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6.1 Introduction

Suppose that we are going to observe the value of a random vector X. Let X denote the set of
possible values that X can take and, for x ∈ X , let g(x|θ) denote the probability that X = x
where the parameter θ is some unknown element of the set Θ.

Our assumptions specify g,Θ, and X . A hypothesis specifies that θ belongs to some subset
Θ0 of Θ. The question arises as to whether the observed data x is consistent with the hypothesis
that θ ∈ Θ0, often written as H0 : θ ∈ Θ0. The hypothesis H0 is usually referred to as the null
hypothesis.

In a hypothesis testing situation, two types of error are possible.

• The first type of error is to reject the null hypothesis H0 : θ ∈ Θ0 as being inconsistent
with the observed data x when, in fact, θ ∈ Θ0 i.e. when, in fact, the null hypothesis
happens to be true. This is referred to as type 1 error.

• The second type of error is to fail to reject the null hypothesis H0 : θ ∈ Θ0 as being
inconsistent with the observed data x when, in fact, θ /∈ Θ0 i.e. when, in fact, the null
hypothesis happens to be false. This is referred to as type 2 error.

Example 6.1.
Suppose the data consist of a random sample X1, X2, . . . , Xn from a N (θ, 1) density. Let Θ = (−∞,∞) and
Θ0 = (−∞, 0] and consider testing H0 : θ ∈ Θ0 or in other words H0 : θ ≤ 0.

Solution of Example 6.1. The standard estimate of θ for this example is X̄. It would seem
rational to consider that the bigger the value of X̄ that we observe the stronger is the evidence
against the null hypothesis that θ ≤ 0. How big does X̄ have to be in order for us to reject H0 ?

120



CHAPTER 6. HYPOTHESIS TESTING 6.1. INTRODUCTION

Suppose that n = 25 and we observe x̄ = 0.32. What are the chances of getting such a large
value for x̄ if, in fact, θ ≤ 0 ? We know that X̄ has a N (θ, 1

n
) density i.e. a N (θ, 0.04) density.

So the probability of getting a value for x̄ as large as 0.32 is the area under a N (θ, 0.04) curve
between 0.32 and ∞ which is, in turn, equal to the area under a N (0, 1) curve between 0.32−θ

0.20
and ∞. To evaluate the probability of getting a value for x̄ as large as 0.32 if, in fact, θ ≤ 0 we
need to find the value of θ ≤ 0 for which the area under a N (0, 1) curve between 0.32−θ

0.20 and ∞
is maximised. Clearly this happens for θ = 0 and the resulting maximum is the area under a
N (0, 1) curve between 0.32

0.20 = 1.60 and ∞ or 0.0548. This quantity is called the p-value. The
p-value is used to measure the strength of the evidence against H0 : θ ≤ 0 and H0 is rejected if
the p-value is less than some small number such as 0.05. You might like to try the R commands

\texttt{1-pnorm(q=0.32,mean=0,sd=sqrt(.04))}

and

\texttt{1-pnorm(1.6)}

Example 6.2.
Consider the test statistic T (X) = X̄ and suppose we observe T (x) = t. We need to calculate p(t; θ) which is the
probability that the random variable T (X) exceeds t when θ is the true value of the parameter. If θ is the true
value of the parameter T (X) has a N (θ, 1/n) density and so

p(t; θ) = P {N [θ, 1/n] ≥ t} = P
�
N [0, 1] ≥

√
n(t− θ)

�

In order to calculate the p-value we need to find θ ≤ 0 for which p(t; θ) is a maximum. Since p(t; θ) is maximised
by making

√
n(t− θ) as small as possible the maximum over (−∞, 0] always occurs at 0. Hence we have that

P-Value = P { N [0, 1] ≥
√
nt }

Let us consider more concrete problems and explanations from [5]. Consider the following
problems:

1. An engineer has to decide on the basis of sample data whether the true average lifetime of
a certain kind of tyre is at least 22000 kilometres.

2. An agronomist has to decide on the basis of experiments whether fertilizer A produces a
higher yield of soybeans than fertilizer B.

3. A manufacturer of pharmaceutical products has to decide on the basis of samples whether
90% of all patients given a new medication will recover from a certain disease.

These problems can be translated into the language of statistical tests of hypotheses.

1. The engineer has to test the assertion that if the lifetime of the tyre has pdf. f(x) =
αe

−αx
, x > 0, then the expected lifetime, 1/α, is at least 22000.

2. The agronomist has to decide whether µA > µB where µA, µB are the means of 2 normal
distributions.

3. The manufacturer has to decide whether p, the parameter of a binomial distribution is
equal to .9.
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In each case, it is assumed that the stated distribution correctly describes the experimental
conditions, and that the hypothesis concerns the parameter(s) of that distribution. [A more
general kind of hypothesis testing problem is where the form of the distribution is unknown.]

In many ways, the formal procedure for hypothesis testing is similar to the scientific method.
The scientist formulates a theory, and then tests this theory against observation. In our context,
the scientist poses a theory concerning the value of a parameter. He then samples the population
and compares observation with theory. If the observations disagree strongly enough with the
theory the scientist would probably reject his hypothesis. If not, the scientist concludes either
that the theory is probably correct or that the sample he considered did not detect the difference
between the actual and hypothesized values of the parameter.

Before putting hypothesis testing on a more formal basis, let us consider the following
questions. What is the role of statistics in testing hypotheses? How do we decide whether the
sample value disagrees with the scientist’s hypothesis? When should we reject the hypothesis
and when should we withhold judgement? What is the probability that we will make the
wrong decision? What function of the sample measurements should be used to reach a decision?
Answers to these questions form the basis of a study of statistical hypothesis testing.

6.2 Terminology and notation

6.2.1 Hypotheses

A statistical hypothesis is an assertion or conjecture about the distribution of a random variable.
We assume that the form of the distribution is known so the hypothesis is a statement about
the value of a parameter of a distribution.

Let X be a random variable with distribution function F (x; θ) where θ ∈ Ω. That is, Ω is
the set of all possible values θ can take, and is called the parameter space. For example, for the
binomial distribution, Ω = {p : p ∈ (0, 1)}. Let ω be a subset of Ω.

Then a statement such as “θ ∈ ω” is a statistical hypothesis and is denoted by H0. Also, the
statement “θ ∈ ω” (where ω is the complement of ω with respect to Ω) is called the alternative
to H0 and is denoted by H1. We write

H0 : θ ∈ ω and H1 : θ ∈ ω (or θ /∈ ω).

Often hypotheses arise in the form of a claim that a new product, technique, etc. is better
than the existing one. In this context, H is a statement that nullifies the claim (or represents
the status quo) and is sometimes called a null hypothesis, but we will refer to it as the
hypothesis.

If ω contains only one point, that is, if ω = {θ : θ = θ0} then H0 is called a simple
hypothesis. We may write H0 : θ = θ0. Otherwise it is called composite. The same applies
to alternatives.

6.2.2 Tests of hypotheses

A test of a statistical hypothesis is a procedure for deciding whether to “accept” or “reject”
the hypothesis. If we use the term “accept” it is with reservation, because it implies stronger
action than is really warranted. Alternative phrases such as “reserve judgement,” “fail to reject”
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perhaps convey the meaning better. A test is a rule, or decision function, based on a sample
from the given distribution which divides the sample space into 2 regions, commonly called

1. the rejection region (or critical region), denoted by R;

2. the acceptance region (or region of indecision), denoted by R (complement of R).

If we compare two different ways of partitioning the sample space then we say we are comparing
two tests (of the same hypothesis). For a sample of size n, the sample space is of course
n-dimensional and rather than consider R as a subset of n-space, it’s helpful to realize that we’ll
condense the information in the sample by using a statistic (for example x), and consider the
rejection region in terms of the range space of the random variable X.

6.2.3 Size and power of tests

There are two types of errors that can occur. If we reject H when it is true, we commit a Type
I error. If we fail to reject H when it is false, we commit a Type II error. You may like to
think of this in tabular form.

