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About this document 
 
 
This document is confidential. 
 
This guide intents to be a useful tool for those persons who are: 

• Beginners in the Data Mining field and/or beginner users of ATDIDT software; 
• Current users of ATDIDT of previous versions of the tool; 
• Individuals interested in a particular method of the software; 
• Peoples (organisms) interested in a software evaluation; 
• People interested in trying out various data mining methods in the context of a demo 

loaded-in database (Tutorial version of the software). 
 
The document covers all ATDIDT old and new functionalities, with an emphasis on 
operational aspects. For each data mining method practical aspects are distinguished: the 
proper sequence of actions to be done, parameters to choose, which are the “seen” and 
“unseen” effects of the method use, how to interpret the graphics/results, all completed by 
practical counsels. Some adjacent Lisp and Emacs tips are also included. Where possible, 
general features of all methods are grouped together, but still one may find redundant 
information in this guide, mainly for reasons of completeness at method level. The user 
interested in a certain Data Mining method may directly read the corresponding chapter, 
hyperlinks helping him to find in other chapters subsequent information if necessary. 
 
The guide will be soon updated with a section dedicated to the user interface. 
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1 Introduction to the field 

1.1 Data Mining 

1.1.1 Definitions and objectives 
 

‘Data Mining’ (DM) is a folkloric denomination of a complex activity, which aims at 
extracting synthesized and previously unknown information from large databases. It denotes 
also a multidisciplinary field of research and development of algorithms and software 
environments to support this activity in the context of real life problems, where often, huge 
amounts of data are available for mining. There is a lot of publicity in this field and also 
different ways to see the things. Hence, depending on the viewpoints, DM is sometimes 
considered as just a step in a broader overall process called Knowledge Discovery in 
Databases (KDD), or as a synonym of the latter as we do in this guide. Thus, according to this 
less purist definition DM software includes tools of automatic learning from data, such as 
machine learning and artificial neural networks, plus the traditional approaches to data 
analysis such as query-and-reporting, on-line analytical processing or relational calculus, so as 
to deliver the maximum benefit from data. 

 
The general purpose of data mining is to process the information from the enormous 

stock of data we have or that we may generate, so as to develop better ways to handle data and 
support future decision-making. Sometimes, the patterns to be searched for, and the models to 
be extracted from data are subtle, and require complex calculus and/or significant specific 
domain knowledge. Or even worse, there are situations where one would like to search for 
patterns that humans are not well suited to find, even if they are good experts in the field. For 
example, in power systems related problems one is faced with high dimensional data sets that 
cannot be easily modeled and controlled on the whole, and therefore automatic methods 
capable of synthesizing structures from such data become a necessity. 

 
By definition, data mining is the nontrivial process of extracting valid, previously 

unknown, comprehensible, and useful information from large databases and using it. It is an 
exploratory data analysis, trying to discover useful patterns in data that are not obvious to the 
data user. DM takes 2 forms: verification driven data mining, which extracts information in 
the process of validating a hypothesis postulated by a user, and discovery-driven data mining, 
which automatically extracts information novel for the user.  

 
What is a database (DB)? It is a collection of objects (called tuples in the DB jargon, 

examples in machine learning, or transactions in some application fields), each one of which is 
described by a certain number of attributes, which provide detailed information about each 
object. Certain attributes are selected as input attributes for a problem, certain ones as outputs 
(i.e. the desired objective: a class, a continuous value…). 

 
Usually, one of the first tasks of a data mining process consists of summarizing the 

information stored in the database, in order to understand well its content. This is done by 
means of statistical analysis or query-and-reporting techniques. Then more complex 
operations are involved such as to identify models that may be used to predict information 
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about future objects. The term “supervised learning” (known as “learning with a teacher”) is 
implied in mining data in which for each input of the learning objects, the desired output 
objective is known and implicated in learning. In “unsupervised learning” approaches 
(“learning by observation”) the output is not provided or not considered at all, and the method 
learns by itself only from input attribute values. 

 
What is a data miner? - some person, usually with background in computer science or in 

statistics and in the domain of interest, or a couple of two specialists, one in data mining, one 
in the domain of interest, able to perform the steps of the data mining process. The miner is 
able to decide how much iterative to be the whole process and to interpret the visual 
information he gets at every sub-step.   

 

1.1.2 The process 
 
In general, the data mining process iterates through five basic steps: 
 

q Data selection. This step consists of choosing the goal and the tools of the data mining 
process, identifying the data to be mined, then choosing appropriate input attributes and 
output information to represent the task. 

 
q Data transformation. Transformation operations include organizing data in desired ways, 

converting one type of data to another (e.g. from symbolic to numerical) defining new 
attributes, reducing the dimensionality of the data, removing noise, “outliers”, 
normalizing, if appropriate, deciding strategies for handling missing data. 

 
q Data mining step per se. The transformed data is subsequently mined, using one or more 

techniques to extract patterns of interest. The user can significantly aid the data mining 
method by correctly performing the preceding steps.  

 
q Result interpretation and validation. For understanding the meaning of the synthesized 

knowledge and its range of validity, the data mining application tests its robustness, using 
established estimation methods and unseen data from the database. The extracted 
knowledge is also assessed (more subjectively) by comparing it with prior expertise in the 
application domain. 

 
q Incorporation of the discovered knowledge. This consists of presenting the results to the 

decision maker who may check/resolve potential conflicts with previously believed or 
extracted knowledge and apply the new discovered patterns. 

 
The whole data mining process is iterative, interactive, and very much a trial and error 

activity. DM techniques are different one form another in terms of problem representation, 
parameters to optimize, accuracy, complexity, run time, transparency, interpretability. The 
quality of the extracted knowledge is a function both of the effectiveness of the data mining 
techniques and the quality (often size) of the available database. 
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Visualization plays an important role. It may provide preliminary understanding of 
data, domain specific visualizations or can present the results of the mining techniques. 

 
From the point of view of software structure, there are two types of possible 

implementations: 
q Data mining “in place” (version 3.0 of ATDIDT): the learning system accesses the data 

through a data base management system (DBMS) and the user is able to interact with both 
the database (by means of queries) and the data mining tools. The advantage is that the 
approach may handle very large databases and may exploit the DBMS facilities (e.g. the 
handling of distributed data). 

q Data mining “offline” (version 2.2 of ATDIDT): the objects are first loaded in the DM 
software, with a translation into a particular form, outside the database, and the user is 
interacting mainly with the data mining software. They may be faster but are generally 
limited to handle medium sized data sets that can be represented in main memory (up to 
several hundred Mbytes). 

 

1.2 Main DM tasks 
 

Depending mainly on the application domain and on the interest of the miner, one can 
identify several types of data mining tasks for which data mining offers possible answers. We 
present them in the order they are usually implied in the process. 
 
Summarization. It aims at producing compact and characteristic descriptions for a given set 
of data. It can take multiple forms: numerical (simple descriptive statistical measures like 
means, standard deviations…), graphical forms (histograms, scatter plots…), or the form of 
“if-then” rules. It may provide descriptions about objects in the whole database or in selected 
subsets of it. Example of summarization: “the minimum unitary price for all the transactions 
with energy is 70 price units”. 
 
Clustering. A clustering problem is an unsupervised learning problem, which aims at finding 
in the data clusters of similar objects sharing a number of interesting properties. It may be 
used in data mining to evaluate similarities among data, to build a set of representative 
prototypes, to analyze correlations between attributes, or to automatically represent a data set 
by a small number of regions, preserving the topological properties of the original input space. 
Example of a clustering result: “from the seller B point of view, buyers A and E are similar 
customers in terms of total price of the transactions done in 1998”. 
 
Classification. A classification problem is a supervised learning problem where the output 
information is a discrete classification, i.e. given an object and its input attributes, the 
classification output is one of the possible mutually exclusive classes of the problem. The aim 
of the classification task is to discover some kind of relationship between the input attributes 
and the output class, so that the discovered knowledge can be used to predict the class of a 
new unknown object. Example of a derived rule, which classifies sales made early in the day 
(a sale is said to be early if it was made between 6 a.m. and 12 a.m.): “if the product is energy 
then the sale is likely to be early”. 
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Regression. A regression problem is a supervised learning problem of building a more or less 
transparent model, where the output information is a continuous numerical value or a vector of 
such values rather than a discrete class. Then given an object, it is possible to predict one of its 
attributes by means of the other attributes, by using the built model. The prediction of numeric 
values may be done by classical or more advanced statistical methods and by “symbolic” 
methods often used in the classification task. Example of a model derived in a regression 
problem: “when buyer A buys energy, there exists a linear dependence between the 
established unitary price and the quantity he buys: pricequantity *5.1170 −= ”. 
 
Dependency modeling. A dependency modeling problem consists in discovering a model 
which describes significant dependencies among attributes. These dependencies are usually 
expressed as “if-then” rules in the form “if antecedent is true then consequent is true”, where 
both the antecedent and the consequent of the rule may be any combination of attributes, 
rather than having the same output in the consequent like in the case of the classification rules. 
Example: such a rule might be “if product is energy then transaction price is larger than 2000 
price units”. 
 
Deviation detection. This is the task focusing on discovering the most significant changes or 
deviations in the data between the actual content of the data and its expected content 
(previously measured) or normative values. It includes searching for temporal deviations 
(important changes in data with time), and searching for group deviations (unexpected 
differences between two subsets of data). As an example, deviation detection could be used in 
order to find main differences between sales patterns in different periods of the year. 
 
Temporal problems. In certain applications it is useful to produce rules that take into account 
explicitly the role of time. There are data bases containing temporal information which may be 
exploited by searching for similar temporal patterns in data or learn to anticipate some 
abnormal situations in data. Examples: “a customer buying energy will buy spinning reserve 
later on)”, or “if total quantity of daily transactions is less than 100 price units during at least 
1 month for a client, the client is likely to be lost”. 
 
Causation modeling. This is a problem of discovering relationships of cause and effect 
among attributes. A causal rule of type “if-then” indicates not only that there is a correlation 
between the antecedent and the consequent of the rule, but also that the antecedent causes the 
consequent. Example: “decreasing energy price will result in more sold energy daily”. 
 

1.3 DM success factors 
 

The success of mining some data is induced by a list of factors:  
 

The right tools. A distinctive feature of a DM software is the quality of its algorithms, the 
effectiveness of the techniques, and sometimes their speed. In addition, the efficiency of using 
the hardware, the operating system, the database resources and the parallel computing are 
influencing the process. Moreover, it turns out that the particular set of tools useful in a given 
application are highly dependent on the practical problem. Thus at the prototyping step, it is 
useful to have available a broad enough set of techniques so as to identify interesting 
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applications. However, in the final product used for actual field implementation it is often 
possible to use only a small subset of the latter tools. Customizing data mining techniques to 
the application domain and using methods that are reliable means to the proposed goal may 
enhance the process of extracting useful information. 
 
The right data. The data to be mined should contain information worth mining: consistent, 
cleaned, and representative for the application. Of course, it is useless to apply data mining to 
an invalid database with high measurement or estimation data errors, or to try to precisely 
estimate numerical outputs that present a priori high noise. A data mining tool ideally explains 
as much information as is stored in the data which is mined (a derived model is strongly 
dependent on the learning set used), and sometimes it is not what is in the data that matters for 
an application (wrong attributes, wrong selected sample). 

An important part of data mining result errors are due to uncertainties in modeling and 
generation of objects in certain databases in discordance with the real probabilities of 
phenomena appearances in the system. That is why the data mining errors often do not have a 
meaning by themselves; they just provide a practical means to compare efficiencies of 
different criteria applied to the same database. 

 
The right people. Regardless of what many producers of data mining tools claim, data mining 
is not (yet) an “automatic” operation with little or no human intervention. On the contrary, the 
human analyst plays an important role, mostly in the areas of data selection and data / 
knowledge interpretation. The data miner should have an understanding of the data under 
analysis and the domain or industry to which it pertains. It is more important for the mining 
process to embrace the problems of the application meant to solve, than to incorporate in the 
data mining software the hottest technologies.   
 
The right application. Almost always a problem well posed is already a partially solved 
problem. It is important to clearly define the goals and choose the appropriate objectives so as 
to yield a significant impact on the underlying decision making process.  
 
The right questions. An important issue: how does the data miner structure a data analysis 
problem so that the right question can be asked, knowing how easy and useless it is to give the 
right answer to the wrong question?  
 
The right sense of uncertainty. Data miners are more interested in understandability than 
accuracy or predictability per se. Often, even the best methods of search will leave the data 
miner with a range of uncertainties about the correct model or the correct prediction. 



2 Introduction to the software 

2.1 About the software 
 
ATDIDT software is a “Data Mining” software. It has been developed at the University of 
Liège for research, teaching and applications of automatic learning. The acronym stands for 
"Acl Top Down Induction of Decision Trees". The software is partly written in Allegro 
Common Lisp (ACL) and partly in GNU Emacs Lisp. 
 
Requirements. For running ATDIDT software on your machine you need to have installed, 
besides GNU Emacs (version 19.29 or higher) and ACL, also the next auxiliary tools, freely 
distributed on the web: GUNZIP, GHOSTVIEW, XFIG (3.2 of higher), TRANSFIG (same 
version as XFIG), NETSCAPE and ACROBAT READER. Recent versions of Linux 
distributions contain all what is required. 
 
Copyright. University of Liège owns the software. Only authorized people may use this 
software. Of course, if you use this software, you do it on your own responsibility. 
 

2.2 Software organization 
 
The software has three main parts: 
 
Data Handling allows manipulating partially or entirely one or more databases, to prepare 
them off-line for loading, to load them every time one needs to explore them. Also data 
selection and data transformation steps of the data mining process are concerned here: a set of 
attributes as inputs, the task output variable, and a sample of objects (a part of the loaded 
objects) are selected, and new attributes are defined. 
 
Graphics allows the visualization task: preliminary brute data visualization, customizable 
representation of objects, method results visualization.  
 
Automatic Learning allows the interactive and iterative use of data mining methods. Some of 
these methods will produce a model, which expresses the relationships between the input 
attributes and the output variable. This model is added on-line to the database as a new 
functional attribute, which can be used in turn as input or output variable in subsequent steps 
of the data mining process. 
 
Data mining process starts always with the data handling stage. Then any automatic learning 
method may be tried. Graphics part is needed at every intermediary stage of the process, be it 
data handling or automatic learning.  
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2.3 Available methods in ATDIDT 3.0 
 
Table 1 synthesizes all the learning methods available in ATDIDT software. Following the 
commands organization within the software, we grouped them into six categories of methods. 
For each method the supported inputs and outputs are indicated, together with the type of the 
learning problem (task) it is able to accomplish. 
 
Besides these methods, the software supports hybrid methods.  



