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Major Types of Probability Sampling
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Simple Random Sampling

Simple random sampling is a probability sampling procedure that gives
every element in the target population, and each possible sample of a
given size, an equal chance of being selected. As such, it is an equal
probability selection method (EPSEM).



Simple Random Sampling

There are six major steps in selecting a simple random sample:

Step 1 Define the target population.

Step 2 Identify an existing sampling frame of the target population
or develop a new one.

Step 3 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, and clustering, and make
adjustments where necessary.

Step 4 Assign a unique number to each element in the frame.

Step 5 Determine the sample size.

Step 6 Randomly select the predetermined number of population
elements.



Random Selection Techniques

There are several strategies to “randomly select”:

Lottery method (also known as blind draw method or hat method)

Table of random numbers

Randomly generated numbers using a computer programme (e.g., R
- see exercise classes)



Using a Table of Random Numbers

How to randomly choose n individuals from a group of N?

We first label each of the N individuals with a number (typically
from 1 to N, or 0 to N − 1)

A list of random digits is parsed into digits of the same length as N
(if N = 233, then its length is 3; if N = 18, its length is 2).

The parsed list is read in sequence and the first n entries from this
list, corresponding to a label in our group of N, are selected.

The n individuals with these labels constitute our selection.



Using a Table of Random Numbers

Part of a random number table:



Subtypes of Simple Random Sampling

Sampling with Replacement In sampling with replacement, after
an element has been selected from the sampling frame, it is returned
to the frame and is eligible to be selected again

Sampling without Replacement In sampling without replacement,
after an element is selected from the sampling frame, it is removed
from the population and is not returned to the sampling frame.
Sampling without replacement tends to be more efficient than
sampling with replacement in producing representative samples. It
does not allow the same population element to enter the sample
more than once. [Here: When talking about Simple Random
Sampling, we will mean sampling without replacement, unless stated
otherwise.]



Stength and Weaknesses of Simple Random Sampling



Stratified Sampling

Stratified Sampling is a probability sampling procedure in which the
target population is first separated into mutually exclusive, homogeneous
segments (strata), and then a simple random sample is selected from
each segment (stratum). The samples selected from the various strata
are then combined into a single sample.



Stratified Sampling

There are eight major steps in selecting a simple random sample:

Step 1 Define the target population.

Step 2 Identify stratification variable(s) and determine the number
of strata to be used. The stratification variables should relate to the
purposes of the study. If the purpose of the study is to make
subgroup estimates, the stratification variables should be related to
those subgroups. The availability of auxiliary information often
determines the stratification variables that are used. Considering
that as the number of stratification variables increases, the
likelihood increases that some of the variables will cancel the effects
of other variables, not more than four to six stratification variables
and not more than six strata for a particular variable should be used.



Stratified Sampling

Step 3 Identify an existing sampling frame or develop a sampling
frame that includes information on the stratification variable(s) for
each element in the target population. If the sampling frame does
not include information on the stratification variables, stratification
would not be possible.

Step 4 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, and clustering, and make
adjustments where necessary.

Step 5 Divide the sampling frame into strata, categories of the
stratification variable(s), creating a sampling frame for each stratum.
Within-stratum differences should be minimized, and between-strata
differences should be maximized. The strata should not be
overlapping, and altogether, should constitute the entire population.
The strata should be independent and mutually exclusive subsets of
the population. Every element of the population must be in one and
only one stratum.



Stratified Sampling

Step 6 Assign a unique number to each element.

Step 7 Determine the sample size for each stratum. The numerical
distribution of the sampled elements across the various strata
determines the type of stratified sampling that is implemented. It
may be a proportionate stratified sampling or one of the various
types of disproportionate stratified sampling.

Step 8 Randomly select the targeted number of elements from each
stratum. At least one element must be selected from each stratum
for representation in the sample; and at least two elements must be
chosen from each stratum for the calculation of the margin of error
of estimates computed from the data collected.



Subtypes of Stratified Sampling

Proportionate Stratified Sampling In proportionate stratified
sampling, the number of elements allocated to the various strata is
proportional to the representation of the strata in the target
population. This sampling procedure is used when the purpose of
the research is to estimate a population parameter.



Subtypes of Stratified Sampling

Disproportionate Stratified Sampling Disproportionate stratified
sampling is a stratified sampling procedure in which the number of
elements sampled from each stratum is not proportional to their
representation in the total population. Population elements are not
given an equal chance to be included in the sample. The same
sampling fraction is not applied to each stratum.



Subtypes of Stratified Sampling



Stength and Weaknesses of Stratified Sampling



Differences between Quota and Stratified Sampling



Systematic Sampling

Systematic Sampling Systematic sampling (or interval random
sampling) is a probability sampling procedure in which a random
selection is made of the first element for the sample, and then
subsequent elements are selected using a fixed or systematic interval until
the desired sample size is reached. The random start distinguishes this
sampling procedure from its non-probability counterpart.

For example, after a random start, one may systematically select
every i-th patient visiting an emergency room in a hospital, store
customers standing in line, or records in file drawers.