Our decision
do not reject H0 reject H0

Actual H0 is true correct decision Type I error
situation H0 is not true Type II error correct decision

Probabilities associated with the two incorrect decisions are denoted by

α = P (H0 is rejected when it is true) = P (Type I error) (6.2.1)

β = P (H0 is not rejected when it is false) = P (Type II error). (6.2.2)

The probability α is sometimes referred to as the size of the critical region or the significance
level of the test, and the probability 1− β as the power of the test.

The roles played by H0 and H1 are not at all symmetric. From consideration of potential
losses due to wrong decisions, the decision-maker is somewhat conservative for holding the
hypothesis as true unless there is overwhelming evidence from the data that it is false. He
believes that the consequence of wrongly rejecting H is much more severe to him than of wrongly
accepting it.

For example, suppose a pharmaceutical company is considering the marketing of a newly
developed drug for treatment of a disease for which the best available drug on the market has a
cure rate of 80%. On the basis of limited experimentation, the research division claims that the
new drug is more effective. If in fact it fails to be more effective, or if it has harmful side-effects,
the loss sustained by the company due to the existing drug becoming obsolete, decline of the
company’s image, etc., may be quite severe. On the other hand, failure to market a better
product may not be considered as severe a loss. In this problem it would be appropriate to
consider H0 : p = .8 and H1 : p > .8. Note that H0 is simple and H1 is composite.

Ideally, when devising a test, we should look for a decision function which makes probabilities
of Type I and Type II errors as small as possible, but, as will be seen in a later example, these
depend on one another. For a given sample size, altering the decision rule to decrease one
error, results in the other being increased. So, recalling that the Type I error is more serious,
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a possible procedure is to hold α fixed at a suitable level (say α = .05 or .01) and then look
for a decision function which minimizes β. The first solution for this was given by Neyman
and Pearson for a simple hypothesis versus a simple alternative. It is often referred to as the
Neyman-Pearson fundamental lemma.

Example 6.3 (The power function).
Suppose our rule is to reject H0 : θ ≤ 0 if the p-value is less than 0.05. In order for the p-value to be less than
0.05 we require

√
nt > 1.65 and so we reject H0 if x̄ > 1.65/

√
n. What are the chances of rejecting H0 if θ = 0.2

? If θ = 0.2 then x̄ has a N [0.2, 1/n] density and so the probability of rejecting H0 is

P

�
N

�
0.2,

1

n

�
≥ 1.65√

n

�
= P

�
N (0, 1) ≥ 1.65− 0.2

√
n
�
.

For n = 25 this is given by P{N (0, 1) ≥ 0.65} = 0.2578. This calculation can be verified using the R command
1-pnorm(1.65-0.2*sqrt(25)). The following table gives the results of this calculation for n = 25 and various
values of θ.

θ: -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
Prob: .000 .000 .000 .000 .000 .000 .000 .001 .004 .016

θ: 0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prob: 0.50 .125 .258 .440 .637 .802 .912 .968 .991 .998 .999

This is called the power function of the test. The R command Ns=seq(from=(-1),to=1, by=0.1) gener-
ates and stores the sequence −1.0,−0.9, . . . ,+1.0 and the probabilities in the table were calculated using
1-pnorm(1.65-Ns*sqrt(25)).

Example 6.4 (Sample size).
How large would n have to be so that the probability of rejecting H0 when θ = 0.2 is 0.90 ? We would require
1.65− 0.2

√
n = −1.28 which implies that

√
n = (1.65 + 1.28)/0.2 or n = 215.

So the general plan for testing a hypothesis is clear: choose a test statistic T , observe the
data, calculate the observed value t of the test statistic T , calculate the p-value as the maximum
over all values of θ in Θ0 of the probability of getting a value for T as large as t, and reject
H0 : θ ∈ Θ0 if the p-value so obtained is too small.

6.3 Examples
Example 6.5.
Suppose that random variable X has a normal distribution with mean µ and variance 4. Test the hypothesis that
µ = 1 against the alternative that µ = 2, based on a sample of size 25.

Solution of Example 6.2. An unbiased estimate of µ is X and we know that X is distributed
normally with mean µ and variance σ

2
/n which in this example is 4/25. We note that values of

x close to 1 support H whereas values of x close to 2 support A. We could make up a decision
rule as follows:

• If x > 1.6 claim that µ = 2,

• If x ≤ 1.6 claim that µ = 1.

The diagram in Fig. 6.3.1 shows the sample space of x partitioned into
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1. the critical region, R = {x : x > 1.6},

2. the acceptance region, R = {x : x ≤ 1.6}.
Here, 1.6 is the critical value of x.

We will find the probability of Type I and Type II error,

P

�
X > 1.6|µ = 1, σ =

2

5

�
= .0668

with

pnorm(q=1.6,mean=1,sd=0.4,lower.tail=F)

This is
P (H0 is rejected|H0 is true) = P (Type I error) = α

Also

β = P (Type II error) = P (H0 is not rejected|H0 is false)

= P

�
X ≤ 1.6|µ = 2, σ =

2

5

�

= .1587

with

(pnorm(q=1.6,mean=2,sd=0.4,lower.tail=T))

Figure 6.3.1: Critical Region – Upper Tail

To see how the decision rule could be altered so that α = .05, let the critical value be c. We
require

P

�
X > c|µ = 1, σ =

2

5

�
= 0.05

⇒ c = 1.658 (qnorm(p=0.05,mean=1,sd=0.4,lower.tail=T))

P

�
X < c|µ = 2, σ =

2

5

�
= 0.196 (pnorm(q=1.658,mean=2,sd=0.4,lower.tail=T))

This value of c gives an α of 0.05 and a β of 0.196 illustrating that as one type of error (α)
decreases the other (β) increases.

125



CHAPTER 6. HYPOTHESIS TESTING 6.4. ONE-SIDED AND TWO-SIDED TESTS

Example 6.6.
Suppose that we have a random sample of size n from a N(µ, 4) distribution and wish to test H0 : µ = 10 against
H1 : µ = 8. The decision rule is to reject H0 if x < c. We wish to find n and c so that α = 0.05 and β ≈ 1.

Solution of Example 6.3. In Fig. 6.3.2 below, the left curve is f(x|H1) and the right curve
is f(x|H0). The critical region is {x : x < c}, so α is the left shaded area and β is the right
shaded area. Now

Figure 6.3.2: Critical Region – Lower tail

α = 0.05 = P

�
X < c|µ = 10, σ =

2√
n

�
(6.3.1)

β = 0.1 = P

�
X ≥ c|µ = 8, σ =

2√
n

�
(6.3.2)

We need to solve these two equations simultaneously for n as shown in Fig. 6.3.3. The R code
for the above diagram is

n <- 3:12
alpha <- 0.05
beta <- 0.1
Acrit <- qnorm(mean=10,sd=2/sqrt(n),p=alpha)
Bcrit <- qnorm(mean=8,sd=2/sqrt(n),p=beta,lower.tail=F)

plot(Acrit ~ n,type="",xlab="sample size",ylab="Critical value",las=1,ylim=c(7,10) ,lwd=2)
lines(n,Bcrit,lty=2,lwd=2)

A sample size n = 9 and critical value c = 8.9 gives α ≈ 0.05 and β ≈ 0.1.

6.4 One-sided and two-sided Tests

Consider the problem where the random variable X has a binomial distribution with
P (Success) = p. How do we test the hypothesis p = 0.5. Firstly, note that we have an
experiment where the outcome on an individual trial is success or failure with probabilitites p
and q respectively. Let us repeat the experiment n times and observe the number of successes.
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Figure 6.3.3: Solution for size and power of test

Before continuing with this example it is useful to note that in most hypothesis testing
problems we will deal with, H0 is simple, but H1 on the other hand, is composite, indicating
that the parameter can assume a range of values. Examples 1 and 2 were more straightforward
in the sense that H1 was simple also.

If the range of possible parameter values lies entirely on the one side of the hypothesized value,
the aternative is said to be one-sided. For example, H1 : p > .5 is one-sided but H1 : p �= .5
is two-sided. In a real-life problem, the decision of whether to make the alternative one-sided
or two-sided is not always clear cut. As a general rule-of-thumb, if parameter values in only
one direction are physically meaningful, or are the only ones that are possible, the alternative
should be one-sided. Otherwise, H1 should be two-sided. Not all statisticians would agree with
this rule.