Table 1 

CLASS 

OF 

METHODS 

 

METHOD 

 

INPUTS 

 

OUTPUTS 

DM 

LEARNING 

TASK 

Graphical Tools 

Dendrogram 

Histogram 

Cumulative Distribution 

Scatter -plot 

Temporal Curves 

non-constant numerical 

symbolic and numerical 

symbolic and numerical 

symbolic and numerical 

temporal 

-- 

--, symbolic or numerical 

-- 

--, symbolic or numerical 

-- 

Clustering 

Summarization 

Summarization 

Summarization 

Summarization 

Tree Induction 
Decision Tree 

Regression Tree 

symbolic and numerical 

symbolic and numerical 

symbolic 

numerical 

Classification 

Regression 

Linear Regression 
Linear Regression 

Linear Hinges Model1 

non-constant numerical 

non-constant numerical 

numerical 

numerical 

Regression 

Regression 

Non Linear 

Regression 

MLP 

MLP 

Features Extraction 

numerical 

numerical 

numerical 

symbolic 

numerical 

-- 

Classification 

Regression 

Clustering 

Similarity 

KNN 

KNN 

K-Means 

numerical 

numerical 

numerical 

symbolic 

numerical 

-- 

Classification 

Regression 

Clustering 

Meta Learning 
Regression Tree Bagging2 

Regression Tree Boosting 

non-constant numerical 

non-constant numerical 

numerical 

numerical 

Regression 

Regression 

                                                 
1 Only in version 2.2 of ATDIDT 
2 Only in version 3.0 of ATDIDT 



2.4 Get started. ATDIDT run and database load 
 
Cautions. ATDIDT produces a lot of output files, temporary or permanent. The names of the 
files have been chosen so as to limit the risk of destroying other files. However, we 
recommend that you “create a new empty directory” and start the software while being in this 
directory, in order to make sure that none of your own files is “destroyed”. 
 

2.4.1 Start running ATDIDT 
 
Once positioned in the directory of your choice (with rights to write on it) you tape in an 
[WHUP window one of the next commands: 

 
- For ATDIDT-2.2:  

�VVW��VRIW�DWGLGW�ELQ�DWGLGW�VFULSW�	�
- For ATDIDT-TUTORIAL-2.2:  

�XS��OZK�JWGLGW�WXWRULDO�JWGLGW�GHPR�VFULSW�	�
- For ATDIDT-TUTORIAL-3.0:  

�XS��OZK�JWGLGW�WXWRULDO�DWGLGW�WXWRULDO�VFULSW�	�
�

where you change the path if different in your case. 
 

2.4.2 Database load 
 
The first thing to do in order to use the program is to load a database. Once the data is loaded, 
the data mining process is followed as in section 1.1.2. All the data mining techniques may be 
applied iteratively and independently one of each other.  
 
ATDIDT-TUTORIAL-2.2  
 
In the tutorial version, a database is already loaded into the program. The user skips therefore 
this database-loading step.  
 
ATDIDT-2.2  
 
This ATDIDT version is organized as an offline data mining software. The database is loaded 
once in the beginning and kept entirely in the main memory during the data mining process. 
 
There are two possible ways of handling a database loading: 
 
Long-way. It presumes that the user dispose of / create two types of files: 
 

- Data files - files where explicit attribute values are stored (see example in appendix 
8.1.1, long-way database load). These files are organized as tables where a column is 
associated with an attribute and a raw with an object. There are two possible versions 



 15

 

of these data files according to insertion of not of the object numbers. The user already 
disposes of these files when he starts the data mining process. 

- Database declaration file – a lisp code file, providing information about what explicit 
attributes have to be loaded (name, short doc, type, default value (optional), possible 
values), in which format and what are their corresponding data files; the file may also 
define functional attributes. The file may load only a part of the available attributes or 
a part of the available objects provided in the data files. The user does not dispose of 
this file when he gets started. He has to create it. See in appendix 8.1.2 an example of a 
database declaration file. The possible attribute types may be found in section 3.2.1 

 
This database declaration file is then loaded using the command �/2$'B'%�� in menu�
�'$7$B%$6(� 
 
Short-way. It presumes that the user dispose of / create only one type of file: 
 

- Data files - files where explicit attribute values are stored (see example in appendix 
8.1.1, short-way database load). They are called javadb files. These files are organized 
exactly as in the long-way case, plus the following adding: 

o The lines starting with a semicolon are comments and may appear anywhere in 
the file, except for the first line which is mandatory and must be exactly as in 
the provided example; 

o The first non-comment line must give the database name; 
o The second non-comment line contains attribute names immediately followed 

by their type: numerical (for ordered numerical attributes) or symbolic (for 
qualitative or ordered symbolic attributes); 

o Both versions 1 and 2 are possible, being not mandatory to add the object 
names, given that anyway if no name is specified, it will be computed on the 
fly based on the line number. 

 
 These data files are then loaded using the same command �/2$'B'%�� in menu�
�'$7$B%$6(� 
 
Once the database has been loaded using this short way, the user may type the following lisp 
command in the command line (lisp buffer): 
 
�VDYH�GE���
 
The following two files are automatically created and located in the current work directory: 
 

- Data file (database-name.att, e.g. OMIB.att) in the version 2 of short-way format  
- Database declaration file (database-name.db. e.g. OMIB.db) as in the appendix 

example 
 
At any new session, the database loading may be effectuated by the long-way loading of this 
new created database declaration file.  
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If the user defines new functional attributes or redefines/modifies old ones (as indicated in 
section 3.3) and adds them to the new created database declaration file, once re-loaded this file 
using the long-way loading, the new attributes will be also considered, at any new session. 
 
Get data file in the right format. The user may not necessarily dispose of a data file in text 
format or javadb as we indicated in appendix. If data is stored in Microsoft Excel or Access 
format, the user has to save these files in “commas” format data-file.cvs and then type in an 
[WHUP window the command  
 
FVY�MGE�SO�²L�GDWD�ILOH�FVY�²R�GDWD�ILOH�GDW�
 
in order to obtain the data in javadb format. csv2jdb.pl script is written in Pearl. It interprets 
the first raw of the Microsoft table as the attribute names. For every column, i.e. explicit 
attribute, the script asks a confirmation concerning the attribute type (numerical or symbolic) 
and makes a conversion type if necessary, from numerical to symbolic, by adding a prefix “S-
“ to numerical values. 
 
ATDIDT-3.0 
 
This ATDIDT version is organized as an in place data mining software. The database is 
accessed every time some data is necessary for a data mining manipulation. The loading 
process comports two stages: 
 

- Preparing the database. The user disposes of a javadb data file format (called external 
format), applies the command �35(3$5(B'% and gets internal format files, a 
compiled version of the database. This step is accomplished only once for a database, 
not for every new ATDIDT session. Once the internal format files obtained, the user 
do not need anymore the external format files. Among the generated files there is one 
called DBNAME-project.xml that represents the project description file. 

- Loading the database. The user applies the command �/2$'B352-(&7 in order to 
load the project description file DBNAME-project.xml. This step has to be done at each 
new session of the program. Presently, the software core does not manage more than 
one database per session and does not check for conflicts between attribute names.   

 
In this way, the attribute values are progressively loaded in the main memory when they are 
needed for a data mining technique. This permits a faster manipulation of the data at the 
loading step. It permits to configure the memory space allocated to the data loading and to 
reduce the garbage collection waste of time. It allows the handling of larger and almost 
unlimited-size databases.  
 

2.4.3 Restart ATDIDT 
 
ATDIDT 2.2 command is: 

- popup menu *7','7, submenu 5(67$57 
- emacs menu��5(67$57� 

 



3 Data handling 

3.1 Objects set selection 
 
Once a database is loaded into the program, the user must select an objects subset of the 
loaded data, as being the current working set for the most data mining techniques and 
graphics. The global variable that contains the selected objects set on which the methods are 
trained or the graphics are drawn, is called 
OHDUQLQJ�VHW
 (LS)�  The global variable 
that contains the selected objects set on which the methods are tested is called 
WHVW�VHW
 
(TS)�  
 
It is mandatory to a priori choose 
OHDUQLQJ�VHW
 of objects before using one method. 

WHVW�VHW
 must be defined only if the user needs to test its methods. 
 
ATDIDT 2.2 commands are: 

- popup menu :6HOHFWLRQV, submenu 6HOHFW� OHDUQLQJ� VHW and 6HOHFW�
WHVW�VHW, or 

- emacs menu �68%6(76B6(/(&7,21, submenus �/($51,1*B6(7 and 
�7(67B6(7�

 
Commands for learning and/or test set selection are found also in every submenu of a data 
mining method that uses the two variables. Both selections have the same syntax, even if they 
use different commands. Table 2 collects all the possible alternatives for this objects set 
selection. In the sequel, we will call LS the variable 
OHDUQLQJ�VHW
 and TS the variable 

WHVW�VHW
� 
 

3.2 Attributes selection 

3.2.1 Types of attributes 
 

• Explicit attributes: attributes values are specified explicitly for each object in some 
data file; 

• Functional attributes: attributes values are computed from the values of other (explicit 
or functional) attributes. They are defined by the user (as lisp functions) or 
automatically generated by the learning methods.   

 

3.2.2 Attributes values 
 

• Ordered: numerical (integer or real valued e.g. pu, qu, cct-sbs, pu+b*qu) or symbolic 
(e.g. cct-disk) 

• Qualitative: unordered symbolic (e.g. security) 
• Temporal: numerical time series or sequences of events (e.g. delta) 
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• Any lisp type: a complex number, a scalar attribute function of a temporal one (e.g. 
delta-after-fault), etc. 

Table 3 shows the correspondent type of each attribute in the database declaration file example 
of appendix 8.1.2. 

Table 2 

 
Command syntax 

 

 
Selected objects 

 
Examples 

(first n) 
 

(first n set) 

n first objects of the entire 
database  

n first objects of set 

(first 100) 
(first 100 t) 

(first 50 *learning-set*) 
(last n) 

 
(last n set) 

n last objects of the entire 
database 

n last objects of set 

(last 100) 
(last 100 t) 

(last 50 *test-set*) 
(random n)  

 
(random n set) 

n objects selected randomly 
from the entire database 

n objects selected randomly 
from set  

(random 50)  
 

(random 500 *learning-set*) 

(not-in set) all the objects which are not 
in set 

(not-in *learning-set*) 

(member o1 o2 …) objects o1, o2 … (member op1 op250 op12) 
(such-that att cond set) objects from set for which 

att respects the condition 
cond 

(suchthat pu (float 1000.0 1100.0) t) 
(suchthat security (member secure) 

*learning-set*)  
(from n1 n2) objects from n1 to n2 (from 5001 6000) 

(union set1 set2) union of objects from set1 
and set2  

(union (first 10) (last 10)) 
(union *learning-set* *test-set*) 

(atnode node of dt in set) objects from set which 
would go to node node of dt 

tree 

 
(atnode “L1” of “DT1” in t) 

set objects from set *learning-set* 
*pruning-set* 

*test-set* 
*validation-set* 

*last-selected-subset* 
*classification-errors* 
*knn-reference-set* 

t 
 

3.2.3 Inputs selection 
 
It is mandatory to a priori choose the list of attribute inputs before using the majority of 
methods. The global variable that contains the selected attributes considered as inputs is called 
*cDQGLGDWH�DWWULEXWHV
. 
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ATDIDT 2.2 commands are: 

- popup menu $WWV, submenu 6HOHFW�$WWULEXWHV, or 
- emacs menu �$775,%87(6B6(/(&7,21, submenu �&$1','$7(B$775,%87(6�

 
With these commands, all the available attributes are displayed and any attribute may be 
added or deleted from the list of inputs. Command for candidate attributes selection is found 
also in every submenu of a data mining method that uses this variable. 
 
If there exists predefined lists of attributes, the user may use the command 
�$775,%87(6B&+2,&( from menu �$775,%87(6B6(/(&7,21 in order to directly 
select as inputs one predefined such list or to merge the current list of inputs with a predefined 
one. 
 
When applying the majority of data mining techniques, the list of 
FDQGLGDWH�
DWWULEXWHV
 is expanded by replacing temporal attributes by a list of scalar ones and 
filtered to remove attributes which type is not handled by the technique.  
 

Table 3 

 
Attribute type 

 

 
Database declaration type 

ordered ordonne 
linear-combination 

qualitative qualitatif-quinlan 
temporal (ordonne time) 
lisp type ordonne 

etc. 
 

3.2.4 Output selection 
 
It is mandatory to a priori choose the output before using the majority of methods. 
The global variable 
JRDO�FODVVLILFDWLRQ
 indicates the output for methods used in 
classification task and must be a symbolic type of attribute. The global variable 
JRDO�
UHJUHVVLRQ
 indicates the output for methods used in regression task and must be of 
numerical type. These goals are chosen among the available attributes in the loaded database. 
 
ATDIDT 2.2 commands are: 

- popup menu $WWV, submenu 6HOHFW�JRDO�FODVVLILFDWLRQ, or 
- emacs menu �$775,%87(6B6(/(&7,21, submenus �*2$/B&/$66,),&$7,21�

and �*2$/B5(*5(66,21�
 
Commands for regression/classification goal selection are found also in every submenu of a 
data mining method that uses these variables. 
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3.3 Define new attributes 
 
New functional attributes may be defined/modified in three ways. Once defined/modified a 
new functional attribute, its definition may be stored in a lisp file file.lsp and this file loaded at 
any new session, or anytime during the current session, but always after the explicit attributes 
loading, by using one of the commands: 

• (load “file.lsp”) or  
• popup menu /RDG, submenu /RDG�D�OLVS�ILOH, or 
• emacs menu �'$7$B%$6(, submenu �/2$'B'%, or 
• (compile “file.lsp”) together with (load “file.fsl”) when the user wants to load the 

compiled version of the file 
In this way, only the new defined/modified attributes have to be loaded, not all the database 
declaration file, fact which for large databases saves a lot of loading time. 
 
1. Using the lisp macro def-fun-att 
 
Example: (def-fun-att mva (object) (sqrt (+ (sqr (pu object)) (sqr (qu object))))) 
See the effect with: (mva object-name)  
 
2. Using an ATDIDT command  
 
ATDIDT 2.2 command is: 

- emacs menu �$775,%87(6B6(/(&7,21, submenus �'(),1(B$775,%87(�

�

This command allows the user to define new attributes by using def-fun-att macro as in the 
above example. The definition of the new attribute is valid during the current session, and it is 
lost for future sessions.  
 
3. Using the lisp macro declare-function-attributes 

 
Example:  
(declare-function-attributes 
 OMIB 
 :attributs-conserves t 
 :attributs-fonctions-scalaires 
 ((mva "Apparent power [MVA]" 
       :type ordonee 
       :valeurs (real * *) 
       :fonction (sqrt (+ (sqr (pu objet)) (sqr (qu objet))))) 
  (symbolic-pu "Pu>1000MW" 
        :type qualitatif-quinlan 
        :valeurs (member <1000 >=1000)  
        :par-defaut <1000 
        :fonction (if (< (pu objet) 1000.0) '<1000 '>=1000)))) 
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See the effect with: (mva object-name)  
   (symbolic-pu object-name)  
 
The slot �SDU�GHIDXW is optional. The slot �DWWULEXWV�FRQVHUYHV indicates the list 
of the newly defined attributes that will be loaded: W�value means  all the defined attributes, 
QLO�means none of them. 
 