At a technical level, systematic sampling does not create a truly
random sample. It is often referred to as “pseudo random sampling”,
“pseudo simple random sampling”, or “quasi-random sampling”.



Systematic Sampling

There are eight major steps in selecting a simple random sample:

Step 1 Define the target population.

Step 2 Determine the desired sample size (n).

Step 3 Identify an existing sampling frame or develop a sampling
frame of the target population.

Step 4 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, clustering, and periodicity, and
make adjustments where necessary. Ideally, the list will be in a
random order with respect to the study variable. If the sampling
frame is randomized, systematic sampling is considered to be a good
approximation of simple random sampling.



Systematic Sampling

Step 5 Determine the number of elements in the sampling frame
(N).

Step 6 Calculate the sampling interval (i) by dividing the number of
elements in the sampling frame (N) by the targeted sample size (n).
One should ignore a remainder and round down or truncate to the
nearest whole number. Rounding down and truncating may cause
the sample size to be larger than desired. If so, one may randomly
delete the extra selections. If the exact size of the population is not
known and impractical to determine, one may fix the sampling
fraction.

Step 7 Randomly select a number, r , from “1” through i .

Step 8 Select for the sample, r , r + i , r + 2i , r + 3i , and so forth,
until the frame is exhausted.



Strengths and Weaknesses of Systematic Sampling



Cluster Sampling

Cluster Sampling Cluster sampling is a probability sampling procedure
in which elements of the population are randomly selected in naturally
occurring groupings (clusters). In the context of cluster sampling, a
cluster is an aggregate or intact grouping of population elements.
Element sampling is the selection of population elements individually, one
at a time. On the other hand, cluster sampling involves the selection of
population elements not individually, but in aggregates.



Cluster Sampling

There are six major steps in selecting a cluster sample:

Step 1 Define the target population.

Step 2 Determine the desired sample size.

Step 3 Identify an existing sampling frame or develop a new
sampling frame of clusters of the target population.

Step 4 Evaluate the sampling frame for undercoverage,
overcoverage, multiple coverage, and clustering, and make
adjustments where necessary. Ideally, the clusters would be as
heterogeneous as the population, mutually exclusive, and collectively
exhaustive. Duplication of elements in the sample may result if
population elements belonged to more than one cluster. Omissions
will result in coverage bias.



Cluster Sampling

Step 5 Determine the number of clusters to be selected. This may
be done by dividing the sample size by estimated average number of
population elements in each cluster. To the extent the homogeneity
and heterogeneity of the clusters are different from that of the
population, as cluster number increases, precision increases. On the
other hand, as differences between clusters increases, precision
decreases.

Step 6 Randomly select the targeted number of clusters.



Subtypes of Cluster Sampling

Single-stage cluster sampling In a single-stage cluster sample
design, sampling is done only once.

Example: interest in studying homeless persons who live in shelters.
If there are five shelters in a city, a researcher will randomly select
one of the shelters and then include in the study all the homeless
persons who reside at the selected shelter.

Two-stage cluster sampling A two-stage cluster sample design
includes all the steps in single-stage cluster sample design with one
exception, the last step. Instead of including all the elements in the
selected clusters in the sample, a random sample (either a simple
random sample, stratified sample, or systematic sample) is taken
from the elements in each selected cluster.

Multi-stage cluster sampling Multistage cluster sampling involves
the repetition of two basic steps: listing and sampling. Typically, at
each stage, the clusters get progressively smaller in size; and at the
last stage element sampling is used. Sampling procedures (simple
random sampling, stratified sampling, or systematic sampling) at
each stage may differ.



Cluster Sampling



Stenghts and Weaknesses of Cluster Sampling



Comparison Between Cluster Sampling and Stratified
Sampling



Comparison Between Cluster Sampling and Stratified
Sampling
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Rolling Down the River

A farmer has just cleared a new field for corn. It is a unique plot of land
in that a river runs along one side. The corn looks good in some areas of
the field but not others. The farmer is not sure that harvesting the field
is worth the expense. He has decided to harvest 10 plots and use this
information to estimate the total yield. Based on this estimate, he will

decide whether to harvest the remaining plots.

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATH0487-1)



Rolling Down the River

A farmer has just cleared a new field for corn. It is a unique plot of land
in that a river runs along one side. The corn looks good in some areas of
the field but not others. The farmer is not sure that harvesting the field
is worth the expense. He has decided to harvest 10 plots and use this
information to estimate the total yield. Based on this estimate, he will

decide whether to harvest the remaining plots.



Rolling Down the River

Discussion

Is there a reason, other than convenience, to choose one method
over another?

How do your estimates vary according to the different sampling
methods?

Do you have similar results as your neighbor?

What can you tell from comparing “boxplots” of the mean yields
under simple random sampling, vertical or horizontal stratified
sampling?

Which sampling method would you promote? Why?