The next question is what test statistic we use to base our decision on. In the above problem,
since X/n is an unbiased estimator of p, that would be a possibility. We could even use X itself.
In fact the latter is more suitable since its distribution is known. Recall that, the principle of
hypothesis testing is that we will assume H0 is correct, and our position will change only if the
data show beyond all reasonable doubt that H1 is true. The problem then is to define in
quantitative terms what reasonable doubt means. Let us suppose that n = 18 in our problem
above. Then the range space for X is RX = {0, 1, . . . , 18} and E(X) = np = 9 if H0 is true. If
the observed number of successes is close to 9 we would be obliged to think that H was true. On
the other hand, if the observed value of X was 0 or 18 we would be fairly sure that H0 was not
true. Now reasonable doubt does not have to be as extreme as 18 cases out of 18. Somewhere
between x-values of 9 and 18 (or 9 and 0), there is a point, c say, when for all practical purposes
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the credulity of H0 ends and reasonable doubt begins. This point is called the critical value
and it completely determines the decision-making process. We could make up a decision rule

• If x ≥ c, reject H0.

• If x < c, conclude that H0 is probably correct.

In this case, {x : x ≥ c} is the rejection region.
We will consider appropriate tests for both one- and two-sided alternatives in the problem

above.

6.4.1 Case (a): Alternative is one-sided

In the above problem, suppose that the alternative is H1 : p > .5. Only values of x much larger
than 9 would support this alternative and a decision rule such as the one we just mentioned
would be appropriate. The actual value of c is chosen to make α, the size of the critical region,
suitably small. For example, if c = 11, then P (X ≥ 11) = .24 and this of course is too large.
Clearly we should look for a value closer to 18. If c = 15, P (X ≥ 15) =

�18
x=15

�
18
x

�
(.5)18 = 0.004,

on calculation. We may now have gone too far in the other extreme. Requiring 15 or more
successes out of 18 before we reject H0 : p = 0.5 means that only 4 times in a thousand would
we reject H0 wrongly. Over the years, a reasonable consensus has been reached as to how
much evidence against H0 is enough evidence. In many situations we define the beginning of
reasonable doubt as the value of the test statistic that is equalled or exceeded by chance
5% of the time when H0 is true. According to this criterion, c should be chosen so that
P (X ≥ c|H0 is true) = 0.05 That is c should satisfy

P (X ≥ c|p = 0.5) = 0.05 =
1�

x=c

8

�
18

x

�
(0.5)18.

A little trial and error shows that c = 13 is the appropriate value. Of course because of the
discrete nature of X it will not be possible to obtain an α of exactly 0.05.

Defining the critical region in terms of the x-value that is exceeded only 5% of the time
when H0 is true is the most common way to quantify reasonable doubt, but there are others.
The figure 1% is frequently used and if the critical value is exceeded only 1% of the time we say
there is strong evidence against H0. If the critical value is only exceeded .1% of the time we
may say that there is very strong evidence against H0.

So far we have considered a one-sided alternative. Now we’ll consider the other case where
the alternative is two-sided.

6.4.2 Case (b): Two-sided Alternative

Consider now the alternative H1 : p �= 0.5. Values of x too large or too small would support
this alternative. In this case there are two critical regions (or more correctly, the critical region
consists of two disjoint sets), one in each ‘tail’ of the distribution of X. For a 5% critical region,
there would be two critical values c1 and c2 such that

P (X ≤ c1|H0 is true) ≈ 0.025 and P (X ≥ c2|H0 is true) ≈ 0.025.
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This can be seen in Fig. 6.4.1 below, where the graph is of the distribution of X when H0 is
true. (It can be shown that c1 = 4 and c2 = 14 are the critical values in this case.)

Tests with a one-sided critical region are called one-tailed tests, whereas those with a
two-sided critical region are called two-tailed tests.

Figure 6.4.1: Critical Region – Twosided Alternative

Computer Exercise 6.1. Use a simulation approach to estimate a value for c in

• If x ≥ c, reject H0.

• If x < c, conclude that H0 is probably correct.

Solution of Computer Exercise 6.1. Use the commands

#Generate 1000 random variables fron a bin(18,0.5) distribution.
rb <- rbinom(n=1000,size=18,p=0.5)
table(rb) #Tabulate the results
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 3 11 28 77 125 174 187 166 126 63 22 11 5

Figure 6.4.2: Empirical cumulative distribution function for binomial rv’s

This would indicate the onesided critcal value should be c = 13 as the estimate of P (X ≥ 13) is
0.038. For a two-sided test the estimated critical values are c1 = 4 and c2 = 13.

These results from simulation are in close agreement with theoretical results obtained in the
two preceding subsections.

129



CHAPTER 6. HYPOTHESIS TESTING 6.4. ONE-SIDED AND TWO-SIDED TESTS

6.4.3 Two approaches to hypothesis testing

It is worthwhile considering a definite procedure for hypothesis testing problems. There are two
possible approaches.

1. See how the observed value of the statistic compares with that expected if H0 is true.
Find the probability, assuming H0 to be true, of this event or others more extreme, that
is, further still from the expected value. For a two-tailed test this will involve considering
extreme values in either direction. If this probability is small (say, < 0.05), the event is an
unlikely one if H0 is true. So if such an event has occurred, doubt would be cast on the
hypothesis.

2. Make up a decision rule by partitioning the sample space of the statistic into a critical
region, R, and its complement R, choosing the critical value (or two critical values in the
case of a two- tailed test) c, in such a way that α = 0.05. We then note whether or not
the observed value lies in this critical region, and draw the corresponding conclusion.

Example 6.7.
Suppose we want to know whether a given die is biased towards 5 or 6 or whether it is “true.” To examine this
problem the die is tossed 9000 times and it is observed that on 3164 occasions the outcome was 5 or 6.

Solution of Example 6.4. Let X be the number of successes (5’s or 6’s) in 9000 trials. Then
if p = P (S), X is distributed bin(9000, p). As is usual in hypothesis testing problems, we set up
H0 as the hypothesis we wish to “disprove.” In this case, it is that the die is “true,” that is,
p = 1/3. If H0 is not true, the alternative we wish to claim is that the die is biased towards 5 or
6, that is p > 1/3. In practice, one decides on this alternative before the experiment is carried
out. We will consider the 2 approaches mentioned above.

Approach (i), probabilities If p = 1/3 and N = 9000 then E(X) = np = 3000 and
V ar(X) = npq = 2000. The observed number of successes, 3164, was greater than expected if
H0 were true. So, assuming p = 1/3, the probability of the observed event together with others
more extreme (that is, further still from expectation) is

PB(X ≥ 3164|p = 1/3) = 0.0001

as

pbinom(q=3164,size=9000,prob=1/3,lower.tail=F)

This probability is small, so the event X ≥ 3164 is an unlikely one if the assumption we’ve made
(p = 1/3) is correct. Only about 1 times in 10000 would we expect such an occurence. Hence,
if such an event did occur, we’d doubt the hypothesis and conclure that there is evidence that
p > 1/3.

Approach (ii), quantiles Clearly, large values of X support H1, so we’d want a critical
region of the form x ≥ c where c is chosen to give the desired significance level, α. That is, for
α = 0.05, say, the upper tail 5% quantile of the binomial distributio with p = 1/3 and N = 9000
is 3074 as

qbinom(size=N,prob=px,p=0.05,lower.tail=F)
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The observed value 3164 exceeds this and thus lies in the critical region [c,∞]. So we reject H0

at the 5% significance level. That is, we will come to the conclusion that p > 1/3, but in
so doing, we’ll recognize the fact that the probability could be as large as 0.05 that we’ve rejected
H0 wrongly.

The 2 methods are really the same thing. Figure 6.4.3 with the observed quantile 3164 and
associated with it is P (X > 3164). The dashed lines show the upper α = 0.05 probability and
the quantile C1−α. The event that X > C1−α has a probability p < α.

The rejection region can be defined either by the probabilities or the quantiles.