In order to visualize the function of a functional attribute attribute-name, at any moment the 
user may tape in the lisp buffer the lisp command: 
 
(print (get attribute-name ’fonction)) 
 

3.4 Handling temporal attributes 
 
The global variable 
FDQGLGDWH�DWWULEXWHV
 is specifying a list of scalar attributes. 
Thus, temporal attributes must be transformed into scalar ones according to a sampling 
strategy. This is done automatically by the software each time the 
FDQGLGDWH�
DWWULEXWH
 list is used in some option. Table 4 presents the scalar attributes created when 
the 
FDQGLGDWH�DWWULEXWHV
 list is activated in a command, for the temporal attribute 
delta. 

Table 4 

Temporal attribute in 
*candidate-attributes* 

Function of the corresponding  
created scalar attribute 

delta (delta < object> *present-time*) 
(delta 0.3) (delta <object> 0.3) 

(delta (time 0.0 0.2 nbsteps 5)) ((delta 0.0)(delta 0.04)…(delta 0.2)) 
(delta (time 0.0 0.2)) ((delta 0.0)(delta 0.2)) 

(delta (time)) (delta (time to tf *time-steps*)) 
 
ATDIDT parameters that control the temporal attributes handling are: 
 
*present-time* 

- Default value 0.0 
- ATDIDT 2.2 command: menu :'$7$B%$6(, menu �$775,%87(6B6(/(&7,21, 

command :35(6(17B7,0( 
 
*time-steps* 

- Default value 50 
- ATDIDT 2.2 command: menu :'$7$B%$6(, menu �$775,%87(6B6(/(&7,21, 

command :7,0(B67(36 
 



4 Software DM methods 

4.1 Graphical Tools 
 
All the graphical tools available in ATDIDT software use a postscript curve-drawing program 
called GDC (version 4.3). 
All the graphics are computed on and representing the objects found in the current 

OHDUQLQJ�VHW
, and when necessary, are based on current 
JRDO�
FODVVLILFDWLRQ
. When statistics are displayed below a graphic they are as follows:  

- Mu – average 
- Mn – minimum 
- Mx – maximum 
- Sd – standard deviation 
- Rho – correlation coefficient between abscissa and ordinate attributes 

 

4.1.1 Histogram 
 
Definition. The histogram is a statistical tool that performs non-parametric density estimation. 
It is a frequency diagram. The 2D graphic displays the estimated number of objects for each 
interval of values of the chosen attribute (interval-region called bar). 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
Set parameters. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:180%(5B2)B%$56 changes the number of intervals (bars) in which the attribute is split for 
computing frequencies (40 by default). 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:+,672*5$0�
The command prompts for:  

- a numerical (see Figure 1) or symbolic (see Figure 2) att attribute 
Effect.  

- The created graphic is computed on LS for attribute att 
- A postscript graphic is generated named abs_freq-tem.ps located in the current 

directory 
- Statistics on LS for attribute att are displayed below the graphic. 

 

4.1.2 Conditional histogram 
 
Definition. It is a histogram colored according to the value of the 
JRDO�
FODVVLILFDWLRQ
�  
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
- Choose *JRDO-FODVVLILFDWLRQ* (symbolic or numerical attribute) 
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Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal 
as a numerical attribute 
Set parameters. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:180%(5B2)B%$56 changes the number of intervals (bars) in which the attribute is split for 
computing frequencies (40 by default). 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:COND_+,672*5$0�
The command prompts for:  

- a numerical attribute (see Figure 3 for symbolic goal, see Figure 5 for numerical goal) 
or a symbolic attribute (see Figure 2 for symbolic goal, see Figure 4 for numerical 
goal) att 

Effect.  
- The created graphic is computed on LS for attribute att and is conditioned by 
JRDO�

FODVVLILFDWLRQ
 variable. If the goal is numerical, it is automatically split in 
classes of values and the graphic represents each class in a different color.  

- A postscript graphic is generated named cond_freq-tem.ps located in the current 
directory 

- Statistics on LS for att attribute are displayed below the graphic for each of the 
symbolic values of the 
JRDO�FODVVLILFDWLRQ
 if the goal is symbolic, or for 
each of the generated classes, if the goal is numerical. 

 

4.1.3 Multiple conditional histograms 
 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
- Choose *JRDO-FODVVLILFDWLRQ* (symbolic or numerical attribute)  
- Choose 
FDQGLGDWH�DWWULEXWHV
 

Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal 
as a numerical attribute 
Set parameters. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:180%(5B2)B%$56 changes the number of intervals (bars) in which the attribute is split for 
computing frequencies (40 by default). 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:DB_STATS�
Effect.  

- For each attribute from 
FDQGLGDWH�DWWULEXWHV
, a conditional histogram is 
built 

- The created graphics are computed on LS and based on 
JRDO�
FODVVLILFDWLRQ
 variable 

- A postscript graphic is generated named db_stats-tem.ps located in the current 
directory 

- Statistics on LS for each attribute are displayed below the graphics, for each of the 
symbolic values of the 
JRDO�FODVVLILFDWLRQ
 if the goal is symbolic, or for 
each of the generated classes, if the goal is numerical 

- For a very large 
FDQGLGDWH�DWWULEXWHV
 list, this option will take some time. 
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4.1.4 Scatter-plot 
 
Definition. It is a 2D graphic representing one attribute yy function of another attribute xx. 
Attributes xx and yy may be symbolic or numerical. 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS)  
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:SCATTER_PLOT�
The command prompts for:  

- a numerical or symbolic attribute xx 
- a numerical or symbolic attribute yy 

Effect.  
- A graphic (xx, yy) computed on LS is displayed (see Figure 6) 
- A postscript graphic is generated named correl-tem.ps located in the current directory 
- Statistics on LS for xx and yy attributes are displayed below the graphic. 

 

4.1.5 Conditional scatter-plot 
 
Definition. It is a scatter-plot colored according to the value of the 
JRDO�
FODVVLILFDWLRQ
�  
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
- Choose *JRDO-FODVVLILFDWLRQ* (symbolic or numerical attribute) 

Note: use lisp instruction (setf *goal-classification* ‘numerical-goal-name) for setting the goal 
as a numerical attribute 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:COND_6&$77(5B3/27�
The command prompts for:  

- a numerical or symbolic attribute xx 
- a numerical (see Figure 7) or symbolic (see Figure 8) attribute yy 

Effect.  
- A graphic (xx, yy) computed on LS and conditioned by 
JRDO�FODVVLILFDWLRQ
 

variable is displayed. If the goal is numerical, it is automatically split in classes of 
values and the graphic represents each class in a different color.  

- A postscript graphic is generated named cond_correl-tem.ps located in the current 
directory 

- Statistics on LS for xx and yy attributes are displayed below the graphic for each of the 
symbolic values of the 
JRDO�FODVVLILFDWLRQ
 if the goal is symbolic, or for 
each of the generated classes, if the goal is numerical. 

 

4.1.6 Colored scatter-plot 
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Definition. It is a scatter-plot colored according to the value of a third attribute. 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:COLOUR_6&$77(5B3/27�
The command prompts for:  

- a numerical or symbolic attribute xx 
- a numerical or symbolic attribute yy 
- a numerical (see Figure 9 and Figure 10) or symbolic (see Figure 7) attribute zz 

Effect.  
- A graphic (xx, yy) computed on LS and conditioned by attribute zz is displayed. If zz is 

numerical, it is automatically split in classes of values and the graphic represents each 
class in a different color.  

- A postscript graphic is generated named colour_correl-tem.ps located in the current 
directory 

- Statistics on LS for xx, yy and zz attributes are displayed below the graphic. 
 

4.1.7 Scatter-plot with values 
 
Definition. It is a scatter-plot where each point is market on the graphic by the value of a third 
attribute. 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) – a small one, for example 100 objects 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:SCATTER_PLOT_VAL�
The command prompts for:  

- a numerical attribute xx 
- a numerical attribute yy 
- a numerical or symbolic attribute zz 

Effect.  
- A graphic (xx, yy) computed on LS is displayed where values of zz (if numerical) or 

classes of zz (if symbolic) are market on the graphic for each point (object) of LS 
- A postscript graphic is generated named val_correl-tem.ps located in the current 

directory 
- Statistics on LS for xx and yy attributes are displayed below the graphic. 

 

4.1.8 Cumulative distribution 
 
Definition. The cumulative distribution is a statistical tool that performs a cumulative 
frequency diagram (the integral of the histogram). The 2D graphic displays points (x,y) where 
x represents the percentage of objects for which attribute value is at more y. 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
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Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:&808/$7,9(B',67�
The command prompts for:  

- a numerical (see Figure 11) or symbolic (see Figure 12) att attribute 
Effect.  

- The created graphic is computed on LS for attribute att 
- A postscript graphic is generated named cum_freq-tem.ps located in the current 

directory 
- Statistics on LS for attribute att are displayed below the graphic 
- Percentages corresponding to ordinate line are market in yellow on the graphic. 

 

4.1.9 Dendrogram 
 
Definition. The dendrogram is the graphical representation of a statistical tool called 
hierarchical agglomerative clustering. It is used to cluster attributes, the similarity between 
two subsets of attributes being defined as the minimum similarity of pairs of attributes of the 
two subsets. This tool is particularly interesting for the analysis of attribute similarities, 
detecting and eliminating the attributes too correlated, or detecting important correlation 
sbetween a goal attribute and input attributes.  
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
- Choose 
FDQGLGDWH�DWWULEXWHV
. Make sure you insert in the list all the 

attributes, including regression goal. Constant numerical and non-numerical attributes 
are not handled and excluded from the attributes list prior to dendrogram building. 

Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:'(1'52*5$06�
Effect.  

- The dendrogram is computed on LS 
- The coefficients displayed on the graphic represent the minimum correlation 

coefficients between one attribute and a group of attributes or between two groups of 
attributes. Correlations with a coefficient more that 0.5 are depicted in red. 

- A postscript graphic is generated named dendrogram.ps located in the current directory 
- Statistics on LS for each attribute are displayed together with correlation coefficients 

for every two-by-two pairs of attributes. 
 

4.1.10 Temporal curves 
 
Definition. They represent evolution in time of temporal attributes for a given object. 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) 
- Choose 
FDQGLGDWH�DWWULEXWHV
. Insert all the temporal attributes for which 

you wish a curve on the same graphic. 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:7(0325$/B&859(6B2�
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The command prompts for:  
- An object name obj 

Effect.  
- A curve for each temporal attribute in the list of 
FDQGLGDWH�DWWULEXWHV
 is 

represented on the same graphic for object obj (see Figure 13) 
- A postscript graphic is generated named scenario-tem.ps located in the current 

directory. 
 

4.1.11 Temporal curves for a set of objects 
 
Definition. They represent evolution in time of one temporal attribute for a set of objects. 
Selections.  

- Choose 
OHDUQLQJ�VHW
 (LS) – a small one, for example 50 objects 
Command. ATDIDT 2.2 command: menu :'$7$B%$6(, menu �*5$3+,&6, command 
:7(0325$/B&859(6B6(7�
The command prompts for:  

- A temporal attribute att 
Effect.  

- A curve for each object in 
OHDUQLQJ�VHW
 is represented on the same graphic for 
attribute att (see Figure 14) 

- A postscript graphic is generated named scenarios-tem.ps located in the current 
directory. 
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Figure 13 

 
Figure 14 

 
 
 

 
Figure 15



4.2 Decision Tree 

4.2.1 What is it? 
 
Definition. Decision trees (DT) are tools used in classification problems. They are concerned 
with the automatic design of if-then rules. They have a symbolic output and symbolic and/or 
numerical inputs.  
 
Method characteristics. The main strength of DT is its interpretability. Another asset is the 
ability to identify the most relevant attributes for a problem: the model itself selects a part of 
the attributes from the list of candidate attributes as the model inputs. Finally, it is a 
computationally efficient tool. As a counter part, it is less accurate than a neural network. It 
may be used in association with a neural network or a KNN method in a hybrid approach.  
 

4.2.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�FODVVLILFDWLRQ
 and choose 
FDQGLGDWH�
DWWULEXWHV
. $dmissible input attribute types are: “ordonee”, “linear-combination” and 
“qualitatif-quinlan”.  Note that the model does not handle temporal attribute values, they being 
replaced by a list of scalar ones in 
FDQGLGDWH�DWWULEXWHV
 list prior to model 
building. 
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test or 
prune the model).  
Set method parameters. Method parameters are 
DOID
 and 
K�PLQ
. 
 
*alfa*  

- Necessary to detect deadens in decision trees, i.e. impure terminal nodes 
- Takes values between 0.00005 and 1.0 (complete tree, maximum complexity) 
- Accepted values: 1.0 0.25 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 0.00025 0.0001 

0.00005  
- Default value 0.0001 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�75((B,1'8&7,21, command :6(7B
$/)$
 
 
*h-min*  

- Necessary to detect leaves in decision trees, i.e. pure terminal nodes 
- Takes any real value between 0.0 (trivial tree, 0 complexity, 0 test nodes, 1 terminal 

node) and 10.0 (fully grown tree) 
- Default value 0.028  
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�75((B,1'8&7,21, command :6(7B
+�0,1
 
 

4.2.3 Apply the method 
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Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�75((B,1'8&7,21, command �%8,/'B'7 
 
Effects of the method employment. If the decision tree name is xx (the default name is 
DT<i>) and the 
JRDO�FODVVLILFDWLRQ
 is yy: 

- The new functional attribute created by default once the model is built has the name 
approx-xx-of-yy 

- The created file containing information about the building process has the name xx.log 
and is located in the current directory 

- The new decision tree xx is pushed in the global variable 
GHFLVLRQ�WUHHV
 
- The global variable 
FXUUHQW�GW
 keeps the last built (decision or regression) tree. 

 
Interesting displayed information while building the tree: status variables, prior class 
probabilities in LS and at every node, LS size at every node, type of node, entropy of node, 
possible tests, their scores (the best score is 1.0, the worst one is 0.0) and the scores’ standard 
deviations, chosen test, the correlation coefficient of each attribute’s optimal test with the 
optimal test of the selected attribute, CPU time. 
 
Interesting displayed information while describing the results: a résumé of used 
parameters and settings, total entropy of DT in LS (= total entropy of root node), DT 
complexity (number of test, leaf and deadend nodes), the percentage of the total information 
explained by the tree by every chosen attribute (a measure of the relevance of every attribute 
in the model), the name of the new created functional attribute, the name and the path of the 
created file containing the displayed information. All these information may be redisplayed 
anytime by using the command �'(6&5,%(B75(( from �75((B,1'8&7,21 menu. 
 

4.2.4 Test the model 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�75((B,1'8&7,21, command �7(67B75(( 
 
The program detects when TS and LS are overlapping and asks the user if he wants to 
eliminate this overlap objects or not from TS before performing the testing. 
 
Interesting displayed information while describing the results: non-detection costs (values 
between 0 and 1), confusion matrix on TS (number of objects correctly classified and 
misclassified), classification error rate on TS, CPU time. 
 