What is the actual yield of the entire field? How do the boxplots
relate to this actual value?
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Study Designs: Design Dilemma

A study design is a specific plan or protocol for conducting the study,
which allows the investigator to translate the conceptual hypothesis into
an operational one.
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Classification of Study Designs

Qualitative Quantitative
Understanding Prediction
Interview/observation Survey/questionnaires
Discovering frameworks Existing frameworks
Textual (words) Numerical
Theory generating Theory testing (experimental)
Quality of informant more important Sample size core issue in
than sample size reliability of data
Subjective Objective
Embedded knowledge Public
Models of analysis: fidelity to Model of analysis:parametric,
text or words of interviewees non-parametric



Classification of Study Designs

Qualitative

Methods

Focus Groups
Interviews
Surveys
Self-reports

Sampling: Purposive

Quality Assurance:

Trustworthiness: e.g.,
Credibility, Confirmability,
Transferability
Authenticity: e.g., Educative

Qualitative

Methods

Observational
Experimental

Sampling: Random (simple,
stratified, cluster, etc) or
purposive

Quality Assurance:

Reliability: “Consistent”
Validity: “Construct”



Reliability and Validity

Reliability:

The degree of consistency between two measures of the same thing.
(Mehrens and Lehman, 1987).
The measure of how stable, dependable, trustworthy, and consistent
a test is in measuring the same thing each time (Worthen et al.,
1993)

Validity:

Truthfulness: Does the test measure what it purports to measure?
the extent to which certain inferences can be made from test scores
or other measurement. (Mehrens and Lehman, 1987)
The degree to which they accomplish the purpose for which they are
being used. (Worthen et al., 1993)
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Observational Study Designs

Observational: studies that do not involve any intervention or
experiment.
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Experimental Study Designs

Experimental: studies that entail manipulation of the study factor
(exposure) and randomization of subjects to treatment (exposure) groups.



Popular Statistics and their Distribution
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Some Definitions

Distribution of sample Let X1,X2, . . . ,Xn denote a sample of size
n. The distribution of the sample X1,X2, . . . ,Xn is defined to be the
joint distribution of X1,X2, . . . ,Xn .

Hence, if X1,X2, . . . ,Xn is a random sample of size n from f (.) then
the distribution of the random sample X1,X2, . . . ,Xn, defined as the
joint distribution of X1,X2, . . . ,Xn , is given by
fX1,X2,...,Xn

(x1, x2, . . . , xn) = f (x1)f (x2) . . . f (xn), and X1,X2, . . . ,Xn

are stochastically independent.

Statistic Any function of the elements of a random sample, which
does not depend on unknown parameters, is called a statistic.

Statistics may serve as estimators for a parameter of interest.
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Examples of Statistics

X =
∑n

i=1 Xi/n is called the sample mean.

S2 =
∑n

i=1(Xi − X )2/(n − 1) is called the sample variance
(sometimes denoted as S2

n−1).

S =
√
S2 is called the sample standard deviation.

Mr =
∑n

i=1 X
r
i /n is called the rth sample moment about the

origin.

Suppose that the random variables X1, . . . ,Xn are ordered and
re-written as X(1),X(2), . . . ,X(n). The vector (X(1), . . . ,X(n)) is
called the ordered sample.

The standard error (SE) is an estimate of the standard deviation of
a statistic. It is important because it is used to compute other
measures, like confidence intervals or margins of error (see later)



Sampling Distributions

When the distribution of interest consists of all the unique samples
of size n that can be drawn from a population, the resulting
distribution of sample means is called the sampling distribution of
the mean.

We can generate a distribution of anything, as long as we have
values / scores to work with (cfr tossing a coin and scoring the
sample wrt nr of heads).

There are also sampling distributions of medians, standard
deviations, and any other statistic you can think of.

In other words, populations, which are distributions of individual
elements, give rise to sampling distributions, which describe how
collections of elements are distributed in the population.



Sampling Distributions

Level Collection Elements
Population All individuals The scores each individual

(N = size of population) receives on some attribute
Sample Subset of individuals from the population The scores each individual

(n =size of sample) in the sample receives on
some attribute

Sampling Distribution All unique samples of size n from The values of a statistic
the population applied to each sample



Sampling Distributions

In inferential statistics we make use of two important properties of
sampling distributions, expressed in lay terms as:

The mean of all unique samples of size n (i.e., the average of all the
means) is identical to the mean of the population from which those
samples are drawn. Thus, any claims about the mean of the
sampling distribution apply to the population mean.
The shape of the sampling distribution increasingly approximates a
normal curve as sample size n is increased, even if the original
population is not normally distributed.

If the original population is itself normally distributed, then the
sampling distribution will be normally distributed even when the
sample size is only one.



The Empirical Rule

Sometimes the door handles in office buildings show a wear pattern
caused by thousands, maybe millions of times being pulled or pushed
to open the door. Often you will see that there is a middle region
that shows by far the most amount of wear at the place where
people opening the door are the most likely to grab the handle,
surrounded by areas on either side showing less wear. On average,
people are more likely to have grabbed the handle in the same spot
and less likely to use the extremes on either side.

Many real-life phenomena are “normal”.



The Empirical Rule

The so-called empirical rule states that the bulk of a set of data
will cluster around the mean in the following fashion:

68% of values fall within 1 standard deviation of the mean
95% fall within ±2 standard deviations of the mean
99% fall within ±3 standard deviations of the mean

It is called the “empirical rule” since experimenters have observed
roughly these patterns from their data over and over again when
they empirically collect data.