Figure 6.4.3: using either quantiles or probability to test the null hypothesis

In doing this sort of problem it helps to draw a diagram, or at least try to visualize the
partitioning of the sample space as suggested in Figure 6.4.4.

If x ∈ R it seems much more likely that the actual distribution of X is given by a curve
similar to the one on the right hand side, with mean somewhat greater than 3000.

Figure 6.4.4: One Sided Alternative – Binomial

Computer Exercise 6.2. The following random sample was drawn from a normal distribution
with σ = 5. Test the hypothesis that µ = 23.

Solution of Computer Exercise 6.2.
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18 14 23 23 18
21 22 16 21 28
12 19 22 15 18
28 24 22 18 13
18 16 24 26 35

x <- c(18,14,23,23,18,21,22,16,21,28,12,19,22,15,18,28,24,22,18,13,18,16,24,26,35)
xbar <- mean(x)
n <- length(x)
> xbar
[1] 20.56
pnorm(q=xbar, mean=23,sd=5/sqrt(n))
[1] 0.007
qnorm(p=0.05,mean=23,sd=5/sqrt(n))
[1] 21

We can now use approach (i). For a two sided alternative calculated probability is P =
0.015 = 2× 0.00734 so that the hypothesis is unlikely to be true.

For approach (ii) with α = 0.05 the critical value is 21. The conclusion reached would
therefore be the same by both approaches.

For testing µ = 23 against the one-sided alternative µ < 23, P = 0.0073.

Example 6.8 (One Gaussian sample).
Suppose that we have data X1, X2, . . . , Xn which are iid observations from a N (µ,σ2) density where both µ and
σ are unknown. Here θ = (µ,σ) and Θ = {(µ,σ) : −∞ < µ < ∞, 0 < σ < ∞}. Define

X̄ =

�n
i=1

Xi

n
and s2 =

�N
i=1

(Xi − X̄)2

n− 1
.

(a) Suppose Θ0 = {(µ,σ) : −∞ < µ ≤ A, 0 < σ < ∞}. Define T = X̄. Let t denote the observed value of T .
Then

p(t; θ) = P [X̄ ≥ t]

= P

�√
n(X̄ − µ)

s
≥

√
n(t− µ)

s

�

= P

�
tn−1 ≥

√
n(t− µ)

s

�
.

To maximize this we choose µ in (−∞, A] as large as possible which clearly means choosing µ = A. Hence
the p-value is

P

�
tn−1 ≥

√
n(x̄−A)

s

�
.

(b) Suppose Θ0 = {(µ,σ) : A ≤ µ < ∞, 0 < σ < ∞}. Define T = −X̄. Let t denote the observed value of T .
Then

p(t; θ) = P [−X̄ ≥ t]

= P [X̄ ≤ −t]

= P

�√
n(X̄ − µ)

s
≤

√
n(−t− µ)

s

�

= P

�
tn−1 ≤

√
n(−t− µ)

s

�
.
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To maximize this we choose µ in [A,∞) as small as possible which clearly means choosing µ = A. Hence
the p-value is

P

�
tn−1 ≤

√
n(−t−A)

s

�
= P

�
tn−1 ≤

√
n(x̄−A)

s

�
.

(c) Suppose Θ0 = {(A,σ) : 0 < σ < ∞}. Define T = |X̄ −A|. Let t denote the observed value of T . Then

p(t; θ) = P [|X̄ −A| ≥ t] = P [X̄ ≥ A+ t] + P [X̄ ≤ A− t]

= P

�√
n(X̄ − µ)

s
≥

√
n(A+ t− µ)

s

�

+P

�√
n(X̄ − µ)

s
≤

√
n(A− t− µ)

s

�

= P

�
tn−1 ≥

√
n(A+ t− µ)

s

�

+P

�
tn−1 ≤

√
n(A− t− µ)

s

�
.

The maximization is trivially found by setting µ = A. Hence the p-value is

P

�
tn−1 ≥

√
nt

s

�
+ P

�
tn−1 ≤ −

√
nt

s

�
= 2P

�
tn−1 ≥

√
nt

s

�
= 2P

�
tn−1 ≥

√
n|x̄−A|

s

�
.

(d) Suppose Θ0 = {(µ,σ) : −∞ < µ < ∞, 0 < σ ≤ A}. Define T =
�n

i=1
(Xi − X̄)2. Let t denote the observed

value of T . Then

p(t;σ) = P
��n

i=1
(Xi − X̄)2 ≥ t

�

= P
��n

i=1(Xi−X̄)
2

σ2 ≥ t
σ2

�

= P
�
χ2
n−1 ≥ t

σ2

�
.

To maximize this we choose σ in (0, A] as large as possible which clearly means choosing σ = A. Hence
the p-value is

P

�
χ2

n−1 ≥ t

A2

�
= P

�
χ2

n−1 ≥
�n

i=1
(xi − x̄)2

A2

�

(e) Θ0 = {(µ,σ) : −∞ < µ < ∞, A ≤ σ < ∞}. Define T = [
�n

i=1
(xi − x̄)2]−1, and let t denote the observed

value of T . Then

p(t;σ) = P

�
1�n

i=1
(Xi − X̄)2

≥ t

�

= P

�
n�

i=1

(Xi − X̄)2 ≤ 1

t

�

= P

��n
i=1

(Xi − X̄)2

σ2
≤ 1

tσ2

�

= P

�
χ2

n−1 ≤ 1

tσ2

�
.

To maximize this we choose σ in [A,∞) as small as possible which clearly means choosing σ = A. Hence
the p-value is

P

�
χ2

n−1 ≤ 1

tA2

�
= P

�
χ2

n−1 ≤
�n

i=1
(xi − x̄)2

A2

�
.

(f) Suppose Θ0 = {(µ,A) : −∞ < µ ≤ ∞}. Define

T = max

��n
i=1

(Xi − X̄)2

A2
,

A2

�n
i=1

(Xi − X̄)2

�
.
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Let t denote the observed value of T and note that t must be greater than or equal to 1. Then

p(t;σ) = P
��n

i=1
(Xi − X̄)2 ≥ A2t

�
+ P

��n
i=1

(Xi − X̄)2 ≤ A2

t

�

= P
��n

i=1(Xi−X̄)
2

σ2 ≥ A2t
σ2

�
+ P

��n
i=1(Xi−X̄)

2

σ2 ≤ A2

tσ2

�

= P
�
χ2
n−1 ≥ A2t

σ2

�
+ P

�
χ2
n−1 ≤ A2

tσ2

�
.

Since A is the only element in Θ0, the maximization is trivially found by setting σ = A. Hence the p-value
is

P [χ2

n−1 ≥ t] + P

�
χ2

n−1 ≤ 1

t

�
.

where t = max
��n

i=1(xi−x̄)2

A2 , A2
�n

i=1(xi−x̄)2

�
.

6.5 Two-sample problems

In this section we will consider problems involving sampling from two populations where the
hypothesis is a statement of equality of two parameters. The two problems are:

1. Test H0 : µ1 = µ2 where µ1 and µ2 are the means of two normal populations.

2. Test H0 : p1 = p2 where p1 and p2 are the parameters of two binomial populations.

Example 6.9.
Given independent random samples X1, X2, . . . , Xn1 from a normal population with unknown mean µ1 and known
variance σ2

1 and Y1, Y2, . . . , Yn2 from a normal population with unknown mean µ2 and known variance σ2
2, derive

a test for the hypothesis H : µ1 = µ2 against one-sided and two-sided alternatives.

Solution of Example 6.5. Note that the hypothesis can be written as H : µ1 − µ2 = 0. An
unbiased estimator of µ1 − µ2 is X − Y so this will be used as the test statistic. Its distribution
is given by

X − Y ∼ N

�
µ1 − µ2,

σ
2
1

n1
+

σ
2
2

n2

�

or, in standardized form, if H0 is true

X − Y�
(σ2

1/n1) + (σ2
2/n2)

∼ N(0, 1).