Effects of the method employment. After testing, the global variable 
FODVVLILFDWLRQ�
HUURUV
 contains all the misclassified objects. 
 

4.2.5 Improve the model 
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Once build and tested, a tree may be pruned in order to improve the model’s compromise 
between accuracy and complexity. The new resulted tree has less complexity than the original 
tree and better or comparative error rate. The pruning procedure generates a sequence of 
intermediary trees and based on these trees’ error rates (computed on TS) the best tree is 
chosen following the n-standard-error-rule, i.e. the less complex tree not significantly less 
reliable than the best one is selected.  
 
Note that the pruning procedure, in order to be effective, should be applied on a complete tree, 
i.e. a fully-grown tree. In this respect, the model’s parameters should be chosen in 
consequence: *alfa*=1.0 (and *h-min*=0.0 evenatually). 
 
To do before starting. For pruning a tree the user must before test the tree. The errors of the 
intermediary trees are computed on the global variable 
WHVW�VHW
� In order to use the 
cross-validation approach, the user should settle variable 
WHVW�VHW
 as a set independent 
of LS and TS and test the original tree (on this set called usually pruning set) before pruning it. 
 
Set method parameters. Method parameters are 
VLJPD�PXOWLSOLHU
 and 

PD[LPXP�WUHH�SUXQH�FRPSOH[LW\
��
�
*sigma-multiplier* 

- Necessary in n-standard-error-rule.  
- Usual values: 0.0, 1.0, 2.0, 3.0, … 
- Default value 1.0 
- Examples: if 
VLJPD�PXOWLSOLHU
=2.0, the procedure chooses the tree with the 

error smaller or equal to the best error plus two times its standard deviation; if 

VLJPD�PXOWLSOLHU
=0.0, the procedure chooses the tree with the smallest error 

- Example of lisp command: (setf 
VLJPD�PXOWLSOLHU
 2.0) 
 
*maximum-tree-prune-complexity* 

- Settles the maximum complexity of the pruned tree 
- Takes integer values between 0 and 10.000 
- Default value 10.000 
- Settled as a very large value this parameter has no influence on the process 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�75((B,1'8&7,21, command :6(7B
&�0$;�3581(
 
 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�75((B,1'8&7,21, command �3581(B75(( 
 
Interesting displayed information while pruning the tree: some information concerning 
every intermediary tree (complexity, terminal nodes, the next node to prune, test set error rate, 
corresponding *alfa* parameter), information about the chosen tree. 
 
Effects of the method employment. If the original decision tree name is xx, the 
JRDO�
FODVVLILFDWLRQ
 is yy and 
VLJPD�PXOWLSOLHU
 is 1.0: 

- The pruned decision tree has the name xx-BPR-1.0 
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- The new functional attribute created by default once the tree is pruned has the name 
approx-xx-BPR-1.0-of-yy 

- The created file containing information about the pruning process has the name xx-
BPR-1.0.log and is located in the current directory 

- The new decision tree xx-BPR-1.0 is pushed in the global variable 
GHFLVLRQ�
WUHHV
 

- The global variable 
FXUUHQW�GW
 keeps the pruned tree xx-BPR-1.0 
 
ATDIDT 2.2 command �'5:B35B6(4� provides a graphic of pruning sequence curves 
displaying the evolution of decision trees’ complexity, information, test error rate and quality 
with parameter 
DOID
� Two files named xx-BPR-1.0.pruning and xx-BPR-1.0-pruning-
seq.ps are created in the current directory. The postscript one contains these graphics that may 
be visualized at any time by using GhostView tool.  
 

4.2.6 Results visualization / interpretation 
 
Describe tree. ATDIDT 2.2 command �'(6&5,%(B75(( displays a résumé of the current 
decision tree growing and testing results (if the tree has been tested before). By current tree we 
understand the tree indicated by the global variable 
FXUUHQW�GW
� i.e. the last built tree, 
or the last pruned tree, or the last tree chosen with the command :&+226(B75((. The 
command may be applied at any time, once a (decision or regression) tree is stored in the 
variable 
FXUUHQW�GW
� 
 
Display tree. ATDIDT 2.2 command �',63/$<B75(( displays the current tree on a single 
page. Command �0<B',63/$<B75(( displays the tree on multiple pages, on the first page 
only the upper levels of the tree and on the other pages, the rest of the subtrees. It should be 
used for very complex trees (too complex to be displayed on a single sheet). Both commands 
generate a postscript file (named xx.ps for a DT called xx) located in the current directory that 
may be visualized at any time using the GhostView tool. 
 
ATDIDT 2.2 command �'5$:B7(67B6(7 enables or disables the representation of the test 
results on the tree graphic. Figure 16 presents an example of a decision tree display without 
test results, and Figure 17, with test results.  
 
Figure 16 and Figure 17 draw a decision tree for a 
JRDO�FODVVLILFDWLRQ
 called 
“security” (see the attribute definition in database declaration file example of appendix), built 
on a learning set of 1000 objects, pruned and tested on a independent test set of 1000 objects. 
Figure 16 presents every node of the tree by a box area proportional to the size of the learning 
subset corresponding to this node (the exact size of this subset together with the name of the 
node are indicated above the box) and the horizontal division of each box shows the 
proportion of the objects from this subset in each class. In Figure 17, each node box is divided 
into two parts, the upper one corresponding to the learning set, the lower one to the test set. 
The part corresponding to the test set is horizontally divided indicating the proportion of 
misclassified objects in each local test set. In both figures, the test of each test node is written 
under the node’s box and each arc leading to a successor is labeled with a possible answer to 
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this test (Yes and No). Above the root node, the total number of test nodes (Txx), leaves 
(Lxx), and deadends (Dxx) is indicated. 
 
HTML format. ATDIDT 2.2 commands �6$9(B75(( and �,163(&7B75(( give another 
way of visualizing results, in html format. For a decision tree named xx, the first command 
creates a new directory called /Sav/xx/ in the current directory, and puts 7 files concerning the 
tree in this new directory. The second command opens a Welcome.html file that displays 
general information about the tree together with hyperlinks for all the created files: 

- xx-rules.html – displays the IF-THEN rule base derived from the tree 
- xx-prune.lst (for a pruned tree) or xx-grown.lst (for the original tree) – displays 

information that describe the pruning / growing processes 
- xx.dump – outputs the internal lisp structure of the tree xx  
- xx.lsp – contains the lisp function of the new created functional attribute 
- xx-mp.pdf and xx-sg.pdf – are single page and multiple page displays of the tree. 

 
Afterwards, at every new session, the ATDIDT 2.2 command �/2$'B75(( may load this 
built tree (model) based on the xx.dump file, thus releasing the user from building it again. 
 
Derived rule-base. For every terminal node of a decision tree, an IF-THEN rule is generated. 
The file xx-rules.html indicates for every rule of type “if antecedent then class A”, extracted 
from the xx decision tree, the next coefficients: 

- support of rule – percentage of all objects in LS for which this rule is active 
- cover of rule - percentage of all objects of class A in the LS for which this rule is 

active (the total of the covers for all the rules concluding a given class is 100%) 
- certainty factor – percentage of objects of class A among those for which the rule is 

active 
- summary – number of objects for which the rule is active counted by class. 

 
Example of rule deducted from decision tree of Figure 16: 
 
Rule T3:  IF Pu > 1096.4 and Qu < 392.11 THEN class = INSECURE 
   Support = 22% 
   Cover = 63.2% 
   Certainty factor = 89.1% 
   Summary: insecure – 196, secure – 24. 
 
Other ideas for graphics. If the decision tree name is xx and the 
JRDO�
FODVVLILFDWLRQ
 is yy: 

- Conditional scatter-plot (approx-xx-of-yy, yy) on LS (see Figure 18) or TS 
- Conditional histogram for approx-xx-of-yy on LS (see Figure 19), TS 
- Settle LS as the objects misclassified by the tree (see command �*(7B'7�(55256) 

and apply a conditional histogram for approx-xx-of-yy 
 

4.2.7 Other possible actions 
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All the commands having the format �;;;B75(( are available both for regression and 
decision trees and are regarding the tree stored in the global variable 
FXUUHQW�GW
� 
 
Other useful available commands: 
 
�%(67B),567" and �6(7B
&�0$;�*52:
� - concern the node development in a 
decision tree growing. �%(67B),567" allows to change the order of node development, 
either best first or depth first (default mode). In the case of best first strategy, command 
�6(7B
&�0$;�*52:
� fixes the global variable� 
PD[LPXP�WUHH�JURZ�
FRPSOH[LW\
, an upper bound on complexity, that takes integer values between 0 and 
10.000, default value is 10.000.�
�
�6(/(&7�'7�7(67�$776 – settles the global variable 
FDQGLGDWH�DWWULEXWHV
 as 
the list of all the attributes chosen by the current decision tree. This command becomes very 
useful when decision tree technique is used in a hybrid approach together with other methods. 
A decision tree has the ability to reduce the input space to the relevant attributes for a given 
problem. 
�
�*(7B'7B(55256 – select the global variable 
OHDUQLQJ�VHW
 as the objects from 

WHVW�VHW
 misclassified by the tree in the last testing and stored in the global variable 

FODVVLILFDWLRQ�HUURUV
� If the tree has not yet been tested, the 
OHDUQLQJ�
VHW* is settled to the empty set. 
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Figure 16 
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Figure 17 
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Figure 18 

 
Figure 19



4.3 Regression Tree 

4.3.1 What is it? 
 
Definition. Regression trees (RT) are tools used in regression problems. They are concerned 
with the automatic design of if-then rules. They have a numerical output and symbolic and/or 
numerical inputs.  
 
Method characteristics. The main strength of RT is its interpretability. Another asset is the 
ability to identify the most relevant attributes for a problem: the model itself selects a part of 
the attributes from the list of candidate attributes as the model inputs. It is more complex than 
a decision tree and thus the generated rule base is larger. It is a computationally efficient tool, 
comparatively fast to a decision tree and much faster than a neural network. It is less accurate 
than a neural network and in many cases less accurate than a linear regression technique. It 
may be used in association with a neural network in a hybrid approach.  
 

4.3.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�UHJUHVVLRQ
 and choose 
FDQGLGDWH�
DWWULEXWHV
�� $dmissible input attribute types are: “ordonee” and “qualitatif-quinlan”. 
Note that the model does not handle linear-combination attribute values, they being excluded 
from the 
FDQGLGDWH�DWWULEXWHV
 list prior to model building. Temporal attribute 
values are replaced by a list of scalar ones.�
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test or 
prune the model).  
Set method parameters. Method parameters are 
DOID�UW
, 
Y�PLQ
�DQG�
WRWDO�
YDULDQFH�PLQ
. 
 
*alfa-rt*  

- Necessary to detect deadens in regression trees, based on a Kolmogorov-Smirnov 
probability in node 

- Takes real values between 0.0 (trivial tree) and 1.0 (full grown tree) 
- Default value 0.0001 
- Use value 0.000001 for strong pre-pruning 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�75((B,1'8&7,21, command :6(7B
$/)$�57
 
 
*v-min*  

- Necessary to detect leaves in regression trees, based on variance in node 
- Takes any real value between 0.0 and 1.0e+11 
- Default value 0.0 (complete tree) 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�75((B,1'8&7,21, command :6(7B
9�0,1
 
 
*total-variance-min*  
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- Necessary to detect deadens in regression trees, based on total variance in node 
- Takes any real value between 0.0 and 1.0e+11 
- Default value 0.0 (complete tree) 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�75((B,1'8&7,21, command :6(7B
7790
 
 

4.3.3 Apply the method 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�75((B,1'8&7,21, command �%8,/'B57 
 
Effects of the method employment. If the regression tree name is xx (the default name is 
RT<i>) and the 
JRDO�UHJUHVVLRQ
 is yy: 

- the new functional attribute created by default once the model is built has the name 
approx-xx-of-yy 

- the created file containing information about the building process has the name xx.log 
and is located in the current directory 

- The new regression tree xx is pushed in the global variable 
GHFLVLRQ�WUHHV
 
- The global variable 
FXUUHQW�GW
 keeps the last built (decision or regression) tree 

 
Interesting displayed information while building the tree: status variables, LS size at every 
node, type of node, statistics of the output in node (mean, max, min, standard deviation), 
variance of node, possible tests, their scores, and the reduction of the variance each test brings, 
the correlation coefficient of each attribute’s optimal test with the optimal test of the selected 
attribute, chosen test, CPU time. 
 
Interesting displayed information while describing the results: a résumé of used 
parameters and settings, total variance of LS and total variance reduction realized by RT, RT 
complexity, the percentage of the total variance reduction explained by the tree by every 
chosen attribute (a measure of the relevance of every attribute in the model), the name of the 
new created functional attribute, the name and the path of the crated file containing the 
displayed information. All these information may be redisplayed anytime by using the 
command �'(6&5,%(B75(( from �75((B,1'8&7,21 menu. 
 

4.3.4 Test the model 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�75((B,1'8&7,21, command �7(67B75(( 
 
The program detects when TS and LS are overlapping and asks the user if he wants to 
eliminate this overlap objects or not from TS before performing the testing. 
 



 42

 

Interesting displayed information while describing the results: statistics (mean, max, min, 
standard deviation, standard error) on: errors, absolute errors, squared errors, positive and 
negative errors; CPU time. 
 

4.3.5 Improve the model 
 
The pruning procedure generates a sequence of intermediary trees from the original complete 
tree and based on these trees’ mean absolute errors (computed on TS) the best tree is chosen 
following the n-standard-error-rule, i.e. the less complex tree not significantly less reliable 
than the best one is selected.  
 
Note that the pruning procedure, in order to be effective, should be applied on a complete tree, 
i.e. a fully-grown tree. In this respect, the model’s parameters should be chosen in 
consequence: 
DOID�UW
=1.0 and 
Y�PLQ
=0.0, 
WRWDO�YDULDQFH�PLQ
=0.0. 
 
To do before starting. For pruning a tree the user must before test the tree. The errors of the 
intermediary trees are computed on the global variable 
WHVW�VHW
� In order to use the 
cross-validation approach, the user should settle variable 
WHVW�VHW
 as a set independent 
of LS and TS and test the original tree (on this set called usually pruning set) before pruning it. 
 
Set method parameters. Method parameters are 
VLJPD�PXOWLSOLHU
 and 

PD[LPXP�WUHH�SUXQH�FRPSOH[LW\
� See pruning of decision trees for details on 
how to settle these parameters. 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�75((B,1'8&7,21, command �3581(B75(( 
 
Interesting displayed information while pruning the tree: some information concerning 
every intermediary tree (complexity, terminal nodes, the next node to prune, mean absolute 
error on TS, mean squared error on TS, corresponding 
DOID�UW
 parameter), information 
about the chosen tree. 
 