Theoretical Sampling Distributions

Unless the details of a population are known in advance, it is not
possible to perfectly describe any of its sampling distributions.

When the population details are known, we can simply calculate the
desired parameter, and then there would be no point in collecting
samples.

For this reason, a variety of idealized, theoretical sampling
distributions have been described mathematically, including the
student t distribution or the F distribution (see later: theory and
practical sessions), which can be used as statistical models for the
real sampling distributions.

The theoretical sampling distributions can then be used to obtain
the likelihood (or probability) of sampling a particular mean if the
mean of the sampling distribution (and hence the mean of the
original population) is some particular value. The population
parameter will first have to be hypothesized, as the true state of
affairs is generally unknown. This is called the null hypothesis (see
later: Chapter “Hypothesis Testing”)



Computing the Standard Error: a Measure of Sampling
Error

Population parameter Sample statistic
N: Number of observations in the population n: Number of observations in the sample
Ni : Number of observations in population i ni : Number of observations in sample i
P: Proportion of successes in population p: Proportion of successes in sample
Pi : Proportion of successes in population i pi : Proportion of successes in sample i
μ: Population mean x : Sample estimate of population mean
μi : Mean of population i xi : Sample estimate of μi

σ: Population standard deviation s or S : Sample estimate of σ
σp : Standard deviation of p SEp : Standard error of p
σx : Standard deviation of x SEx : Standard error of x



Computing the Standard Error: a Measure of Sampling
Error

The variability of a statistic is measured by its standard deviation.
The table below show formulas for computing the standard deviation
of statistics from simple random samples.

Statistic Standard Deviation
Sample mean, x σx = σ/

√
n

Sample proportion, p σp =
√

P(1− P)/n

Difference between means, x1 − x2 σx1−x2
=

√
σ2
1/n1 + σ2

2/n2

Difference between proportions, p1 − p2 σp1−p2
=

√
P1(1− P1)/n1 + P2(1− P2)/n2

So in order to compute the standard deviation of a sample statistic
(spread in sample distribution of the statistic), you must know the
value of one or more population paramaters.



Computing the Standard Error: a Measure of Sampling
Error

The values of population parameters are often unknown, making it
impossible to compute the standard deviation of a statistic. When
this occurs, use the standard error.

The standard error is computed from known sample statistics, and it
provides an unbiased estimate of the standard deviation of the
statistic. The table below shows how to compute the standard error
for simple random samples, assuming the population size is at least
10 times larger than the sample size.

Statistic Standard Error
Sample mean, x SEx = s/

√
n

Sample proportion, p SEp =
√

p(1− p)/n

Difference between means, x1 − x2 SEx1−x2
=

√
s21/n1 + s22/n2

Difference between proportions, p1 − p2 SEp1−p2
=

√
p1(1− p1)/n1 + p2(1− p2)/n2



Taylor Expansion - An aside to compute variances

Definition: If a function g(x) has derivatives of order r , that is
g (r)(x) = ∂r

∂xr g(x) exists, then for any constant a, the Taylor
expansion of order r about a is:

Tr (x) =

r∑
k=0

g (k)(a)

k!
(x − a)k .

The major theorem from Taylor is that the remainder from the
approximation, namely g(x)− Tr (x), tends to 0 faster than the
highest-order term in Tr (x).

Theorem: If g (r)(a) = ∂r

∂xr g(x)|x=a exists, then

lim
x→a

g(x)− Tr (x)

(x − a)r
= 0.

For the purpose of the Delta Method, we will only use r = 1.



Applying the Taylor Theorem

Let T1,T2, . . . ,Tk be random variables with means θ1, θ2, . . . , θk
and define T = (T1, . . . ,Tk) and θ = (θ1, . . . , θk).

The first order Taylor series expansion of g about θ (multivariate
version) is

g(t) ≈ g(θ) +

k∑
i=1

g ′i (θ)(Ti − θi ) + Remainder

Taking expectations from both sides:

E [g(T )] ≈ g(θ)

We can also approximate the variance of g(T ) by

Var [g(T )] ≈ E [(g(T )− g(θ))2]

≈ E [(
k∑

i=1

g ′i (θ)(Ti − θi ))
2]

=

k∑
i=1

g ′i (θ)
2Var(Ti ) + 2

∑
i>j

g ′i (θ)g
′
j (θ)Cov(Ti ,Tj)



Replicated sampling

The essence of this strategy is to facilitate the variance calculation
by selecting a set of replicated subsamples instead of a single sample.

It requires each subsample to be drawn independently and to use an
identical sample selection design.

Then an estimate is made in each subsample by the identical
process, and the sampling variance of the overall estimate (based on
all subsamples) can be estimated from the variability of these
independent subsample estimates.



Jacknife and bootstrap

The jackknife procedure is to estimate the parameter of interest n
times, each time deleting one sample data point. The average of the
resulting estimators, called “pseudovalues”, is the jackknife estimate
for the parameter. For large n, the jackknife estimate is
approximately normally distributed about the true parameter.

