sbs "Critical Clearing Time (msec)"
 :valeurs (real 0.0 2.0) :par-defaut 0.0 :type ordonne))
 :ATTRIBUTS-EXPLICITES-TEMPORELS
 ((delta "Rotor angle of machine (fault cleared at t=155ms)"
 :time (0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 0.66 0.72 0.78 0.84 0.90 0.96 1.02 1.08
1.14 1.20 1.26 1.32 1.38 1.44 1.50 1.56 1.62 1.68 1.74 1.80 1.86 1.92 1.98 2.04 2.10 2.16 2.22 2.28 2.34 2.40
2.46 2.52 2.58 2.64 2.70 2.76 2.82 2.88 2.94 3.00)
 :valeurs (real) :type (ordonne time)))
 :ATTRIBUTS-FONCTIONS
 ((security "Security class, function of cct-sbs and *tau*"
 :valeurs (member insecure secure) :par-defaut insecure :type qualitatif-quinlan
 :fonction (if (<= (cct-sbs objet) *tau*) 'insecure 'secure))
 (Pu+b*Qu "Linear combination between Pu and Qu"
 :valeurs (+ pu (* alfa qu)) :type linear-combination
 :fonction (+ (pu objet) (* *ponderation* (qu objet))))
 (delta-after-fault "Rotor angle after fault clearing at t=155ms"
 :valeurs (real 0.0 150.0) :type ordonne
 :fonction (delta objet 0.155))
 (cct-disk "Discretized CCT, function of cct-sbs and *tau* "
 :valeurs (member <80 80...200 200…320 >320)
 :par-defaut insecure :type ordonne
 :fonction (if (<= (cct-sbs objet) .08) '<80
 (if (<= (cct-sbs objet) .20) '80...200
 (if (<= (cct-sbs objet) .32) '200...320 '>320)))))
 :CHARGEMENT
 (((pu qu cct-sbs)
 :dans (vms-file "omib-data-file.dat")
 :format (objet pu qu cct-sbs))
 ((delta) :suffix delta-file-name))))

;;; Load attributes instruction

(load-attributes
 omib-attribute-values "This set contains all objects for which the attributes have been loaded"
 :bd omib
 :objets t
 :attributs (pu qu cct-sbs delta))

 88

8.2 Example of non-linear function detected by a MLP model

8.2.1 Nonlinear regression (MLP of Figure 32)

;;; Lisp code for MLP10-CCT-SBS

(defun MLP10-CCT-SBS (objet)
 (LET ((I1
 (+ (* 0.006016299369492383d0 (PU OBJET))
 -6.036782344305822d0))
 (I2
 (+ (* 0.0020852237395437285d0 (QU OBJET))
 -0.3143199907124104d0)))
 (LET ((I1
 (TANH (+ -1.7405822173950702d0 (* -0.6698848359891705d0 I1)
 (* 1.1768705781157776d0 I2))))
 (I2
 (TANH (+ -1.297346698294738d0 (* 0.26554690500398404d0 I1)
 (* -0.5383596578361837d0 I2))))
 (I3
 (TANH (+ -3.1058438580764975d0 (* -1.376040755368317d0 I1)
 (* -0.07276481055133555d0 I2))))
 (I4
 (TANH (+ -0.4052018775059025d0 (* 0.757953980013272d0 I1)
 (* -1.0086983106073752d0 I2))))
 (I5
 (TANH (+ 0.31903477877975633d0 (* 0.08503960764031138d0 I1)
 (* 0.13047441296479204d0 I2))))
 (I6
 (TANH (+ -3.394615949290037d0 (* -0.7680560439363036d0 I1)
 (* 2.4015419701771585d0 I2))))
 (I7
 (TANH (+ -0.5154813092875247d0 (* -2.2989156249329032d0 I1)
 (* -1.1589011083475231d0 I2))))
 (I8
 (TANH (+ 1.4392749802737381d0 (* -0.64627781470995d0 I1)
 (* -0.5382878434723491d0 I2))))
 (I9
 (TANH (+ 0.19368775267680255d0 (* 0.30073036955597904d0 I1)
 (* -0.4644350742563427d0 I2))))
 (I10
 (TANH (+ -0.04894697702940679d0
 (* -0.24347791732672294d0 I1)
 (* 0.872288279479176d0 I2)))))
 (LIST (+ (* (IDENTITE (+ 0.3171044977566709d0
 (* 1.7222325338747593d0 I1)
 (* -1.3060720016456633d0 I2)
 (* 1.244677273903397d0 I3)
 (* -0.8920217843256817d0 I4)
 (* 0.42029165881581876d0 I5)
 (* -0.7071933855383663d0 I6)
 (* 0.1725924563090752d0 I7)
 (* 0.2716281796607567d0 I8)
 (* -0.03838435975543186d0 I9)
 (* -0.9374318275089645d0 I10)))