For a two-tailed test (corresponding to H1 : µ1 − µ2 �= 0) we have a rejection region of the form

|x− y|�
(σ2

1/n1) + (σ2
2/n2)

> c (6.5.1)

where c = 1.96 for α = .05, c = 2.58 for α = .01, etc.
For a one-tailed test we have a rejection region

x− y�
(σ2

1/n1) + (σ2
2/n2)

> c for H1 : µ1 − µ2 > 0 (6.5.2)

< −c for H1 : µ1 − µ2 < 0 (6.5.3)

where c = 1.645 for α = .05, c = 2.326 for α = .01, etc. Can you see what modification to make
to the above rejection regions for testing H0 : µ1 −µ2 = δ0 for some specified constant other than
zero?
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Example 6.10.
Suppose that n1 Bernoulli trials where P (S) = p1 resulted in X successes and that n2 Bernoulli trials where
P (S) = p2 resulted in Y successes. How do we test H : p1 = p2 (= p, say)?

Solution of Example 6.6. Note that H0 can be written H0 : p1− p2 = 0. Now X is distributed
as bin(n1, p1) and Y is distributed as bin(n2, p2) and we have seen earlier that unbiased estimates
of p1, p2, are respectively

p1 = x/n1, p2 = y/n2,

so an appropriate statistic to use to estimate p1 − p2 is X

n1
− Y

n2
.

For n1, n2 large, we can use the Central Limit Theorem to observe that

X

n1
− Y

n2
− E

�
X

n1
− Y

n2

�

�
Var

�
X

n1
− Y

n2

� ∼ approximately N(0, 1) (6.5.4)

and

E

�
X

n1
− Y

n2

�
=

n1p1

n1
− n2p2

n2
= 0 under H0, and (6.5.5)

Var

�
X

n1
− Y

n2

�
=

n1p1q1

n
2
1

+
n2p2q2

n
2
2

= p(1− p)

�
1

n1
+

1

n2

�
under H0 (6.5.6)

In (6.5.4) the variance is unknown, but we can replace it by an estimate and it remains to decide
what is the best estimate to use. For the binomial distribution, the MLE of p is

p =
X

n
=

number of successes

number of trials

In our case, we have 2 binomial distributions with the same probability of success under H0,
so intuitively it seems reasonable to “pool” the 2 samples so that we have X + Y successes in
n1 + n2 trials. So we will estimate p by

p =
x+ y

n1 + n2
.

Using this in (6.5.4) we can say that to test H0 : p1 = p2 against H1 : p1 �= p2 at the 100α%
significance level, H0 is rejected if

|(x/n1)− (y/n2)|��
x+y

n1+n2

��
1− x+y

n1+n2

��
n1+n2
n1n2

� > zα/2. (6.5.7)

Of course the appropriate modification can be made for a one-sided alternative.

Example 6.11 (Two Gaussian samples).
Suppose that we have data X1, X2, . . . , Xn which are iid observations from a N (µ1,σ2) density and data
y1, y2, . . . , ym which are iid observations from a N (µ2,σ2) density where µ1, µ2, and σ are unknown.

Here
θ = (µ1, µ2,σ)
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and
Θ = {(µ1, µ2,σ) : −∞ < µ1 < ∞,−∞ < µ2 < ∞, 0 < σ < ∞}.

Define

s2 =

�n
i=1

(xi − x̄)2 + Σm
j=1

(yj − ȳ)2

n+m− 2
.

(a) Suppose Θ0 = {(µ1, µ2,σ) : −∞ < µ1 < ∞, µ1 < µ2 < ∞, 0 < σ < ∞}. Define T = x̄− ȳ. Let t denote
the observed value of T . Then

p(t; θ) = P [x̄− ȳ ≥ t]

= P



 [(x̄− ȳ)− (µ1 − µ2)]�
s2( 1n + 1

m )
≥ [t− (µ1 − µ2)]�

s2( 1n + 1

m )





= P



tn+m−2 ≥ [t− (µ1 − µ2)]�
s2( 1n + 1

m )



 .

To maximize this we choose µ2 > µ1 in such a way as to maximize the probability which clearly implies
choosing µ2 = µ1. Hence the p-value is

P



tn+m−2 ≥ t�
s2( 1n + 1

m )



 = P



tn+m−2 ≥ x̄− ȳ�
s2( 1n + 1

m )



 .

(b) Suppose Θ0 = {(µ1, µ2,σ) : −∞ < µ1 < ∞,−∞ < µ2 < µ1, 0 < σ < ∞}. Define T = ȳ − x̄. Let t denote
the observed value of T . Then

p(t; θ) = P [ȳ − x̄ ≥ t]

= P



 [(ȳ − x̄)− (µ2 − µ1)]�
s2( 1n + 1

m )
≥ [t− (µ2 − µ1)]�

s2( 1n + 1

m )





= P



tn+m−2 ≥ [t− (µ2 − µ1)]�
s2( 1n + 1

m )



 .

To maximize this we choose µ2 < µ1 in such a way as to maximize the probability which clearly implies
choosing µ2 = µ1. Hence the p-value is

P



tn+m−2 ≥ t�
s2( 1n + 1

m )



 = P



tn+m−2 ≥ ȳ − x̄�
s2( 1n + 1

m )



 .
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(c) Θ0 = {(µ, µ,σ) : −∞ < µ < ∞, 0 < σ < ∞}. Define T = |ȳ − x̄|. Let t denote the observed value of T .
Then

p(t; θ) = P [|ȳ − x̄| ≥ t]

= P [ȳ − x̄ ≥ t] + P [ȳ − x̄ ≤ −t]

= P



 [(ȳ − x̄)− (µ2 − µ1)]�
s2( 1n + 1

m )
≥ [t− (µ2 − µ1)]�

s2( 1n + 1

m )





+P



 [(ȳ − x̄)− (µ2 − µ1)]�
s2( 1n + 1

m )
≤ [−t− (µ2 − µ1)]�

s2( 1n + 1

m )





= P



tn+m−2 ≥ [t− (µ2 − µ1)]�
s2( 1n + 1

m )



+

P



tn+m−2 ≤ [−t− (µ2 − µ1)]�
s2( 1n + 1

m )



 .

Since, for all sets of parameter values in Θ0, we have µ1 = µ2 the maximization is trivial and so the
p-value is

P



tn+m−2 ≥ t�
s2

�
1

n + 1

m

�



+ P



tn+m−2 ≤ −t�
s2

�
1

n + 1

m

�





= 2P



tn+m−2 ≥ t�
s2

�
1

n + 1

m

�





= 2P



tn+m−2 ≥ |y − x|�
s2

�
1

n + 1

m

�



 .

(d) Suppose that we have data X1, X2, . . . , Xn which are iid observations from a N (µ1,σ2
1) density and data

y1, y2, . . . , ym which are iid observations from a N (µ2,σ2
1) density where µ1, µ2,σ1, and σ2 are all unknown.

Here θ = (µ1, µ2,σ1,σ2) and Θ = {(µ1, µ2,σ1,σ2) : −∞ < µ1 < ∞,−∞ < µ2 < ∞, 0 < σ1 < ∞, 0 <
σ2 < ∞}. Define

s21 =

�n
i=1

(xi − x̄)2

n− 1
, and s22 =

Σm
j=1

(yj − ȳ)2

m− 1
.

Suppose Θ0 = {(µ1, µ2,σ,σ) : −∞ < µ1 < ∞, µ1 < µ2 < ∞, 0 < σ < ∞}.
Define

T = max

�
s21
s2
2

,
s22
s2
1

�
.

Let t denote the observed value of T and observe that t must be greater than or equal to 1. Then

p(t; θ) = P

�
s21
s2
2

≥ t

�
+ P

�
s22
s2
1

≥ t

�

= P

�
s21
s2
2

≥ t

�
+ P

�
s21
s2
2

≤ 1

t

�

= P

�
σ2
2s

2
1

σ2
1
s2
2

≥ σ2
2t

σ2
1

�
+ P

�
σ2
2s

2
1

σ2
1
s2
2

≤ σ2
2

σ2
1
t

�

= P

�
Fn−1,m−1 ≥ σ2

2t

σ2
1

�
+ P

�
Fn−1,m−1 ≤ σ2

2

σ2
1
t

�
.
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Since, for all sets of parameter values in Θ0, we have σ1 = σ2 the maximization is trivial and so the
p-value is P [Fn−1,m−1 ≥ t] + P

�
Fn−1,m−1 ≤ 1

t

�
.