The bootstrap method involves drawing samples repeatedly from
the empirical distribution. So in practice, a large number of samples
of size n are drawn with replacement, from the original n data
points. Each time, the parameter of interest is estimated from the
bootstrap sample, and the average over all bootstrap samples is
taken to be the bootstrap estimate of the parameter of interest.



In summary

How can we know whether our sample is representative of the underlying
population?

Avoid small samples, as there are more extreme (i.e., rare) sample
means in the sampling distribution, and we are more likely to get
one of them in an experiment.

We have control over sampling error because sample size determines
the standard error (variability) in a sampling distribution.

We will see that sample size is closely connected to the concept of
“power”: if a specific power is targeted to identify an effect in a
testing strategy, then one can compute the necessary sample size to
achieve the pre-specified power of the test.

On a practical note:

Realize that large samples are not always attainable and that clever
more complicated sample strategies than simple random sampling
need to be followed.
A correction is needed when sampling from a finite distribution



A note aside

The central limit theorem and the formulae for standard errors of
the mean and the proportion are based on the premise that the
samples selected are chosen with replacement.

However, in virtually all survey research, sampling is conducted
without replacement from populations that are of a finite size np

In these cases, particularly when the sample size n is not small in
comparison with the population size np (i.e., more than 5% of the
population is sampled) so that n > np0.05, a finite population
correction factor (fpc) is used to define for instance both the
standard error of the mean and the standard error of the proportion.



A note aside

If we denote the mean and standard deviation of the sampling
distribution of means by μx and σx , and the population mean and
standard deviation by μ and σ, then actually

σx =
σ√
n

√
np − n

np − 1
.

If the population is infinite or if sampling is with replacement, the
above result reduces to

σx =
σ√
n
,

in line with “large sample theory” and the Central Limit Theorem.
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Resampling

Approximations obtained by random sampling or simulation are
called Monte Carlo estimates.

Assume random variable Y has a certain distribution. Use
simulation or analytic derivations to study how an estimator,
computed from samples from this distribution, behaves: e.g., Y has
lognormal distribution, what is the variance of the median?

Analytical solution? Need knowledge of the population distribution
function
Simulate 500 samples of size n from the lognormal distribution,
compute the sample median for each sample, and then compute the
sample variance of the 500 sample medians.
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The Bootstrap

Efrons bootstrap is a general purpose technique for obtaining
estimates of properties of statistical estimators without making
assumptions about the distribution of the data.

Often used to find:

Standard errors of estimates (may be easier than “Delta Method”)
Confidence intervals for unknown paramters (see later “Confidence
Intervals”)
p-values for test statistics under a null hypothesis (see later
“Hypothesis testing”)



The Bootstrap



The Bootstrap

Suppose Y has a cumulative distribution function (cdf)
F (y) = P(Y ≤ y).

We have a sample of size n from F (y), Y1,Y2, . . . ,Yn

Steps:

Repeatedly simulate sample of size n from F

Compute statistic of interest
Study behavior of statistic over B repetitions



The Bootstrap

Without knowledge of F use the empirical cdf
Fn(y) = 1/n

∑n
i=1 I (Yi ≤ y) as estimate of F .

Pretend that Fn(y) is the original distribution F (y).

Sampling from Fn(y) is equivalent to sampling with replacement
from originally observed Y1, . . . ,Yn.

Special case: leave-one-out observation samples = Jackknife
samples



Inverse Transform Method for Simulating Continuous
Random Variables

The Method of Inverse Transforms is most often used to simulate
a realization of a random variable associated with a particular
distribution. Inverse transform sampling works as follows.

Consider, for example, a continuous random variable with
cumulative distribution function F .

Let U be a uniform random variable over the unit interval and pass
U through the inverse of the cumulative distribution function, that
is, compute X = F−1(U), where X constitutes a “sample”.

It can be seen that for a sufficiently large set of samples, the
associated normalized histogram generates a close approximation to
the probability density function of the random variable associated
with the cumulative distribution function F .



Inverse Transform Method for Simulating Continuous
Random Variables

Standard Normal Cumulative Standard Normal

Inverse Cumulative Standard Normal Idea behind Quantile Function
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Exploratory Data Analysis: Motivating example

Given 4 data sets (actual data omitted), for which

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept (β0) = 3
Slope (β1) = 0.5
Residual standard deviation = 1.236
Correlation = 0.816 (0.817 for data set 4)

Y = β0 + β1X + ε, with ε a random variable called the error-term,
and β0, β1 parameters, is called a simple linear regression model.
In such a model, it is assumed that the expecation of Y given X is
E (Y ) = β0 + β1X (see later).

Do you think these 4 data sets will give equivalent results?
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Motivating example

Do you think the four aformentioned data sets will give equivalent results?



Motivating example

A “scatter plot” of each data set (i.e., plotting Y values versus
corresponding X values in a plane), would be the first step of any
EDA approach . . . and would immediately reveal non-equivalence!



Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis - EDAWhy? What? How? Assumptions of EDA

Data analysis procedures

There are three popular data analysis approaches

classical analysis Problem → Data →
Model → Analysis → Conclusions

Bayesian analysis Problem → Data →
Model → Prior Distribution → Analysis → Conclusions

EDA Problem → Data →
Analysis → Model → Conclusions
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Data analysis procedures

For classical analysis, the data collection is followed by proposing a
model (normality, linearity, etc.) and the analysis, estimation, and
testing that follows are focused on the parameters of that model.

For a Bayesian analysis, the analyst attempts to incorporate
scientific/engineering knowledge/expertise into the analysis by
imposing a data-independent distribution on the parameters of the
selected model: the analysis formally combines both the prior
distribution on the parameters and the collected data to jointly make
inferences and/or test assumptions about the model parameters.

For EDA, the data collection is not followed by a model imposition:
it is followed immediately by analysis with a goal of inferring what
model would be appropriate



Data analysis procedures

Moreover, statistics and data analysis procedures can broadly be
split into two parts:

Quantitative procedures
Graphical procedures

Quantitative techniques are the set of statistical procedures that
yield numeric or tabular output:

hypothesis testing
analysis of variance (is there more variation within groups of
observations than between groups of observations?)
point estimates and confidence intervals
least squares regression

These and similar techniques are all valuable and are mainstream in
terms of classical analysis.



Data analysis procedures

The graphical techniques are for a large part employed in an
Exploratory Data Analysis framework. They are often quite simple:

plotting the raw data such as via histograms, probability plots
plotting simple statistics such as mean plots, standard deviation
plots, box plots, and main effects plots of the raw data.
positioning such plots so as to maximize our natural
pattern-recognition abilities (multiple plots, when grouped together,
may give a more complete picture of what is going on in the data)



Exploratory Data Analysis

EDA is not identical to statistical graphics (although the two terms
are used almost interchangeably) . . . It is much more.

Statistical graphics is a collection of graphically-based techniques.
They are all focusing on data characterization aspects.

EDA is an approach to data analysis that postpones the usual
assumptions about what kind of model the data follow with the
more direct approach of allowing the data itself to reveal its
underlying structure and model.

Exploratory Data Analysis is an approach/philosophy
for data analysis that employs a variety of techniques.
The main role of EDA is to open-mindedly explore,
and graphics gives the analysts unparalleled power to
do so.



Exploratory Data Analysis

Exploratory Data Analysis (EDA) is an approach/philosophy for data
analysis that employs a variety of techniques (mostly graphical) to

maximize insight into a data set;
uncover underlying structure;
extract important variables;
test underlying assumptions;
develop parsimonious models;
detect outliers and anomalies
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Outlier Detection

Definition of Hawkins [Hawkins 1980]:

An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a
different mechanism

Statistics-based intuition

“Normal data” objects follow a “generating mechanisms”, e.g. some
given statistical process
“Abnormal objects” deviate from this generating mechanism

Whether an occurrence is abnormal depends on different aspects like
frequency, spatial correlation, etc.

Should one always discard outlying observations?
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Examples (I)

Fraud detection

Purchasing behavior of a credit card owner usually changes when the
card is stolen
Abnormal buying patterns can characterize credit card abuse

Medicine

Unusual symptoms or test results may indicate potential health
problems of a patient
Whether a particular test result is abnormal may depend on other
characteristics of the patients (e.g. gender, age, )

Public health

The occurrence of a particular disease, e.g. tetanus, scattered across
various hospitals of a city indicate problems with the corresponding
vaccination program in that city



Examples (II)

Sports statistics

In many sports, various parameters are recorded for players in order
to evaluate the players’ performances
Outstanding (in a positive as well as a negative sense) players may
be identified as having abnormal parameter values
Sometimes, players show abnormal values only on a subset or a
special combination of the recorded parameters

Detecting measurement errors

Data derived from sensors (e.g. in a given scientific experiment) may
contain measurement errors
Abnormal values could provide an indication of a measurement error
Removing such errors can be important in other data mining and
data analysis tasks



Univariate and Multivariate Views



Food for Thought

Data usually are multivariate, i.e., multi-dimensional: The basic
model for outliers is univariate, i.e. one-dimensional

There is usually more than one generating mechanism/statistical
process underlying the “normal” data: basic model assumes only one
“normal” generating mechanism

Anomalies may represent a different class (generating mechanism) of
objects, so there may be a large class of similar objects that are the
outliers: The basic model assumes that outliers are rare observations

A lot of models and approaches have evolved in the past years in
order to extend these assumptions: For instance, extreme-value
analysis techniques

Remember: One person’s noise could be another person’s signal!
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Methods of EDA: one-way

Ordering : Stem-and-Leaf plots

Grouping: frequency displays, distributions; histograms

Summaries: summary statistics, standard deviation, box-and-whisker
plots
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Stem-and-leaf Plots



Stem-and-leaf Plots

The age interval is the stem

The observations are the leaves

Rule of thumb:

The number of stems should roughly equal the square root of the
number of observations
Or the stems should be logical categories



Cumulative Frequency Distribution Tables

This table shows an empirical distribution function obtained from
a sample

The true distribution function is the distribution of the entire
population



Histograms



Histograms and densities



Summary statistics: percentiles

The r-th percentile Pr of a set of values, divides them such that r
percent of the values lie below and (100− r) percent of the values
above.