 89

 0.08803032940484923d0)
 0.2061083002127707d0)))))

;;; value specifications

(setf (get ’MLP10-CCT-SBS ’valeurs) ’(REAL
 0.04966100316211691d0
 0.3817045034352309d0)
 (get ’MLP10-CCT-SBS ’type) ’ORDONNE)

8.2.2 Nonlinear classification (MLP of Figure 33)

;;; Lisp code for MLP10-SECURITY

(defun MLP10-SECURITY (objet)
 (LET ((I1
 (+ (* 0.006016299369492383d0 (PU OBJET))
 -6.036782344305822d0))
 (I2
 (+ (* 0.0020852237395437285d0 (QU OBJET))
 -0.3143199907124104d0)))
 (LET ((I1
 (TANH (+ -0.7200878338195826d0 (* 1.8190459531144412d0 I1)
 (* -0.7651537194385958d0 I2))))
 (I2
 (TANH (+ 3.543954299195746d0 (* 0.8269819057655328d0 I1)
 (* 0.7975512202163859d0 I2))))
 (I3
 (TANH (+ -1.9847264842376473d0 (* 0.5043015904752978d0 I1)
 (* -0.15990958684410542d0 I2))))
 (I4
 (TANH (+ 3.608415340512682d0 (* -2.8179427957549885d0 I1)
 (* 1.3014296372121061d0 I2))))
 (I5
 (TANH (+ 1.129618129119666d0 (* 0.10406107510523722d0 I1)
 (* -0.21223032992079402d0 I2))))
 (I6
 (TANH (+ -3.517121724150941d0 (* 5.2813596023373135d0 I1)
 (* -3.2944314432399504d0 I2))))
 (I7
 (TANH (+ -1.4581577308766775d0 (* 1.2875485865854581d0 I1)
 (* -0.5944495661898753d0 I2))))
 (I8
 (TANH (+ -3.47635289612401d0 (* -0.4666199692369496d0 I1)
 (* -2.830416533641814d0 I2))))
 (I9
 (TANH (+ -5.204689741982704d0 (* -0.6137427858633842d0 I1)
 (* -4.700484361704271d0 I2))))
 (I10
 (TANH (+ 0.19639597808687317d0
 (* -0.048111359271076515d0 I1)
 (* -0.32793412065387934d0 I2)))))
 (LIST (+ (* (IDENTITE (+ 0.6431633488498253d0
 (* 0.6949643753189355d0 I1)

 90

 (* 1.667244608169718d0 I2)
 (* 1.6278343735764025d0 I3)
 (* -0.8915261525469574d0 I4)
 (* -0.3205421670441548d0 I5)
 (* 0.4496034707211712d0 I6)
 (* -1.2034472814126476d0 I7)
 (* 1.0873295113607544d0 I8)
 (* -0.7706073427691704d0 I9)
 (* 0.12134685684972324d0 I10)))
 0.4624932431938912d0)
 0.31d0)
 (+ (* (IDENTITE (+ -0.6257948278927189d0
 (* -0.8252517554826746d0 I1)
 (* -1.861877959473697d0 I2)
 (* -1.6636560556576392d0 I3)
 (* 1.1068962397653166d0 I4)
 (* 0.5682172717786536d0 I5)
 (* -0.4711678098203339d0 I6)
 (* 1.6176761632614354d0 I7)
 (* -1.070087917855041d0 I8)
 (* 0.7436995993959763d0 I9)
 (* -0.15852179717406878d0 I10)))
 0.4624932431938912d0)
 0.69d0)))))

;;; value specifications

(setf (get ’MLP10-SECURITY ’valeurs) ’(MEMBER SECURE INSECURE)
 (get ’MLP10-SECURITY ’type) ’ORDONNE)