6.6 Connection between hypothesis testing and CI’s

Consider the problem where we have a sample of size n from a N(µ, σ2) distribution where σ
2

is known and µ is unknown. An unbiased estimator of µ is x =
�

n

i=1 xi/n. We can use this
information either

1. to test the hypothesis H0 : µ = µ0; or

2. to find a CI for µ and see if the value µ0 is in it or not.

We will show that testing H0 at the 5% significance level (that is, with α = .05) against a 2-sided
alternative is the same as finding out whether or not µ0 lies in the 95% confidence interval.

1. For H1 : µ �= µ0 we reject H0 at the 5% significance level if

x− µ0

σ/
√
n

> 1.96 or
x− µ0

σ/
√
n

< −1.96. (6.6.1)

That is, if
|x− µ0|
σ/

√
n

> 1.96.

Or, using the “P-value,” if x > µ0 we calculate the probability of a value as extreme or
more extreme than this, in either direction. That is, calculate

P = 2× P (X > x) = 2× Pn

�
Z >

x− µ0

σ/
√
n

�
.

If P < .05 the result is significant at the 5% level. This will happen if x−µ0

σ/
√
n
< −1.96, as in

(6.5.7).

2. A symmetric 95% confidence interval for µ is x± 1.96σ/
√
n which arose from considering

the inequality

−1.96 <
x− µ

σ/
√
n
< 1.96

which is the event complementary to that in (6.5.7).

So, to reject H0 at the 5% significance level is equivalent to saying that “the hypothesized
value is not in the 95% CI.” Likewise, to reject H0 at the 1% significance level is equivalent
to saying that “the hypothesized value is not in the 99% CI,” which is equivalent to saying
that “the P-value is less than 1%.”

If 1% < P < 5% the hypothesized value of µ will not be within the 95% CI but it will lie
in the 99% CI.

This approach is illustrated for the hypothesis-testing situation and the confidence interval
approach below.
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Computer Exercise 6.3. Using the data in Computer Exercise 6.2, find a 99% CI for the
true mean, µ.

Solution of Computer Exercise 6.3.

#Calculate the upper and lower limits for the 99% confidence interval.
CI <- qnorm(mean=xbar,sd=5/sqrt(25),p=c(0.005,0.995) )

> CI
[1] 18 23

So that the 99% CI is (18, 23).

Figure 6.6.1: Relationship between Non-significant Hypothesis Test and Confidence Interval

Figure 6.6.2: Relationship between Significant Hypothesis Test and Confidence Interval

6.7 The Neyman-Pearson lemma

Suppose we are testing a simple null hypothesis H0 : θ = θ
� against a simple alternative

H1 : θ = θ
��, where θ is the parameter of interest, and θ

�, θ�� are particular values of θ. Observed
values of the i.i.d. random variables X1, X2, . . . , Xn, each with p.d.f. fX(x|θ), are available. We
are going to reject H0 if (x1, x2, . . . , xn) ∈ C, where C is a region of the n-dimensional space
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called the critical region. This specifies a test of hypothesis. We say that the critical region C
has size α if the probability of a Type I error is α:

P [ (X1, X2, . . . , Xn) ∈ C|H0 ] = α.

We call C a best critical region of size α if it has size α, and

P [ (X1, X2, . . . , Xn) ∈ C|H1 ] ≥ P [ (X1, X2, . . . , Xn) ∈ A|H1 ]

for every subset A of the sample space for which P [ (X1, X2, . . . , Xn) ∈ C|H0 ] = α. Thus, the
power of the test associated with the best critical region C is at least as great as the power
of the test associated with any other critical region A of size α. The Neyman-Pearson lemma
provides us with a way of finding a best critical region.

Lemma 6.1 (The Neyman-Pearson lemma). If k > 0 and C is a subset of the sample space
such that

(a) L(θ�)/L(θ��) ≤ k for all (x1, x2, . . . , xn) ∈ C

(b) L(θ�)/L(θ��) ≥ k for all (x1, x2, . . . , xn) ∈ C∗,

(c) α = P [(X1, X2, . . . , Xn) ∈ C|H0]

where C∗ is the complement of C, then C is a best critical region of size α for testing the simple
hypothesis H0 : θ = θ

� against the alternative simple hypothesis H1 : θ = θ
��.

Proof. Suppose for simplicity that the random variables X1, X2, . . . , Xn are continuous. (If they
were discrete, the proof would be the same, except that integrals would be replaced by sums.)
For any region R of n-dimensional space, we will denote the probability that X ∈ R by

�

R
L(θ),

where θ is the true value of the parameter. The full notation, omitted to save space, would be

P (X ∈ R|θ) =
�

. . .

R

�
L(θ|x1, . . . , xn)dx1 . . . dxn .

We need to prove that if A is another critical region of size α, then the power of the test
associated with C is at least as great as the power of the test associated with A, or in the present
notation, that �

A

L(θ��) ≤
�

C

L(θ��). (6.7.1)

Suppose X ∈ A∗ ∩ C. Then X ∈ C, so by (a),

�

A∗∩C

L(θ��) ≥ 1

k

�

A∗∩C

L(θ�). (6.7.2)

Next, suppose X ∈ A ∩ C∗
. Then X ∈ C∗

, so by (b),

�

A∩C∗

L(θ��) ≤ 1

k

�

A∩C∗

L(θ�). (6.7.3)
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We now establish (6.7.1), thereby completing the proof.

�

A

L(θ��) =

�

A∩C

L(θ��) +

�

A∩C∗

L(θ��)

=

�

C

L(θ��)−
�

A∗∩C

L(θ��) +

�

A∩C∗

L(θ��)

≤
�

C

L(θ��)− 1

k

�

A∗∩C

L(θ�) +
1

k

�

A∩C∗

L(θ�) ( see (6.7.2), (6.7.3) )

+



1

k

�

A∩C

L(θ�)− 1

k

�

A∩C

L(θ�)



 (add zero)

=

�

C

L(θ��)− 1

k

�

C

L(θ�) +
1

k

�

A

L(θ�) (collect terms)

=

�

C

L(θ��)− α

k
+

α

k

=

�

C

L(θ��)

since both C and A have size α.

Example 6.12.
Suppose X1, . . . , Xn are iid N (0, 1), and and we want to test H0 : θ = θ� versus H1 : θ = θ��, where θ�� > θ�.
According to the Z-test, we should reject H0 if Z =

√
n(X̄ − θ�) is large, or equivalently if X̄ is large. We can

now use the Neyman-Pearson lemma to show that the Z-test is “best”. The likelihood function is

L(θ) = (2π)−n/2 exp{−
n�

i=1

(xi − θ)2/2}.

According to the Neyman-Pearson lemma, a best critical region is given by the set of (x1, . . . , xn) such that
L(θ�)/L(θ��) ≤ k1, or equivalently, such that

1

n
ln[L(θ��)/L(θ�)] ≥ k2.

But

1

n
ln[L(θ��)/L(θ�)] =

1

n

n�

i=1

[(xi − θ�)2/2− (x1 − θ��)2/2]

=
1

2n

n�

i=1

[(x2

i − 2θ�xi + θ�2)− (x2

i − 2θ��xi + θ��2)]

=
1

2n

n�

i=1

[2(θ�� − θ�)xi + θ�2 − θ��2]

= (θ�� − θ�)x̄+
1

2
[θ�2 − θ��2].

141



CHAPTER 6. HYPOTHESIS TESTING 6.8. SUMMARY

So the best test rejects H0 when x̄ ≥ k, where k is a constant. But this is exactly the form of the rejection region
for the Z-test. Therefore, the Z-test is “best”.

6.8 Summary

We have only considered 4 hypothesis testing problems at this stage. Further problems will be
dealt with in later chapters after more sampling distributions are introduced. The following
might be helpful as a pattern to follow in doing examples in hypothesis testing.