Calculating quartiles



Calculating quartiles



Box-and-whisker plots

Box-and-whisker plots display quartiles

Some terminology:

Upper Hinge = Q3 = Third quartile
Lower Hinge = Q1 = First quartile
Interquartile range (IQR) = Q3 − Q1

Contains the middle 50% of data
Upper Fence = Upper Hinge + 1.5 * (IQR)
Lower Fence = Lower Hinge - 1.5 * (IQR)
Outliers: Data values beyond the fences

Whiskers are drawn to the smallest and largest observations within
the fences



Box-and-whisker plots

IQR = 44-29 = 15

Upper Fence = 44 + 15*1.5 = 66.5

Lower Fence = 29 - 15*1.5 = 6.5



Extensions to box-plots

Compared to the classical box plot, what extra information is provided in
the plots below?



Extensions to box-plots

Several methods exist for adding density to the box plot:

a) histplot,
b) vaseplot,
c) box-percentile plot,
d) violin plot (a combination of a boxplot and a kernel density plot)

In the notched boxplot, if the notches of two boxes do not overlap
this is “strong evidence” for their medians to be different



Quantile-Quantile (Q-Q) Plots

We have seen a quantile function before . . . ; one corresponding to a
normal density function

In general, the quantile function of a probability distribution f is
the inverse of its cumulative distribution function (cdf) F

Quantile functions as well can be estimated from the data at hand.

If we consider the estimated quantile function to be a “good”
estimate (sample level) for the truth (population level), it will learn
us something about the true underlying mechanisms of the data

If we assume a particular “model” or mechanism that could have
generated the data, we can compare the quantile function
corresponding to this “theoretically proposed” distribution to the
quantile function corresponding to our observed data



Q-Q Plots

Quantile plots: The sample
quantiles are plotted against the
fraction of the sample they corre-
spond to

Q-Q plots: The sample quantiles
are plotted against the theoretical
quantiles (“observed” quantiles
are compared to “expected” quan-
tiles under the assumed model)



Q-Q Plots

In general, Q-Q plots allow us to compare the quantiles of two sets
of numbers. They go beyond the information provided by box-plots
(also using quantiles), in that Q-Q plots give us a clue about the
validity of a proposed model for the data or data generation
mechanism

There is a cost associated with this extra detail. We need more
observations than for simple comparisons

Remark:

A P-P plot compares the empirical cumulative distribution function
of a data set with a specified theoretical cumulative distribution
function.
Q-Q plot compares the quantiles of a data distribution with the
quantiles of a standardized theoretical distribution from a specified
family of distributions



Examples (I)

Normal Q-Q Plots of Samples from Normal Populations

A sufficiently trained statistician can read a Q-Q-plot like a holistic
medical doctor can read the internal organs of a person. Interpreting
Q-Q plots is more a visceral than an intellectual exercise. The
uninitiated are often mystified by the process.

Experience is the key here. The first step is to examine normal Q-Q
plots of samples known to be from normal populations, to get some
idea of how much straggling about the line is acceptable.

Normal Q-Q plot of a sample of 20 observations from a Normal population with mean 10 and

standard deviation 3



Examples (II)

Normal Q-Q Plots of Samples from Skew Populations

The lognormal density is given by

f (x) = 1/(
√

(2π)σx)e−((log x−μ)2/(2σ2))
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Examples (II)

Normal Q-Q Plots of Samples from Skew Populations

Specific departures from normality in the population being sampled
manifest themselves as specific departures from the straight and
narrow in the Q-Q plot.

If the population being sampled is actually skewed to the right, i.e.
has a long right hand tail, and thus short left tail, then the sample
quantiles close to 1 will lie to the right of where normality would
place them, and similarly for the sample quantiles close to 0. For
quantiles closer to 0.5, the Normal quantiles will exceed those of the
sample.

Why?



Why Do Q-Q Plots from Skewed Populations Look Like
They Do?

A plot of a right-skewed lognormal population compared to a normal
population with the same mean and standard deviation
(mean=11.33, st.dev.=6.04):

If you imagine where the 0.1, 0.2,...,0.9 quantiles (for example) lie in
both populations, it seems reasonably clear that the normal
quantiles will be less than their lognormal counterparts to begin with.
By quantile 0.5 the situation has been reversed, since the lognormal
has a median of 10 and the Normal a median of 11.33. At the right
hand end of the plot, the normal quantiles will again be less than
their lognormal counterparts.



Examples (II)

Normal Q-Q Plots of Samples from Skew Populations

The result is a Q-Q plot which resembles the left hand top of an
arch, starting below the target line (or to the right if you prefer),
arching across it and then back to finish below (or to the right of)
the line again.

If the sampled population is skewed to the left, the arch is reflected
about Y = X , starting above it, crossing below and then back to
finish above.

Normal Q-Q plot of a sample of 20 observations from a lognormal population with mean 10 and

standard deviation 3. This population is skewed to the right (i.e. it has a long right hand tail).