Effects of the method employment. If the original regression tree name is xx, the 
JRDO�
UHJUHVVLRQ
 is yy and 
VLJPD�PXOWLSOLHU
 is 1.0: 

- The pruned regression tree has the name xx-BPR-1.0 
- The new functional attribute created by default once the tree is pruned has the name 

approx-xx-BPR-1.0-of-yy 
- The created file containing information about the pruning process has the name xx-

BPR-1.0.log and is located in the current directory 
- The new regression tree xx-BPR-1.0 is pushed in the global variable 
GHFLVLRQ�

WUHHV
 
- The global variable 
FXUUHQW�GW
 keeps the pruned tree xx-BPR-1.0 

 
ATDIDT 2.2 command �'5:B35B6(4� provides a graphic of pruning sequence curves 
displaying the evolution of regression trees’ complexity, variance reduction, mean absolute 
error and quality with parameter 
DOID
� Two files named xx-BPR-1.0.pruning and xx-
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BPR-1.0-pruning-seq.ps are created in the current directory. The postscript one contains these 
graphics that may be visualized at any time by using GhostView tool.  
 

4.3.6 Results visualization / interpretation 
 
Describe tree. ATDIDT 2.2 command �'(6&5,%(B75(( displays a résumé of the current 
regression tree growing and testing results (if the tree has been tested before). By current tree 
we understand the tree indicated by the global variable 
FXUUHQW�GW
� i.e. the last built 
tree, or the last pruned tree, or the last tree chosen with the command :&+226(B75((. It may 
be applied at any time, once a (decision or regression) tree is stored in the variable 

FXUUHQW�GW
� 
 
Display tree. ATDIDT 2.2 command �',63/$<B75(( displays the current tree on a single 
page. Command �0<B',63/$<B75(( displays the tree on multiple pages, on the first page 
only the upper levels of the tree and on the other pages, the rest of the subtrees. It should be 
used for very complex trees (too complex to be displayed on a single sheet). Both commands 
generate a postscript file (named xx.ps for a RT called xx) located in the current directory that 
may be visualized at any time using the GhostView tool. 
 
ATDIDT 2.2 command �'5$:B7(67B6(7 enables or disables the representation of the test 
results on the tree graphic. Figure 20 presents an example of a regression tree display without 
test results, and Figure 21, with test results.  
 
Figure 20 and Figure 21 draw a regression tree for a 
JRDO�UHJUHVVLRQ
 called “cct-sbs” 
(see the attribute definition in database declaration file example of appendix), built on a 
learning set of 1000 objects, pruned and tested on a independent test set of 1000 objects. Each 
node of the tree is represented by a box. Above the box appears the name of the node, test (T), 
leaf (L) or deadend (D) and the number of node learning states. The total number of different 
nodes is indicated above the root node. Below every test node, the corresponding test is 
indicated and each arc leading to a successor is labeled with a possible answer to this test (Yes 
and No). In Figure 20, each node’s box corresponds only to the learning set results. The node 
box area is proportional to the node’s local learning set size. Inside each node box, the mean 
value of the regression tree approximation together with its standard deviation (in brackets) 
computed on local LS is marked. The horizontal splits in nodes simulate this mean value 
plus/minus one standard deviation. In this way, the variance reduction from root node to 
terminal nodes becomes graphically visible. In Figure 21, the node’s box is divided into two 
parts, the upper one corresponding to the learning set as explained already, the lower one to 
the test set. Their relative heights are proportional to the relative sizes of the learning and test 
sets at the node. The part corresponding to the test set displays the mean value and its standard 
deviation for the node’ subtree absolute error computed on TS. Root node test part gives the 
mean value for the absolute error of the entire tree. 
 
HTML format. ATDIDT 2.2 commands �6$9(B75(( and �,163(&7B75(( give another 
way of visualizing results, in html format. For a regression tree named xx, the first command 
creates a new directory called /Sav/xx/ in the current directory, and puts 7 files concerning the 
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tree in this new directory. The second command opens a Welcome.html file that displays 
general information about the tree together with hyperlinks for all the created files: 

- xx-rules.html – displays the IF-THEN rule base derived from the tree 
- xx-prune.lst (for a pruned tree) or xx-grown.lst (for the original tree) – displays 

information that describe the pruning / growing processes 
- xx.dump – outputs the internal lisp structure of the tree xx  
- xx.lsp – contains the lisp function of the new created functional attribute 
- xx-mp.pdf and xx-sg.pdf – are single page and multiple page displays of the tree. 

 
Afterwards, at every new session, the ATDIDT 2.2 command �/2$'B75(( may load this 
built tree (model) based on the xx.dump file, thus releasing the user from building it again. 
 
Derived rule-base. For every terminal node of a regression tree, an IF-THEN rule is 
generated. The file xx-rules.html indicates for every rule of type “if antecedent then 
output=value”, extracted from the xx decision tree, the next coefficients: 

- support of rule – percentage of all objects in LS for which this rule is active 
- output estimation when the rule is active. 

 
Example of rule deducted from regression tree of Figure 20: 
 
Rule T4:  IF Pu > 1135.9 and Qu < -205.0 THEN CCT-SBS = 0.076139 
   Support = 7.4% 
 
Other ideas for graphics. If the regression tree name is xx, the 
JRDO�UHJUHVVLRQ
 is yy 
and ww is one input attribute: 

- Scatter-plot (approx-xx-of-yy, yy) on LS (see Figure 22) or TS 
- Histogram for approx-xx-of-yy on LS, TS 
- Define a functional attribute zz as the error / absolute error / squared error of RT and 

visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS 
- Scatter-plot (approx-xx-of-yy, ww) on LS (see Figure 23) or TS. 

 

4.3.7 Other possible actions 
 
All the commands having the format :XXX_TREE are available both for regression and 
decision trees and are regarding the tree stored in the global variable 
FXUUHQW�GW
� 
 
Other useful available commands: 
 
�6(/(&7�'7�7(67�$776 – settles the global variable 
FDQGLGDWH�DWWULEXWHV
 as 
the list of all the attributes chosen by the current decision tree. This command becomes very 
useful when decision tree technique is used in a hybrid approach together with other methods. 
A regression tree has the ability to reduce the input space to the relevant attributes for a given 
problem. 
�
�*(7B'7B(55256 – select the global variable 
OHDUQLQJ�VHW
 as the objects from 

WHVW�VHW
 for which the regression tree approximation is different from the 
JRDO�
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UHJUHVVLRQ
 used to build the tree. As it is often the case for regression trees, this option is 
not very useful for regression trees context, since often here the new LS is similar with the 
original LS. 
 



 

Figure 20 
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Figure 21



 
Figure 22 

 
Figure 23



4.4 Linear Regression 

4.4.1 What is it? 
 
Definition. Linear regression tool is used in regression problems. The model predicts one 
attribute (the output) by means of other attributes (the inputs) by a linear function. It is a least 
squares linear combination of all the inputs with respect to the output. 
 

KK inputcinputcinputccoutput ....22110 +++=  

 
 The model has a numerical output and non-constant numerical inputs.  
 
Method characteristics. The main strength of linear regression is its computational efficiency 
for reasonable sized input spaces. It is much faster then regression trees or neural networks. 
When the input space dimension K (number of input attributes) is high, the method is less 
efficient, due to a K*K matrix manipulation (inverse matrix computation) that is quadratic in 
K. The model complexity is given by the input space size K and the model free parameters are 
the K coefficients.  In a hybrid approach and large sized input spaces, a dendrogram, a 
decision or regression tree may reduce the input space and then a linear regression technique 
may find the linear combination for predicting a certain output.  
 

4.4.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�UHJUHVVLRQ
 and choose 
FDQGLGDWH�
DWWULEXWHV
��$dmissible input attribute type is “ordonee”. Note that the model does not 
handle constant attribute values, qualitative or linear-combination attributes, all being 
excluded from the 
FDQGLGDWH�DWWULEXWHV
 list prior to model building. Temporal 
attribute values are replaced by a list of scalar ones.�
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test the 
model).  
Set method parameters. Method parameter is 
ZHLJKW�GHFD\
��
�
*weight-decay* 

- Penalization term in the “ridge-regression” model 
- Takes positive real values  
- Default value 0.00001 (almost no penalization) 
- If the user wants to reduce the variance of the linear regression he should use larger 

values, say 1.0.  
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�/,1($5B5(*5(66,21, command :6(7B:(,*+7B'(&$< 
 

4.4.3 Apply the method 
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Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�/,1($5B5(*5(66,21, command 
�/($51B/,1($5B5(*5(66,21B$3352;,0$7,21� 
 
Effects of the method employment If the 
JRDO�UHJUHVVLRQ
 is yy: 

- The new functional attribute created by default once the model is built has the name 
linear-regression-yy, or any name given by the user 

- The created file containing information about the model building process has the name 
linear-regression-yy.log, and is located in the current directory. If it already exists, the 
new information is appended to the old one in the file. 

 
Interesting displayed information while building the model: status variables, CPU times, a 
description of the new created attribute, its explicit function giving the linear dependence. 
 

4.4.4 Test the model 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21 
 
Interesting displayed information while describing the results: statistics (mean, max, min, 
standard deviation, standard error) on: errors and absolute errors; CPU time. 
 

4.4.5 Results visualization / interpretation 
 
Explicit function. An example of the linear model function detected by ATDIDT is: 
 

QuPusbscct 00008.000043.062587.0 +−=− . 
 
Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for 
example the new created linear regression attribute), to be compared with the 
JRDO�
UHJUHVVLRQ
 yy. After testing, a scatter-plot is automatically displayed,  (xx, yy) on TS (see 
Figure 24). The corresponding created postscript file is named linear_regtst-tem.ps and is 
located in the current directory. 
 
Other ideas for graphics. If the 
JRDO�UHJUHVVLRQ
 is yy and xx is one input attribute: 

- Scatter-plot (linear-regression-yy, yy) on LS 
- Histogram for linear-regression-yy on LS, TS 
- Define a functional attribute zz as the error / absolute error / squared error of the linear 

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS 
- Scatter-plot (linear-regression-yy, xx) on LS (see Figure 25) or TS. 
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Figure 24 

 
Figure 25



4.5 Linear Hinges Model 

4.5.1 What is it? 
 
Definition. Linear Hinges model is a one-dimensional regression problem, i.e. curve fitting 
from two-dimensional scatter-plot data. The model predicts one attribute (the output) by 
means of other attribute (the input) by a piecewise linear model. It has a numerical output and 
non-constant numerical inputs.  
 
Method characteristics. The model is very computationally efficient. The number of linear 
pieces of the model gives the model complexity. 
 

4.5.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�UHJUHVVLRQ
���
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test the 
model).  
 

4.5.3 Apply the method 
 
Command. ATDIDT 2.2 command3: menu :$8720$7,&B/($51,1*, menu 
�/,1($5B5(*5(66,21, command �+,1*(6� 
 
The command prompts for the attribute name considered as input for the model. $dmissible 
input attribute type is “ordonee”. Note that the model does not handle constant attribute 
values, qualitative, linear combination or temporal attributes.�
 
Effects of the method employment. If the input attribute is xx and 
JRDO�UHJUHVVLRQ
 
is yy: 

- The new functional attribute created by default once the model is built has the name 
linear-hinges-xx-yy 

- No log file is generated. 
 
Interesting displayed information while building the model: number of knots, learning and 
pruning set sizes, new created attribute name, CPU time. 
 

4.5.4 Test the model 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21 
 
                                                 
3 Model not available in ATDIDT 3.0 version 
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Interesting displayed information while describing the results: statistics (mean, max, min, 
standard deviation, standard error) on: errors and absolute errors; CPU time. 
 

4.5.5 Results visualization / interpretation 
 
Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for 
example the new created linear hinges attribute), to be compared with the 
JRDO�
UHJUHVVLRQ
 yy. After testing, a scatter-plot is automatically displayed,  (xx, yy) on TS (see 
Figure 26). The corresponding created postscript file is named linear_regtst-tem.ps and is 
located in the current directory. 
 
Other ideas for graphics. If the input attribute is xx and 
JRDO�UHJUHVVLRQ
 is yy: 

- Histogram for linear-hinges-xx-yy on LS, TS 
- Scatter-plot (linear-hinges-xx-yy, yy) on LS 
- Define a functional attribute zz as the error / absolute error / squared error of the linear 

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS 
- Scatter-plot (linear-hinges-xx-yy, xx) on LS (see Figure 27) or TS. 

 
 
 

 
Figure 26 
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Figure 27



4.6 Regression Tree Bagging 

4.6.1 What is it? 
 
Definition. Regression tree bagging is used in regression problems. The model predicts one 
attribute (the output) by means of other attributes (the inputs) by averaging multiple regression 
trees estimations. The model has a numerical output and numerical inputs. A number of 
regression trees are built in the iterative way: a random subset of the 
OHDUQLQJ�VHW
 is 
internally selected (size = 50% of the 
OHDUQLQJ�VHW
 size), then a regression tree is built 
on this subset. At the end, a new model is constructed by aggregating all these trees, and the 
model’s prediction is the average prediction of the trees. 
 
Method characteristics. It provides more accurate output estimators than single regression 
tree building and less accurate than neural networks or regression tree boosting. With respect 
to regression trees, the averaged model looses the interpretability character. The CPU time is 
rather high with respect to other regression methods.  
 

4.6.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�UHJUHVVLRQ
 and choose 
FDQGLGDWH�
DWWULEXWHV
��$dmissible input attribute type is “ordonee”. Note that the model does not 
handle linear-combination or constant attribute values, they being excluded from the 

FDQGLGDWH�DWWULEXWHV
 list prior to regression tree model building. Equally, the 
model does not handle qualitative attributes. Temporal attribute values are replaced by a list of 
scalar ones. �
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test the 
model).  
Set method parameters. Method parameters are 
VL]H�RI�WUHHV�IRU�EDJJLQJ
�
and�
QXPEHU�RI�EDJJLQJ�WHUPV
��Also, the model is based on the regression trees 
intrinsic parameters: 
DOID�UW
, 
Y�PLQ
�and 
WRWDO�YDULDQFH�PLQ
. 
  
*size-of-trees-for-bagging* 

- The upper bound of regression tree complexity during bagging 
- Takes integer values between 0 (trivial tree) and 10.000 (large tree) 
- Default value 500 
- Typically, it is preferable to build large trees so as to reduce bias as much as possible 
- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, 

command :%$**B&203/(;,7<� 
 
*number-of-bagging-terms* 

- The number of regression trees which are built during bagging 
- Takes integer values between 0 (no model) and 50 
- Default value 20 
- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, 

command :%$**B180%(5� 
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4.6.3 Apply the method 
 
Command. ATDIDT 3.0 command4: menu :$8720$7,&B/($51,1*, menu 
�0(7$B/($51, command �75((B%$**,1*�
 
Effects of the method employment. 

- The new functional attribute created by default once the model is built has the name 
RT-BAGG<i> 

- No log file is generated. 
 
Interesting displayed information while building the model: status variables, summary 
description of each intermediary regression tree, CPU times. 
 

4.6.4 Test the model 
 
Command. ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu 
�0(7$B/($51, command �7(67B5(*5(66,21B$3352;,0$7,21 
 
Interesting displayed information while describing the results: statistics (mean, max, min, 
standard deviation, standard error) on: errors and absolute errors; CPU time. 
 