1. State the hypothesis and the alternative. This must always be a statement about the
unknown parameter in a distribution.

2. Select the appropriate statistic (function of the data). In the problems considered so far
this is an unbiased estimate of the parameter or a function of it. State the distribution of
the statistic and its particular form when H0 is true.

Alternative Procedures

1. Find the critical region using the appropriate value of α (.05 or .01 usually).

2. Find the observed value of the statistic (using the data).

3. Draw conclusions. If the calculated value falls in the CR, this provides evidence against
H0. You could say that the result is significant at the 5% (or 1% or .1% level).

Other way:

2. Calculate P , the probability associated with values as extreme or more extreme than that
observed. For a 2-sided H1, you’ll need to double a probability such as P (X ≥ k).

3. Draw conclusions. For example, if P < .1% we say that there is very strong evidence
against H0. If .1% < P < 1% we say there is strong evidence. If 1% < P < 5% we say
there is some evidence. For larger values of P we conclude that the event is not an unusual
one if H0 is true, and say that this set of data is consistent with H0.

6.9 Non-parametric hypothesis testing

Figure 6.9.1 shows two ways in which distributions differ. The difference depicted in Figure
6.1(a) is a shift in location (mean) and in Figure 6.1(b) there is a shift in the scale (variance).
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(a) Due to shifts in location. (b) Due to shifts in scale.

Figure 6.9.1: Distributions that differ due to shifts in (a) location and (b) scale.

6.9.1 Kolmogorov-Smirnov (KS)

The KS test is a test of whether 2 independent samples have been drawn from the same
population or from populations with the same distribution. It is concerned with the agreement
between 2 cumulative distribution functions. If the 2 samples have been drawn from the same
population, then the cdf’s can be expected to be close to each other and only differ by random
deviations. If they are too far apart at any point, this suggests that the samples come from
different populations.

The KS test statistics is
D = max

�����F1(x)− �F2(y)
���
�

(6.9.1)

Exact sampling distribution

The exact sampling distribution of D under H0 : F1 = F2 can be enumerated.
If H0 is true, then [(X1, X2, . . . , Xm), (Y1, Y2, . . . , Yn)] can be regarded as a random sample

from the same population with actual realised samples

[(x1, x2, . . . , xm), (y1, y2, . . . , yn)]

Thus (under H0) an equally likely sample would be

[(y1, x2, . . . , xm), (x1, y2, . . . , yn)]

where x1 and y1 were swapped.
There are

�
m+n

m

�
possible realisations of allocation the combined sample to 2 groups of sizes

m and n and under H0 the probability of each realisation is 1

(m+n
m )

. For each sample generated

this way, a D
� is observed.

Now F1(x) is steps of
1

m+1 and F2(y) is steps of
1

n+1 so for given m and n, it would be possible
to enumerate all D�

m,n
if H0 is true. From this enumeration the upper 100α% point of {D�

m,n
},

{Dm,n;α}, gives the critical value for the α sized test. If the observed {Dm,n} is greater than
{Dm,n;α}, reject H0.
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6.9.2 Asymptotic distribution

If m and n become even moderately large, the enumeration is huge. In that case, we can utilize
the large sample approximation that

χ
2 =

4D2(nm)

n+m

Example 6.13.
These data are the energies of sway signals from 2 groups of subjects, Normal group and Whiplash group.
Whiplash injuries can lead to unsteadiness and the subject may not be able to maintain balance. each subject had
their sway pattern measured by standing on a plate blindfolded. Does the distribution of energies differ between
groups?

Normal 33 211 284 545 570 591 602 786 945 951
1161 1420 1529 1642 1994 2329 2682 2766 3025 13537

Whipl 269 352 386 1048 1247 1276 1305 1538 2037 2241
2462 2780 2890 4081 5358 6498 7542 13791 23862 34734

Table 6.1: Wavelet energies of the sway signals from normal subjects and subjects with whiplash
injury.

Solution of Example 6.7. The plots of the ecdf suggest a difference. We apply the Kolmogorov-
Smirnov test to these data.

Figure 6.9.2: The ecdf’s of sway signal energies for N & W groups

N.energy <- c(33,211,284,545,570,591,602,786,945,951,1161,1420,
1529,1642,1994,2329,2682,2766,3025,13537)

W.energy <- c(269,352,386,1048,1247,1276,1305,1538,2037,2241,2462,2780,
2890,4081,5358,6498,754,1379,23862,34734)

KS <- ks.test(N.energy,W.energy,alternative="greater")
> KS

Two-sample Kolmogorov-Smirnov test
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data: N.energy and W.energy
D^+ = 0.35, p-value = 0.0863
alternative hypothesis: the CDF of x lies above

that of y
# ______ the Asymptotic distribution __________
D <- KS$statistic
Chi <- 4*(KS$statistic^2)*m*n/(m+n)
P <- pchisq(q=Chi,df=2,lower.tail=F)

> cat("X2 = ",round(Chi,2),"P( > X2) = ",P,"\n")
X2 = 4.9 P( > X2) = 0.08629

1. The Kolmogorov-Smirnov test of whether the null hypothesis can be rejected is a permutation
test.

2. The equality F1 = F2 means that F1 and F2 assign equal probabilities to all sets; PF1(A) =
PF2(A) for and A subset of the common sample space of x and y. If H0 is true, there is
no difference between the randomness of x or y.

3. The null hypothesis is set up to be rejected. If however, the data are such that the null
hypothesis cannot be decisively rejected, then the experiment has not demonstrated a
difference.

4. A hypothesis test requires a statistic, �θ, for comparing the distributions. In the Kolmogorov-
Smirnov test �θ = D.

5. Having observed �θ, the achieved significance level of the test is the probability of observing
at least as large a value when H0 is true, PH0(�θ� ≥ �θ). The observed statistic, �θ is fixed
and the random variable �θ� is distributed according to H0.

6. The KS test enumerated all permutations of elements in the samples. This is also termed
sampling without replacement. Not all permutations are necessary but an accurate test
does require a large number of permutations.

7. The permutation test applies to any test statistic. For the example in Figure 6.1(b), we

might use �θ =
�σ2
x

�σ2
y

.

6.9.3 Bootstrap Hypothesis tests

The link between confidence intervals and hypothesis tests also holds in a bootstrap setting. The
bootstrap is an approximation to a permutation test and a strategic difference is that bootstrap
uses sampling with replacement.

A permutation test of whether H0 : F1(x) = F2(y) is true relies upon the ranking of the
combined data set (x,y). The data were ordered smallest to largest and each permutation was
an allocation of the group labels to each ordered datum. In 1 permutation, the label x was
ascribed to the first number and in another, the label y is given to that number and so on.
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The test statistic can be a function of the data (it need not be an estimate of a parameter)
and so denote this a t(z).

The principle of bootstrap hypothesis testing is that if H0 is true, a probability atom of 1
m+n

can be attributed to each member of the combined data z = (x,y).

The empirical distribution function of z = (x,y), call it �F0(z), is a non-parametric estimate
of the common population that gave rise to x and y, assuming that H0 is true. Bootstrap
hypothesis testing of H0 takes these steps,

1. Get the observed value of t, e.g. tobs = x− y.

2. Nominate how many bootstrap samples (replications) will be done, e.g. B = 499.

3. For b in 1 : B, draw samples of size m+ n with replacement from z. Label the first m of
these x

�

b
and the remaining n be labelled y

�

b
.

4. Calculate t(z�
b
) for each sample. For example, t(z�

b
) = x

�

b
− y

�

b
.

5. Approximate the probability of tobs or greater by
number of t(z�b ) ≥ tobs

B
.

Example 6.14.
The data in Table 6.1 are used to demonstrate bootstrap hypothesis testing with the test statistic,

t(z) =
y − x

�σ
�

1

m + 1

n

The R code is written to show the required calculations more explicitly but a good program minimises the variables
which are saved in the iterations loop.

Solution of Example 6.8.