Examples (III)

Normal Q-Q Plots of Samples from Heavy Tailed (Leptokurtic)
Populations

Heavy tailed populations are symmetric, with more members at
greater remove from the population mean than in a Normal
population with the same standard deviation.

To compensate for the extreme members of the population, there
must also be higher concentration around the population mean than
in a Normal population with the same standard deviation. Heavy
tailed populations have higher, narrower peaks than the benchmark
Normal population. Hence, the term leptokurtic - narrow arched.



Examples (III)

Normal Q-Q Plots of Samples from Heavy Tailed (Leptokurtic)
Populations

With a normal population (same mean and standard deviation as the
leptokurtic population) as benchmark, the sample quantiles might
be expected to start ahead of their normal counterparts, but be soon
overtaken by them. Symmetry would place both sample and target
median back together again. The situation would be reversed as you
move from the median into the right hand tail, with the sample
quantiles in front of the targets to begin with, but eventually being
overtaken by them.

Heavy tailed population (red) com-
pared with a normal population
(blue)

A section of the extreme right hand
tails of the two populations, showing
the extended reach of the heavy
tailed (red) population compared to
its Normal (blue) benchmark.



Examples (III)

Normal Q-Q Plots of Samples from Heavy Tailed (Leptokurtic)
Populations

The result is a Q-Q plot which resembles a stretched S, starting to
the left of the target line, and ending to the right of it, having
crossed it three times in between.

Normal Q-Q plot of a sample of 20 observations from a heavy tailed population with mean 10 and

standard deviation 3.
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Methods of EDA: two-way

2 Categorical Variables

Frequency table

1 Categorical, 1 Continuous Variable

Stratified stem-and-leaf plots
Side-by-side box plots

2 Continuous variables

Scatterplot
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2 categorical variables



1 categorical + 1 continuous variable



1 categorical + 1 continuous variable



2 continous variables



2 continous variables

library(aplpack) attach(mtcars) bagplot(wt,mpg, xlab="Car Weight

ylab="Miles Per Gallon", main="Bagplot Example")



R gallery
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Assumptions of EDA

Virtually any data analysis approach relies on assumptions that need
to be verified

There are four assumptions that typically underlie all measurement
processes; namely, that the data from the process at hand ”behave
like”:

random drawings,
from a fixed distribution,
with the distribution having fixed location and
with the distribution having fixed variation

The data are called to follow a univariate process
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Assumptions of EDA

The most common assumption in any data analysis is that the
differences between the raw response data and the predicted values
from a fitted model (these are called residuals) should themselves
behave like a univariate process

So, if the residuals from the fitted model behave like the ideal, then
testing the underlying assumptions for univariate processes becomes
a tool for the validation and quality of fit of the chosen model.

On the other hand, if the residuals from the chosen fitted model
violate one or more of the aforementioned univariate assumptions,
then we can say that the chosen fitted model is inadequate and an
opportunity exists for arriving at an improved model.



Verifying the Assumptions of EDA

The following EDA techniques are simple, efficient, and powerful for
the routine testing of underlying assumptions:

run sequence plot (Yi versus i) – upper left on next slide
lag plot (Yi versus Yi−1) – upper right on next slide
histogram (counts versus subgroups of Y ) – lower left on next slide
normal probability plot (ordered Y versus theoretical ordered Y ) -
lower right on next slide

Together they form what is often called a 4-plot of the data.



Verifying the Assumptions of EDA



Interpretation of 4-plots

Randomness: If the randomness assumption holds, then the lag plot
(Yi versus Yi−1) will be without any apparent structure and random.

Fixed Distribution: If the fixed distribution assumption holds, in
particular if the fixed normal distribution holds, then the histogram
will be bell-shaped, and the normal probability plot will be linear.

Fixed Location: If the fixed location assumption holds, then the
run sequence plot (Yi versus i) will be flat and non-drifting.

Fixed Variation: If the fixed variation assumption holds, then the
vertical spread in the run sequence plot (Yi versus i) will be the
approximately the same over the entire horizontal axis.

Can we reverse the reasoning?



Interpretation of 4-plots

Run Sequence Plot: If the run sequence plot (Yi versus i) is flat
and non-drifting, the fixed-location assumption holds. If the run
sequence plot has a vertical spread that is about the same over the
entire plot, then the fixed-variation assumption holds.

Lag Plot: If the lag plot is without structure, then the randomness
assumption holds.

Histogram: If the histogram is bell-shaped, the underlying
distribution is symmetric and perhaps approximately normal.

Normal Probability Plot: If the normal probability plot is linear,
the underlying distribution is approximately normal



When assumptions are violated

Consequences of non-randomness:

All of the usual statistical tests are invalid.
The calculated uncertainties for commonly used statistics become
meaningless.
The calculated minimal sample size required for a pre-specified
tolerance becomes meaningless.
Even the simple model linear regression model becomes invalid.
The parameter estimates become suspect and non-supportable
. . .

When violations cannot be corrected in some sense, usually a more
complicated analysis strategy needs to be adopted (for instance:
mixed modelling to account for dependencies caused by multiple
measurements taken over a specific time span, for the same
individual).