4.6.5 Results visualization / interpretation 
 
Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for 
example the new created model), to be compared with the 
JRDO�UHJUHVVLRQ
 yy. After 
testing, a scatter-plot is automatically displayed,  (xx, yy) on TS (see Figure 28). The 
corresponding created postscript file is named linear_regtst-tem.ps and is located in the 
current directory. 
 
Other ideas for graphics. If the 
JRDO�UHJUHVVLRQ
 is yy, ww is the model’s name and 
xx is one input attribute: 

- Scatter-plot (ww, yy) on LS 
- Histogram for ww on LS, TS 
- Define a functional attribute zz as the error / absolute error / squared error of the linear 

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS 
- Scatter-plot (ww, xx) on LS (see Figure 29) or TS. 

 

                                                 
4 Model not available in ATDIDT 2.2 version 
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Figure 28 

 
Figure 29



4.7 Regression Tree Boosting 

4.7.1 What is it? 
 
Definition. Regression tree boosting is used in regression problems. The model has a 
numerical output and numerical inputs. A number of regression trees are built in the iterative 
way: first a linear regression is built to fit the 
JRDO�UHJUHVVLRQ
� then a number of 
small regression trees is built using an iterative residual fitting method; finally, the tree-models 
and attributes are combined in a generalized linear model to fit the 
JRDO�UHJUHVVLRQ
� 
 
Method characteristics. The interpretability character is lost with respect to regression trees. 
It is computationally efficient. It provides more accurate output estimators than single 
regression tree building or regression tree bagging, and comparative results with neural 
networks.  
 

4.7.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�UHJUHVVLRQ
 and choose 
FDQGLGDWH�
DWWULEXWHV
��$dmissible input attribute type is “ordonee”. Note that the model does not 
handle linear-combination or constant attribute values, they being excluded from the 

FDQGLGDWH�DWWULEXWHV
 list prior to model building. Equally, the model does not 
handle qualitative attributes. Temporal attribute values are replaced by a list of scalar ones. �
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test the 
model).  
Set method parameters. Method parameters are 
VL]H�RI�WUHHV�IRU�ERRVWLQJ
�
and�
QXPEHU�RI�ERRVWLQJ�WHUPV
��Also, the model is based on the regression trees 
intrinsic parameters. The user cannot control them, they being settled by default as 
DOID�
UW
=0.1, 
Y�PLQ*=0.0 and�
WRWDO�YDULDQFH�PLQ
=0.0. 
  
*size-of-trees-for-boosting* 

- The upper bound of regression tree complexity during boosting 
- Takes integer values between 0 (trivial tree) and 10.000 (large tree) 
- Default value 10 
- It is preferable to build small trees so as to reduce variance as much as possible 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�/,1($5B5(*5(66,21, command :%2267B&203/(;,7< 
- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, 

command :%2267B&203/(;,7<� 
 
*number-of-boosting-terms* 

- The number of regression trees which are built during boosting 
- Takes integer values between 0 (no model) and 50 
- Default value 10 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�/,1($5B5(*5(66,21, command :%2267B180%(5 
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- ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, 
command :%2267B180%(5� 

 

4.7.3 Apply the method 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�/,1($5B5(*5(66,21, command �75((B%2267,1*�
ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, command 
�75((B%2267,1*�
 
Effects of the method employment. 

- The new functional attribute created by default once the model is built has the name 
RT-BOOST<i> 

- No log file is generated. 
 
Interesting displayed information while building the model: status variables, summary 
description of each intermediary regression tree and linear regression, CPU times. 
 

4.7.4 Test the model 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21�
ATDIDT 3.0 command: menu :$8720$7,&B/($51,1*, menu �0(7$B/($51, command 
�7(67B5(*5(66,21B$3352;,0$7,21�
 
Interesting displayed information while describing the results: statistics (mean, max, min, 
standard deviation, standard error) on: errors and absolute errors; CPU time. 
 

4.7.5 Results visualization / interpretation 
 
Displayed graphic. Before testing, the user is prompted for a numerical attribute name xx (for 
example the new created model), to be compared with the 
JRDO�UHJUHVVLRQ
 yy. After 
testing, a scatter-plot is automatically displayed,  (xx, yy) on TS (see Figure 30). The 
corresponding created postscript file is named linear_regtst-tem.ps and is located in the 
current directory. 
 
Other ideas for graphics. If the 
JRDO�UHJUHVVLRQ
 is yy, ww is the model’s name and 
xx is one input attribute: 

- Scatter-plot (ww, yy) on LS 
- Histogram for ww on LS, TS 
- Define a functional attribute zz as the error / absolute error / squared error of the linear 

model and visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS 
- Scatter-plot (ww, xx) on LS (see Figure 31) or TS. 
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Figure 30 

 
Figure 31



4.8 Multilayer Perceptron 

4.8.1 What is it? 
 
Definition. Multilayer perceptrons (MLP) are tools used in nonlinear regression and in 
nonlinear classification problems. The model predicts one attribute (the output) by means of 
other attributes (the inputs) by a nonlinear function. It supports numerical inputs and symbolic 
or numerical output depending on the problem.  
 
Method characteristics. The main strength of MLP is its universal approximation capability. 
Among the ATDIDT data mining methods it is probably the most accurate one. Unfortunately, 
from the point of view of interpretability it is perceived as a black box. It is heavy in terms of 
CPU time concerning the training stage and may become cumbersome for highly dimensioned 
input spaces. That is why, it is advisable to be used in conjunction with other methods that 
firstly reduce the input space, like decision/regression trees or dendrograms (hybrid 
approaches). The criterion used for training is the minimum squared error without weight-
decay term.  
 

4.8.2 Selections to make before starting 
 
Define the problem. Choose 
JRDO�UHJUHVVLRQ
� or� 
JRDO�FODVVLILFDWLRQ
�
and choose 
FDQGLGDWH�DWWULEXWHV
��$dmissible input attribute type is “ordonee”. 
Note that the model does not handle linear-combination or qualitative attribute values, they 
being excluded from the 
FDQGLGDWH�DWWULEXWHV
 list prior to model building. 
Temporal attribute values are replaced by a list of scalar ones.�
Select data. Choose 
OHDUQLQJ�VHW
 and 
WHVW�VHW
 (if you also want to test the 
model).  
Set method parameters. Method parameters are 
RXWSXW�DFWLYDWLRQ�IXQFWLRQ�
QDPH
, 
KLGGHQ�OD\HUV
�� 
POS�WHVW�VHW�PRQLWRULQJ
�� 
POS�F\FOH�
QXPEHU
� 
 
*output-activation-function-name* 

- Indicates the type of the activation function of the output layer (note that at hidden 
layers the activation function is always tanh) 

- Possible choices: “identite” (linear function), “tanh” (hyperbolic tangent), and 
“echelon” (Heaviside threshold function) 

- Default type: “identite” 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�121B/,1($5B5(*5(66,21, command :287387B/$<(5B$&7,9$7,21� 
 
*hidden-layers* 

- Determines the structure of the MLP 
- Default structure: one hidden layer with 10 neurons 
- Multiple hidden layers are supported  
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- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command :6(7B0/3B+,''(1B6758&785( 

 
*mlp-test-set-monitoring*  

- Takes values t (if the 
WHVW�VHW
 is not empty, monitoring of the test set error 
during training) or nil (monitoring of the learning set error during training) 

- Default value nil 
- If the toggle is on, the program returns the MLP approximation found during training 

which obtained the least error on the test set, otherwise it returns the last MLP obtained 
during training 

- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command :021,725B7(67B6(7� 

 
*mlp-cycle-number* 

- Defines the maximum number of iterations for MLP training; the training stops either 
when it converged (from the point of view of the mean squared error function) or when 
a given number of cycles have been scrolled out 

- Takes integer values  
- Default value 500 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�121B/,1($5B5(*5(66,21, command :0/3B67233,1*B3$56� 
 
Other parameters settled also by the command :0/3B67233,1*B3$56, used to decide when 
to stop the iterative gradient descent, are: the minimum error (default value 1.0e-10) and the 
minimum gradient size (default value 1.0e-10). 
 

4.8.3 Apply the method 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command �75$,1B0/3B5(*5(66,21 or 
�75$,1B0/3B&/$66,),&$7,21� 
 
Effects of the method employment. If the MLP name is xx and the 
JRDO�UHJUHVVLRQ
 
is yy: 

- The new functional attribute created by default once the model is built has the name xx 
(by default the name is MLP<a>-<b>-yy if the model has two hidden layers, <a> 
neurons on the first layer and <b> neurons on the second layer) 

- The created file containing information about the training process has the name xx.log 
and is located in the current directory 

- The new MLP xx is pushed in the global variable 
POS�VWUXFWXUHV
 
- The global variable 
FXUUHQW�POS
 keeps the last built (classification or 

regression) MLP model 
- A postscript file named xx.ps is generated in the local directory and automatically 

displayed, representing the MLP structure for one object (by default for the first object 
in the current 
OHDUQLQJ�VHW
). 
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Interesting displayed information while training the MLP: status variables, training stage 
with mean squared errors on LS and TS (if test set error monitoring is on) for every cycle, 
CPU time. 
 

4.8.4 Test the model 
 
Regression 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command �7(67B5(*5(66,21B$3352;,0$7,21 
 
Before testing, the user is prompted for a numerical attribute name xx (for example the new 
created MLP model), to be compared with the 
JRDO�UHJUHVVLRQ
 yy. After testing, a 
scatter-plot is automatically displayed,  (xx, yy) on TS (see Figure 36). The corresponding 
created postscript file is named linear_regtst-tem.ps and is located in the current directory. 
 
Interesting displayed information while describing the results: statistics (mean, max, min, 
standard deviation, standard error) on: errors and absolute errors; CPU time. 
 
Classification 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command 
�7(67B&/$66,),&$7,21B$3352;,0$7,21 
 
Before testing, the user is prompted for a symbolic attribute name xx (for example the new 
created MLP model), to be compared with the 
JRDO�FODVVLILFDWLRQ
 yy. 
 
Interesting displayed information while describing the results: non-detection costs (values 
between 0 and 1), confusion matrix on TS (number of objects correctly classified and 
misclassified), classification error rate on TS, CPU time. 
 
After testing, the global variable 
FODVVLILFDWLRQ�HUURUV
 contains all the 
misclassified objects. 
 

4.8.5 Results visualization / interpretation 
 
Display MLP. ATDIDT 2.2 command �'5$:B0/3 prompts for an object name and displays 
the current MLP for this object. The command generates a postscript file (named xx.ps for a 
MLP called xx) located in the current directory that may be visualized at any time using the 
GhostView tool. Note that this file is generated and displayed automatically just after each 
new MLP model training / retraining (but only for the first object in 
OHDUQLQJ�VHW
�� 
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Figure 32 draws a regression MLP model for a 
JRDO�UHJUHVVLRQ
 called “cct-sbs” and 
Figure 33 draws a classification MLP model for a 
JRDO�FODVVLILFDWLRQ
 called 
“security” (see the attribute definitions in database declaration file example of appendix), both 
MLPs built on a learning set of 1000 objects and tested on a independent test set of 1000 
objects. The networks have as many neurons in the input layer as inputs in both cases, one 
output neuron in regression and as many output neurons as classes in classification. The 
numbers marked in each neuron in red colors are valid only for the object the network is 
applied to, all the others are valid for any object. The lowest number in each neuron represents 
a measure of the neuron’s importance in the model. 
 
Display training curves. ATDIDT 2.2 command �6+2:B75$,1,1*B&859(6 prompts for 
a MLP name and displays training curves on learning and test sets. The test set error will 
always be zero if the test set monitoring is not enabled. Figure 34 and Figure 35 give the 
curves for training the regression and classification models of Figure 32 and Figure 33 
respectively. 
 
HTML format. ATDIDT 2.2 commands �6$9(B0/3 and �,163(&7B0/3 give another 
way of visualizing results, in html format. For a MLP model named xx, the first command 
creates a new directory called /Sav/xx/ in the current directory, and puts 5 files concerning the 
MLP in this new directory. The second command opens a Welcome.html file that displays 
general information about the model together with hyperlinks for all the created files: 

- xx-train.lst  - displays information that describe the training processes 
- xx.dump – outputs the internal lisp structure of the MLP model xx  
- xx.lsp – contains the lisp function of the new created functional attribute 
- xx-sp.pdf – is the MLP structure display. 

 
Explicit function. Example of nonlinear regression and classification functions deducted from 
MLP model of Figure 32 and Figure 33 are given in appendix. 
 
Other ideas for graphics. If the MLP name is xx, the 
JRDO�UHJUHVVLRQ
 is yy and ww 
is one input attribute: 

- Conditional scatter-plot (xx, yy) on LS (see Figure 38) or TS 
- Conditional histogram for xx on LS (see Figure 39), TS 
- Settle LS as the objects misclassified by the tree �
FODVVLILFDWLRQ�HUURUV
� 

and apply a conditional histogram for xx 
- Define a functional attribute zz as the error / absolute error / squared error of MLP and 

visualize a scatter-plot for (yy, zz) or a histogram for zz on LS, TS 
- Scatter-plot (xx, ww) on LS (see Figure 37) or TS. 

 

4.8.6 Features extraction 
 
Definition. Feature extraction methods aim at defining a set of feature (attribute) 
combinations. The objective is to transform the initial attributes in order to concentrate the 
maximum amount of information in a minimum number of transformed attributes.  
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Features extraction by MLP. A MLP is build having the input attributes as MLP inputs and 
equally as MLP outputs. The hidden neuron activations give thus the compressed set of new 
functional attributes that concentrate the information of all input attributes. The approach 
becomes really useful when the number of input attributes is more less than the number of 
neurons in the hidden layers. 
 
Step 1. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command �(;75$&7B)($785(6 
 
Effects. If the MLP name is xx: 

- The new functional attribute created by default once the model is built has the name xx 
(by default the name is MLP<a>-<b>-compress if the model has two hidden layers, 
<a> neurons on the first layer and <b> neurons on the second layer) 

- The created file containing information about the training process has the name xx.log 
and is located in the current directory 

- The new MLP xx is pushed in the global variable 
POS�VWUXFWXUHV
 
- The global variable 
FXUUHQW�POS
 keeps the last built MLP model 
- A postscript file named xx.ps is generated in the local directory and automatically 

displayed, representing the MLP structure for one object (by default for the first object 
in the current 
OHDUQLQJ�VHW
). 

 
Interesting displayed information while training the MLP: status variables, training stage 
with mean squared errors on LS and TS (if test set error monitoring is on) for every cycle, 
CPU time. 
 
The commands for testing cannot be employed here. All the others commands related to 
neural networks may be useful. 
 
Step 2. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�121B/,1($5B5(*5(66,21, command :*(7B+,''(1B1(8521B$&7,9$7,216 
 
Effects. The command creates <i> new functional attributes, where i is the number of the 
hidden neurons of the current MLP (stored in the variable 
FXUUHQW�POS
�� If the MLP 
name is xx and the (regression or classification) goal is yy, the new attributes have the name 
MLP<a>-<b>-yy-tanh<i> if the model has two hidden layers, <a> neurons on the first layer 
and <b> neurons on the second layer. 
 
Example of the function for such functional attribute (of neural network of Figure 33): 
 
Command: (print (get ’mlp10-security-tanh8 ’fonction)) 
 
Effect: (COERCE (MULTI-OR (LET ((I1 
                         (+ (* 0.006016299369492383d0 (PU OBJET)) 
                            -6.036782344305822d0)) 
                        (I2 
                         (+ (* 0.0020852237395437285d0 (QU OBJET)) 
                            -0.3143199907124104d0))) 
                    (TANH (+ -3.47635289612401d0 
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                             (* -0.4666199692369496d0 I1) 
                             (* -2.830416533641814d0 I2)))) 
                  ’0.0) 
        ’FLOAT) 

4.8.7 Other possible actions 
�
�5(75$,1B0/3 – retrains 
FXUUHQW�POS
 with the currently selected 
OHDUQLQJ�
VHW
 and 
WHVW�VHW
� It produces a new attribute, symbolic or numerical depending on 
the 
FXUUHQW�POS
 type, and a log file with the training information (or append this 
information to an already existent log file). The training process is restarted from where it 
stopped not from the scratch.  
�
:&+226(B0/3 – chooses a MLP model; the command may be applied at any time, once a 
(classification or regression) MLP model is stored in the variable 
FXUUHQW�POS
� 
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Figure 32 
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Figure 33 
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Figure 34 

 
Figure 35 
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Figure 36 

 
Figure 37 
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Figure 38 

 
Figure 39 
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4.9 K-Nearest Neighbors  

4.9.1 What is it? 
 
Definition. K-Nearest Neighbors technique is a statistical tool that consists in matching an 
unseen situation (object) with similar situations (objects) present in the database called nearest 
neighbors. The unseen object inherits all these nearest neighbors’ characteristics, as the value 
of the numerical output attribute (in regression problems) or the class (in classification 
problems), also the distance to these nearest neighbors, and generally, any type of information 
attached to the nearest neighbors. The model supports only numerical attributes and symbolic 
or numerical output depending on the problem.  
 
Method characteristics. The method is very simple and similar to human reasoning (recalling 
similar situations seen in the past) thus interpretable. It is less accurate than a MLP and more 
accurate that regression trees. It is a very slow method. The main disadvantage is that it 
requires a large number of learning objects. In particular, for high dimensional attribute spaces 
the method may require prohibitively large samples. Thus, to be effective, a prior feature 
selection may reduce the input spac (hybrid approaches). For a symbolic output the method 
uses majority voting among the nearest neighbors, and for numerical output interpolation by 
the inverse of the squared distance. 
 

4.9.2 Selections to make before starting 
 
Define the problem. 

- Choose 
FDQGLGDWH� DWWULEXWHV
�� $dmissible input attribute type is 
“ordonee”. Note that the model does not handle linear-combination or qualitative 
attribute values, they being excluded from the 
FDQGLGDWH�DWWULEXWHV
 list 
prior to attributes’ normalization. Temporal attribute values are replaced by a list of 
scalar ones. 

- Choose 
NQQ�RXWSXW
� i.e. the output for the KNN model, a symbolic or 
numerical attribute. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�6,0,/$5,7<, command :6(7B.11B287387� 

 
Select data. 

- Choose 
NQQ�UHIHUHQFH�VHW
, i.e. the set of objects used as learning set. The 
selection is done exactly as a *OHDUQLQJ-VHW* selection. ATDIDT 2.2 command: 
menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 
:6(7B.11B5()(5(1&(B6(7� 

-  Choose 
WHVW�VHW
 (if you also want to test the model).  
 
Transform data. Normalize the attributes from 
FDQGLGDWH�DWWULEXWHV
 list, by 
computing their standard-deviation in the 
NQQ�UHIHUHQFH�VHW
. A list called 
NQQ�
DWWULEXWHV
 is built used to define the Euclidian distance. ATDIDT 2.2 command: menu 
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:$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 
:1250$/,=(B.11B$775,%87(6� 
 
Set method parameters. Method parameter is 
NQQ�N
� 
 
*knn-k* 

- Indicates the number of neighbors effectively used 
- Default value 1 
- Maximum value 15 (NQQ�N�PD[) 
- May be settled manually by a command, or automatically by a cross-validation method 
- Manually setting by ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 

�6,0,/$5,7<, command :6(7B.11B. 
- Automatically setting by ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, 

menu �6,0,/$5,7<, command :.11B&5266�9$/,'$7,21B7(67. The 
command applies leave-one-out method to 
NQQ�UHIHUHQFH�VHW
, for 
NQQ�N
 
increasing from 1 to NQQ�N�PD[ and automatically sets 
NQQ�N
 to the value which 
yielded the best accuracy. Note that the algorithm is quadratic computationally in the 
size of the 
NQQ�UHIHUHQFH�VHW
� that is why this command is very slow��The 
command displays for every value of K: in the case of numerical output, statistics 
(mean, max, min, standard deviation, standard error) on errors and absolute errors, 
total CPU time, and in the case of symbolic output, confusion matrix, test set error 
rates and total CPU time. 

 

4.9.3 Apply the method 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�6,0,/$5,7<, command �),1'B1($5(67B1(,*+%256 
 
Effects of the method employment.  

- The command prompts for an object-name and searches the 15 nearest neighbors of 
object object-name, selecting in the variable 
OHDUQLQJ�VHW
 the most similar 

NQQ�N
 objects together with the considered object. These objects may be inspected 
afterwards by the ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�6,0,/$5,7<, command :9,(:B2%-(&76�or by other graphics. 

- If the 
NQQ�RXWSXW
 is yy, the new functional attribute created by default once the 
KNN model is built has the name knn-approx-of-yy (a numerical value if yy is 
numerical, otherwise a class). 

- No log file generated. 
 

4.9.4 Test the model 
 
Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�6,0,/$5,7<, command �.11B7(67B6(7B7(67�
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The command compares 
.11�RXWSXW
 yy with the output approximated by the KNN 
model, knn-approx-of-yy. It displays in the case of numerical output, statistics (mean, max, 
min, standard deviation, standard error) on errors and absolute errors, total CPU time and in 
the case of symbolic output, confusion matrix, test set error rate andtotal CPU time. 
 

4.9.5 Results visualization / interpretation 
 
Visualizing the *knn-k* nearest neighbors of an object. ATDIDT 2.2 command 
:9,(:B2%-(&76� displays information and graphics for every of the 
NQQ�N
 nearest 
neighbors, objects selected in 
OHDUQLQJ�VHW
 once built the model.  
 
Other ideas for graphics. If the 
NQQ�RXWSXW
 is yy and xx is one input attribute: 

- Conditional/normal scatter-plot (knn-approx-of-yy, yy) on LS �settled as 
NQQ�
UHIHUHQFH�VHW
, see Figure 40 and Figure 41), TS, or 
NQQ�N
 nearest 
neighbors 

- Conditional/normal histogram for knn-approx-of-yy on LS, TS, or 
NQQ�N
 nearest 
neighbors 

- Scatter-plot (knn-approx-of-yy, xx) on LS (see Figure 42), TS, or 
NQQ�N
 nearest 
neighbors 

 
Statistics. For a 
NQQ�RXWSXW
 yy, the ATDIDT 2.2 command :KNN_67$7,67,&6�
defines a new functional attribute called error-of-knn-yy reflecting the absolute error between 
KNN model output knn-approx-of-yy and the reference output yy. The command also displays 
scatter-plots for every nearest neighbor of this error-of-knn-yy attribute, in terms of the 
distance to the neighbor (see Figure 43). The corresponding generated postscript file is named 
knn_stats-tem.ps and is located in the current directory.  
 

4.9.6 Other possible actions 
�
�+<%5,'B'7B.11 – allows to inherit in a single step all the parameters 
NQQ�
UHIHUHQFH�VHW
��
NQQ�DWWULEXWHV
 and 
NQQ�RXWSXW
 from a previously built 
decision or regression tree (the 
FXUUHQW�GW
�� Thus, the next KNN model built will 
consider only the attributes selected by the tree. The command is valuable especially for high 
dimensional input spaces.  
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Figure 40 

 
Figure 41 
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Figure 42 
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Figure 43 



4.10 K-Means 

4.10.1 What is it? 
 
Definition. K-Means technique is a statistical tool useful for clustering a large number of 
objects into a small number of groups based on numerical input attributes. It is not oriented 
towards a particular prediction task. It tries to find by itself, the existing relationships among 
objects characterized by a set of input attributes. The procedure determines a set of K clusters, 
where K is a priori fixed by the user.  
 
Method characteristics. Like any unsupervised learning method, it becomes really useful in 
the context of large-scale databases, with many objects and many attributes. It is a slow 
method. Scatter-plots are useful tools in order to visualize the clusters. 
 

4.10.2 Selections to make before starting 
 
Define the problem. Choose 
FDQGLGDWH� DWWULEXWHV
�� $dmissible input attribute 
type is “ordonee”. Note that the model does not handle linear-combination or qualitative 
attribute values, they being excluded from the 
FDQGLGDWH�DWWULEXWHV
 list prior to 
attributes’ normalization. Temporal attribute values are replaced by a list of scalar ones. 
 
Select data. Choose 
NQQ�UHIHUHQFH�VHW
, i.e. the set of objects used as learning set. 
The selection is done exactly as a *learning-set* selection. ATDIDT 2.2 command: menu 
:$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 
:6(7B.11B5()(5(1&(B6(7�  
 
Transform data. Normalize the attributes from 
FDQGLGDWH�DWWULEXWHV
 list, by 
computing their standard-deviation in the 
NQQ�UHIHUHQFH�VHW
. A list called 
NQQ�
DWWULEXWHV
 is built used to define the Euclidian distance. ATDIDT 2.2 command: menu 
:$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 
:1250$/,=(B.11B$775,%87(6� 
 
Set method parameters. Method parameter is 
N�PHDQV�N
� 
 
*k-means-k* 

- Indicates the number of clusters 
- Default value 5 
- Takes values between 0 and 50 
- ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, 

command :6(7B.0($16B. 
 

4.10.3 Apply the method 
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Command. ATDIDT 2.2 command: menu :$8720$7,&B/($51,1*, menu 
�6,0,/$5,7<, command �581B.0($16 
 
Effects of the method employment.  

- It creates 
N�PHDQV�N
� functional attributes called distance-to-cluster-<i>, that 
give for every object, the distance of the object to the cluster <i> 

- It creates the functional attribute nearest-cluster that gives for every object the name of 
the nearest cluster to the object: cluster-<i> 

- It creates the functional attribute nearest-cluster-yy that gives for every object the 
output yy (numerical or symbolic) approximated by the nearest cluster to the object 

- Creates a global variable called 
FOXVWHU�FHQWHUV
 containing statistics on LS 
for every created cluster of objects on input attributes  

- It generates a lisp file cluster-saves.lsp that defines each cluster as a list of objects 
- No log file generated. 

 
Interesting displayed information while clustering: status variables, statistics for every 
created cluster of objects on input attributes. 
 

4.10.4 Results visualization / interpretation 
 
Visualizing the clusters. ATDIDT 2.2 command :'5$:B&/867(56 generates automatically 
a scatter-plot of the clusters taking the 
FDQGLGDWH�DWWULEXWHV
 two-by-two, thus 
resulting 2

)1( −nn graphics if n is the number of attributes (see Figure 44). 
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Figure 44 



4.11 Comparative table 
 
All the presented data mining methods have been compared from the point of view of test set 
errors and CPU times. Table 5 gives an idea of the comparison. The models were built in the 
following conditions: 

o Database – OMIB 10.000 objects 
o 
JRDO�UHJUHVVLRQ
 - cct-sbs 
o 
JRDO�FODVVLILFDWLRQ
 - security 
o 
OHDUQLQJ�VHW
 - (from 5001 6000) 
o 
WHVW�VHW
 - (last 1000) 
o 
FDQGLGDWH�DWWULEXWHV
 - (pu, qu) 
o All the models parameters leaved as by default. 

 

Table 5 

DM  
Method 

DM  
learning task 

Error:  
MAE or Pe(%) 

CPU time  
(seconds) 

MLP Classification 11.1% 13.2 
KNN Classification 11.3% 1.4 

Decision Tree Classification 12.6% 2.0 
MLP Regression 0.026495 3.2 

Regression Tree Boosting Regression 0.026908 1.1 
Linear Regression Regression 0.027909 0.3 

KNN Regression 0.028132 1.4 
Regression Tree Bagging Regression 0.030672 4.9 

Regression Tree Regression 0.031697 1.5 
Linear Hinges Model Regression 0.041598 0.4 

 
At a graphical perception, you may compare the DM methods estimators for the same task by 
comparing the following graphics: 
- Figure 18, Figure 38, Figure 40; 
- Figure 19, Figure 39; 
- Figure 22, Figure 24, Figure 26, Figure 28, Figure 30, Figure 36, Figure 41; 
- Figure 23, Figure 25, Figure 27, Figure 29, Figure 31, Figure 37, Figure 42.



5 Operational, practical and useful information 

5.1 DM tips 
 
½ It is advisable the user does not include into the input attributes list 
FDQGLGDWH�

DWWULEXWHV
 the output attribute 
JRDO�UHJUHVVLRQ
 or 
JRDO�
FODVVLILFDWLRQ
 in the case of DM techniques for regression and classification 
tasks. 

½ Make sure that no attribute is repeating in the 
FDQGLGDWH�DWWULEXWHV
� list, 
case in which any model based on this global variable would do the job needlessly for 
this attribute more than once. 

 

5.2 Ideas for hybrid methods 
 
In the case of high dimensional input spaces, hybrid methods allow one to significantly reduce 
the time required to build models, and/or better tailor the model complexity to the problem at 
hand avoiding structure optimization task, and/or improve the model accuracy with respect to 
the “pure” methods. 
 
DT+MLP or RT+MLP. First settle as 
FDQGLGDWH�DWWULEXWHV
 the attributes selected 
by a tree and then train a MLP with this inputs. ATDIDT 2.2 commands:  

- build a DT or a RT 
- menu :$8720$7,&B/($51,1*, menu �75((B,1'8&7,21, command 

�6(/(&7�'7�7(67�$776 
- menu �121B/,1($5B5(*5(66,21, command �75$,1B0/3B5(*5(66,21 

or �75$,1B0/3B&/$66,),&$7,21 �
 

Dendrogram+MLP. First draw a dendrogram and select the most correlated attributes with 
the output one and then build a MLP on these attributes. ATDIDT 2.2 commands:  

- menu �'$7$B%$6(, menu �*5$3+,&6, command �'(1'52*5$06 
- select manually the 
FDQGLGDWH�DWWULEXWHV
 list based on dendrogram 

results 
- menu �121B/,1($5B5(*5(66,21, command �75$,1B0/3B5(*5(66,21 

or �75$,1B0/3B&/$66,),&$7,21 
 
DT+KNN or RT+KNN. ATDIDT 2.2 command:  

- build a DT or a RT 
- menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 

�+<%5,'B'7B.11 
- menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 

�),1'B1($5(67B1(,*+%256 
 
Dendrogram+KNN. First draw a dendrogram and select the most correlated attributes with 
the output one and then build a KNN model on these attributes. ATDIDT 2.2 commands:  
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- menu �'$7$B%$6(, menu �*5$3+,&6, command �'(1'52*5$06 
- select manually the 
FDQGLGDWH�DWWULEXWHV
 list based on dendrogram 

results 
- menu :$8720$7,&B/($51,1*, menu �6,0,/$5,7<, command 

�),1'B1($5(67B1(,*+%256 
 

5.3 Useful functions/commands 
�
ATDIDT 2.2. In order to activate a command you may click with the left mouse button on the 
command and then enter, or you may click on the middle button of the mouse once positioned 
on the command. By clicking on the right button of the mouse you get some help concerning 
the command. 
�

LQIHULRU�OLVS
 window is the space provided for interactive use of ACL lisp. Any lisp 
command should be introduced here.  
The lisp commands are not case-sensitive. 
�
�DWWULEXWH�QDPH�REMHFW�QDPH� – gives the value of attribute DWWULEXWH�QDPH 
for object REMHFW�QDPH� 
�GHVFULEH�¶DWWULEXWH�QDPH� – provides information about attribute DWWULEXWH�
QDPH� (type, values, file in which is defined, file in which is stored, lisp function if it is a 
functional attribute); 
�GHVFULEH� ¶IXQFWLRQ�QDPH� – provides information about ATDIDT function 
IXQFWLRQ�QDPH� The same effect has the command�&75/�&�&75/�'�which prompts 
for the function name; 
�GHVFULEH� ¶REMHFW� – provides information about object REMHFW� (all its attribute 
values);  
0�" – being positioned on a symbol, returns information about the symbol; it has identical 
effect as GHVFULEH� 
�DSURSRV�¶VWULQJ� – prints out all the function / attribute / global variable names that 
contain the string of characters VWULQJ��
0�[� GHVFULEH�IXQFWLRQ� ²� prompts for a lisp function name and returns short 
documentation about it. The same effect has the command�&75/�+�)��
)��I�²�prompts for a lisp function name and displays a short documentation about it; 
&75/�+�&75/�)�²�prompts for an emacs command and displays a short documentation 
about it; 
0�� - finds possible ends for the current string in all the emacs buffers. 
&75/�&�&75/�.�²�prompts for an file name and compiles the file; 
&75/�&�&75/�/�²�prompts for an file name and loads the file; 
? – tape this at any command prompt in *inferior-lisp* buffer or in the *mini-buffer* in order 
to get some help about the possible choices; 
 
Interaction with 
LQIHULRU�OLVS
 buffer. Once an error occurred in the lisp 
environment, the command line changes from '%�QDPH! (e.g. 20,%!� to >QXPEHU@�'%�
QDPH!� If you want more details on the error (where it has been encountered and its kind) 
you may tape �]RRP or �GQ� In order to exit this debug mode, you may tape �SRS�
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QXPEHU or �UHVHW����T�in older versions of TUTORIAL), and for stepping up one level 
�SRS.  
To interrupt a current process / command you may type &75/�&�&75/�&��
 
Create a clone. If the user wishes to interrupt the data mining process, he can save the whole 
context in a “clone” (an executable image containing the software modules, the initial data and 
the results produced in the meanwhile), and restart the clone later on. 
 
Status variables. The software environment maintains a list of a certain number of global 
variables, called status variables, which stores the main information concerning current 
selections (of attributes and objects) and methods parameters. They may be consulted at any 
time to get the information about the present state of the system settings, by the ATDIDT 2.2 
command: menu :'$7$B%$6(, menu �$775,%87(6B6(/(&7,21, command 
�67$786B9$5,$%/(6��
 
ATDIDT 2.2 command: menu :'$7$B%$6(, menu �$775,%87(6B6(/(&7,21, 
command�&/($5B*&/�%8))(5 clears the text in 
LQIHULRU�OLVS
 buffer.  
 
 



6 User interface 
 
To be completed. 
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8 Appendix 

8.1 Example of Database  

8.1.1 Data file 
 
Long-way database load – version 1 
 
876.029  -193.66  0.2358 
1110.88  -423.19   0.2104 
980.132  79.7223  0.2241 
974.139  217.073  0.1577 
… 
1241.88  -442.25 0.0718 
 
Long-way database load – version 2 (it contains also object numbers)  
 
1  876.029  -193.66  0.2358 
2  1110.88  -423.19   0.2104 
3  980.132  79.7223  0.2241 
4  974.139  217.073  0.1577 
… 
5000  1241.88  -442.25 0.0718 
 
Short-way database load – version 1 
 
;--++ This is javadb type file 
;;; Attribute values of db OMIB2 
omib2  
pu numerical qu numerical cct-sbs numerical 
876.029  -193.66  0.2358 
1110.88  -423.19   0.2104 
980.132  79.7223  0.2241 
974.139  217.073  0.1577 
… 
1241.88  -442.25 0.0718 
 
Short-way database load – version 2 (it contains also object names)  
 
;--++ This is javadb type file 
omib3 
object name pu numerical qu numerical cct-sbs numerical 
OP1  876.029  -193.66  0.2358 
OP2  1110.88  -423.19   0.2104 
OP3  980.132  79.7223  0.2241 
OP4  974.139  217.073  0.1577 
… 
OP5000  1241.88  -442.25 0.0718



8.1.2 Database declaration file – long-way database load 
 
;;; Database definition : 5000 objects, 4 explicit attributes, 4 functional attributes 
 
(DECLARE-BD   
   omib "Example of database declaration" 
   :OBJETS (integer 1 5000)  ;; or in version 2  :OBJETS (prefixes “OP” 1 5000) 
   :RE-INITIALISER nil 
   :ATTRIBUTS-EXPLICITES 
   ((pu "Generated active power (MW)" 
           :valeurs (real 700.0 1300.0) :par-defaut 1000.0 :type ordonne) 
    (qu "Generated reactive power (MVar)" 
           :valeurs (real -665.0 990.0) :par-defaut 0.0 :type ordonne) 
    (cct-sbs "Critical Clearing Time (msec)" 
             :valeurs (real 0.0 2.0) :par-defaut 0.0 :type ordonne)) 
   :ATTRIBUTS-EXPLICITES-TEMPORELS 
   ((delta "Rotor angle of machine (fault cleared at t=155ms)" 
    :time (0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 0.66 0.72 0.78 0.84 0.90 0.96 1.02 1.08 
1.14 1.20 1.26 1.32 1.38 1.44 1.50 1.56 1.62 1.68 1.74 1.80 1.86 1.92 1.98 2.04 2.10 2.16 2.22 2.28 2.34 2.40 
2.46 2.52 2.58 2.64 2.70 2.76 2.82 2.88 2.94 3.00) 
    :valeurs (real) :type (ordonne time))) 
   :ATTRIBUTS-FONCTIONS 
   ((security "Security class, function of cct-sbs and *tau*" 
       :valeurs (member insecure secure) :par-defaut insecure :type qualitatif-quinlan 
       :fonction (if (<= (cct-sbs objet) *tau*) 'insecure 'secure)) 
     (Pu+b*Qu "Linear combination between Pu and Qu" 
          :valeurs (+ pu (* alfa qu)) :type linear-combination 
          :fonction (+ (pu objet) (* *ponderation* (qu objet)))) 
     (delta-after-fault "Rotor angle after fault clearing at t=155ms" 
                       :valeurs (real 0.0 150.0) :type ordonne 
            :fonction (delta objet 0.155)) 
     (cct-disk "Discretized CCT, function of cct-sbs and *tau* " 
       :valeurs (member <80 80...200 200…320 >320) 
       :par-defaut insecure :type ordonne 
       :fonction (if (<= (cct-sbs objet) .08) '<80 
     (if (<= (cct-sbs objet) .20) '80...200 
       (if (<= (cct-sbs objet) .32) '200...320 '>320))))) 
      :CHARGEMENT 
       (((pu qu cct-sbs) 
          :dans (vms-file "omib-data-file.dat") 
          :format (objet pu qu cct-sbs)) 
         ((delta) :suffix delta-file-name)))) 
 
 
;;; Load attributes instruction 
 
(load-attributes  
   omib-attribute-values "This set contains all objects for which the attributes have been loaded" 
   :bd omib 
   :objets t 
   :attributs (pu qu cct-sbs delta)) 
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8.2 Example of non-linear function detected by a MLP model 

8.2.1 Nonlinear regression (MLP of Figure 32) 
 
;;; Lisp code for MLP10-CCT-SBS 
 
(defun MLP10-CCT-SBS (objet) 
  (LET ((I1 
         (+ (* 0.006016299369492383d0 (PU OBJET)) 
            -6.036782344305822d0)) 
        (I2 
         (+ (* 0.0020852237395437285d0 (QU OBJET)) 
            -0.3143199907124104d0))) 
    (LET ((I1 
           (TANH (+ -1.7405822173950702d0 (* -0.6698848359891705d0 I1) 
                    (* 1.1768705781157776d0 I2)))) 
          (I2 
           (TANH (+ -1.297346698294738d0 (* 0.26554690500398404d0 I1) 
                    (* -0.5383596578361837d0 I2)))) 
          (I3 
           (TANH (+ -3.1058438580764975d0 (* -1.376040755368317d0 I1) 
                    (* -0.07276481055133555d0 I2)))) 
          (I4 
           (TANH (+ -0.4052018775059025d0 (* 0.757953980013272d0 I1) 
                    (* -1.0086983106073752d0 I2)))) 
          (I5 
           (TANH (+ 0.31903477877975633d0 (* 0.08503960764031138d0 I1) 
                    (* 0.13047441296479204d0 I2)))) 
          (I6 
           (TANH (+ -3.394615949290037d0 (* -0.7680560439363036d0 I1) 
                    (* 2.4015419701771585d0 I2)))) 
          (I7 
           (TANH (+ -0.5154813092875247d0 (* -2.2989156249329032d0 I1) 
                    (* -1.1589011083475231d0 I2)))) 
          (I8 
           (TANH (+ 1.4392749802737381d0 (* -0.64627781470995d0 I1) 
                    (* -0.5382878434723491d0 I2)))) 
          (I9 
           (TANH (+ 0.19368775267680255d0 (* 0.30073036955597904d0 I1) 
                    (* -0.4644350742563427d0 I2)))) 
          (I10 
           (TANH (+ -0.04894697702940679d0 
                    (* -0.24347791732672294d0 I1) 
                    (* 0.872288279479176d0 I2))))) 
      (LIST (+ (* (IDENTITE (+ 0.3171044977566709d0 
                               (* 1.7222325338747593d0 I1) 
                               (* -1.3060720016456633d0 I2) 
                               (* 1.244677273903397d0 I3) 
                               (* -0.8920217843256817d0 I4) 
                               (* 0.42029165881581876d0 I5) 
                               (* -0.7071933855383663d0 I6) 
                               (* 0.1725924563090752d0 I7) 
                               (* 0.2716281796607567d0 I8) 
                               (* -0.03838435975543186d0 I9) 
                               (* -0.9374318275089645d0 I10))) 
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                  0.08803032940484923d0) 
               0.2061083002127707d0))))) 
 
;;; value specifications 
 
(setf (get ’MLP10-CCT-SBS ’valeurs) ’(REAL 
                                      0.04966100316211691d0 
                                      0.3817045034352309d0) 
      (get ’MLP10-CCT-SBS ’type) ’ORDONNE) 
       

8.2.2 Nonlinear classification (MLP of Figure 33) 
 
;;; Lisp code for MLP10-SECURITY 
 
(defun MLP10-SECURITY (objet) 
  (LET ((I1 
         (+ (* 0.006016299369492383d0 (PU OBJET)) 
            -6.036782344305822d0)) 
        (I2 
         (+ (* 0.0020852237395437285d0 (QU OBJET)) 
            -0.3143199907124104d0))) 
    (LET ((I1 
           (TANH (+ -0.7200878338195826d0 (* 1.8190459531144412d0 I1) 
                    (* -0.7651537194385958d0 I2)))) 
          (I2 
           (TANH (+ 3.543954299195746d0 (* 0.8269819057655328d0 I1) 
                    (* 0.7975512202163859d0 I2)))) 
          (I3 
           (TANH (+ -1.9847264842376473d0 (* 0.5043015904752978d0 I1) 
                    (* -0.15990958684410542d0 I2)))) 
          (I4 
           (TANH (+ 3.608415340512682d0 (* -2.8179427957549885d0 I1) 
                    (* 1.3014296372121061d0 I2)))) 
          (I5 
           (TANH (+ 1.129618129119666d0 (* 0.10406107510523722d0 I1) 
                    (* -0.21223032992079402d0 I2)))) 
          (I6 
           (TANH (+ -3.517121724150941d0 (* 5.2813596023373135d0 I1) 
                    (* -3.2944314432399504d0 I2)))) 
          (I7 
           (TANH (+ -1.4581577308766775d0 (* 1.2875485865854581d0 I1) 
                    (* -0.5944495661898753d0 I2)))) 
          (I8 
           (TANH (+ -3.47635289612401d0 (* -0.4666199692369496d0 I1) 
                    (* -2.830416533641814d0 I2)))) 
          (I9 
           (TANH (+ -5.204689741982704d0 (* -0.6137427858633842d0 I1) 
                    (* -4.700484361704271d0 I2)))) 
          (I10 
           (TANH (+ 0.19639597808687317d0 
                    (* -0.048111359271076515d0 I1) 
                    (* -0.32793412065387934d0 I2))))) 
      (LIST (+ (* (IDENTITE (+ 0.6431633488498253d0 
                               (* 0.6949643753189355d0 I1) 
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                               (* 1.667244608169718d0 I2) 
                               (* 1.6278343735764025d0 I3) 
                               (* -0.8915261525469574d0 I4) 
                               (* -0.3205421670441548d0 I5) 
                               (* 0.4496034707211712d0 I6) 
                               (* -1.2034472814126476d0 I7) 
                               (* 1.0873295113607544d0 I8) 
                               (* -0.7706073427691704d0 I9) 
                               (* 0.12134685684972324d0 I10))) 
                  0.4624932431938912d0) 
               0.31d0) 
            (+ (* (IDENTITE (+ -0.6257948278927189d0 
                               (* -0.8252517554826746d0 I1) 
                               (* -1.861877959473697d0 I2) 
                               (* -1.6636560556576392d0 I3) 
                               (* 1.1068962397653166d0 I4) 
                               (* 0.5682172717786536d0 I5) 
                               (* -0.4711678098203339d0 I6) 
                               (* 1.6176761632614354d0 I7) 
                               (* -1.070087917855041d0 I8) 
                               (* 0.7436995993959763d0 I9) 
                               (* -0.15852179717406878d0 I10))) 
                  0.4624932431938912d0) 
               0.69d0))))) 
   
;;; value specifications 
 
(setf (get ’MLP10-SECURITY ’valeurs) ’(MEMBER SECURE INSECURE) 
      (get ’MLP10-SECURITY ’type) ’ORDONNE) 
       