#_____________ Bootstrap Hypothesis Test ____________________
N.energy <- c(33,211,284,545,570,591,602,786,945,951,1161,1420,

1529,1642,1994,2329,2682,2766,3025,13537)
W.energy <- c(269,352,386,1048,1247,1276,1305,1538,2037,2241,2462,2780,

2890,4081,5358,6498,754,1379,23862,34734)
Z <- c(N.energy,W.energy)
m <- length(N.energy)
n <- length(W.energy)
T.obs <- (mean(W.energy) - mean(N.energy))/(sd(Z)*sqrt(1/m + 1/n))

nBS <- 999

T.star <- numeric(nBS)
for (j in 1:nBS){
z.star <- sample(Z,size=(m+n))
w.star <- z.star[(m+1):(m+n)]
n.star <- z.star[1:m]
T.star[j] <- ( mean(w.star) - mean(n.star) )/( sd(z.star) * sqrt(1/m + 1/n) )
}
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p1 <- sum(T.star >= T.obs)/nBS

cat( "P(T > ",round(T.obs,1),"|H0) = ",round(p1,2),"\n")

The results are:

T = 1.4

P (t > 1.4|H0) = 0.09

Thus this statistic does not provide evidence that the 2 distributions are different.

6.10 Likelihood Ratio and Score Tests

Suppose that we observe the value of a random vector X whose probability density function is
g(X|θ) for x ∈ X where the parameter θ = (θ1, θ2, . . . , θp) is some unknown element of the set
Θ ⊆ Rp. Let Θ0 be a specified subset of Θ. Consider the hypothesis H0 : θ ∈ Θ0. In this section
we consider three ways in which good test statistics may be found for this general problem.

The Likelihood Ratio Test: This test statistic is based on the idea that the maximum
of the log likelihood over the subset Θ0 should not be too much less than the maximum
over the whole set Θ if, in fact, the parameter θ actually does lie in the subset Θ0. Let
�(θ) denote the log likelihood function. The test statistic is

T1(x) = 2[�(θ̂)− �(θ̂0)]

where θ̂ is the value of θ in the set Θ for which �(θ) is a maximum and θ̂0 is the value of
θ in the set Θ0 for which �(θ) is a maximum.

The Maximum Likelihood Test Statistic: This test statistic is based on the idea
that θ̂ and θ̂0 should be close to one another. Let I(θ) be the p× p information matrix.
Let B = I(θ̂). The test statistic is

T2(x) = (θ̂ − θ̂0)
TB(θ̂ − θ̂0)

Other forms of this test statistic follow by choosing B to be I(θ̂0) or EI(θ̂) or EI(θ̂0).

The Score Test Statistic: This test statistic is based on the idea that θ̂θθ0 should almost
solve the likelihood equations. Let S(θ) be the p× 1 vector whose rth element is given by
∂�/∂θr. Let C be the inverse of I(θ̂0) i.e. C = I(θ̂0)−1. The test statistic is

T3(x) = S(θ̂0)
TCS(θ̂0)

In order to calculate p-values we need to know the probability distribution of the test statistic
under the null hypothesis. Deriving the exact probability distribution may be difficult but
approximations suitable for situations in which the sample size is large are available in the
special case where Θ is a p dimensional set and Θ0 is a q dimensional subset of Θ for q < p,
whence it can be shown that, when H0 is true, the probability distributions of T1(x), T2(x) and
T3(x) are all approximated by a χ

2
p−q

density.
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Example 6.15.
Let X1, X2, . . . , Xn be iid each having a Poisson distribution with parameter θ. Consider testing H0 : θ = θ0
where θ0 is some specified constant. Recall that

�(θ) =

�
n�

i=1

xi

�
log [θ]− nθ − log

�
n�

i=1

xi!

�
.

Here Θ = [0,∞) and the value of θ ∈ Θ for which �(θ) is a maximum is θ̂ = x̄. Also Θ0 = {θ0} and so trivially
θ̂0 = θ0. We saw also that

S(θ) =

�n
i=1

xi

θ
− n

and that

I(θ) =

�n
i=1

xi

θ2
.

Suppose that θ0 = 2, n = 40 and that when we observe the data we get x̄ = 2.50. Hence
�n

i=1
xi = 100. Then

T1 = 2[�(2.5)− �(2.0)]

= 200 log (2.5)− 200− 200 log (2.0) + 160 = 4.62.

The information is B = I(θ̂) = 100/2.52 = 16. Hence

T2 = (θ̂ − θ̂0)
2B = 0.25× 16 = 4.

We have S(θ0) = S(2.0) = 10 and I(θ0) = 25 and so

T3 = 102/25 = 4.

Here p = 1, q = 0 implying p− q = 1. Since P [χ2
1 ≥ 3.84] = 0.05 all three test statistics produce a p-value less

than 0.05 and lead to the rejection of H0 : θ = 2. �
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Example 6.16.
Let X1, X2, . . . , Xn be iid with density f(x|α,β) = αβxβ−1exp(−αxβ) for x ≥ 0. Consider testing H0 : β = 1.
Here Θ = {(α,β) : 0 < α < ∞, 0 < β < ∞} and Θ0 = {(α, 1) : 0 < α < ∞} is a one-dimensional subset of the
two-dimensional set Θ. Recall that �(α,β) = n log[α] + n log[β] + (β − 1)

�n
i=1

log[xi]− α
�n

i=1
xβ
i . Hence the

vector S(α,β) is given by �
n/α−

�n
i=1

xβ
i

n/β +
�n

i=1
log[xi]− α

�n
i=1

xβ
i log[xi]

�

and the matrix I(α,β) is given by

�
n/α2

�n
i=1

xβ
i log[xi]�n

i=1
xβ
i log[xi] n/β2 + α

�n
i=1

xβ
i log[xi]2

�

We have that θ̂ = (α̂, β̂) which require Newton’s method for their calculation. Also θ̂0 = (α̂0, 1) where α̂0 = 1/x̄.
Suppose that the observed value of T1(x) is 3.20. Then the p-value is P [T1(x) ≥ 3.20] ≈ P [χ2

1 ≥ 3.20] = 0.0736.
In order to get the maximum likelihood test statistic plug in the values α̂, β̂ for α,β in the formula for I(α,β)
to get the matrix B. Then calculate T1(X) = (θ̂ − θ̂0)TB(θ̂ − θ̂0) and use the χ2

1 tables to calculate the p-value.
Finally, to calculate the score test statistic note that the vector S(θ̂0) is given by

�
0

n+
�n

i=1
log[xi]−

�n
i=1

xi log[xi]/x̄

�

and the matrix I(θ̂0) is given by

�
nx̄2

�n
i=1

xi log[xi]�n
i=1

xi log[xi] n+
�n

i=1
xi log[xi]2/x̄

�

Since T2(x) = S(θ̂0)TCS(θ̂0) where C = I(θ̂0)−1 we have that T2(x) is

[n+
n�

i=1

log[xi]−
n�

i=1

xi log[xi]/x̄]
2

multiplied by the lower diagonal element of C which is given by

nx̄2

[nx̄2][n+
�n

i=1
xi log[xi]2/x̄]− [

�n
i=1

xi log[xi]]2

Hence we get that

T2(x) =
[n+

�n
i=1

log[xi]−
�n

i=1
xi log[xi]/x̄]2nx̄2

[nx̄2][n+
�n

i=1
xi log[xi]2/x̄]− [

�n
i=1

xi log[xi]]2

No iterative techniques are need to calculate the value of T2(X) and for this reason the score test is often preferred
to the other two. However there is some evidence that the likelihood ratio test is more powerful in the sense that
it has a better chance of detecting departures from the null hypothesis.

6.11 Goodness of fit tests

Suppose that we have a random experiment with a random variable Y of interest. Assume
additionally that Y is discrete with density function f on a finite set S. We repeat the experiment
n times to generate a random sample Y1, Y2, . . . , Yn from the distribution of Y . These are
independent variables, each with the distribution of Y .

In this section, we assume that the distribution of Y is unknown. For a given density function
f0, we will test the hypotheses H0 : f = f0 versus H1 : f �= f0. The test that we will construct
is known as the goodness of fit test for the conjectured density f0. As usual, our challenge
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in developing the test is to find an appropriate test statistic – one that gives us information
about the hypotheses and whose distribution, under the null hypothesis, is known, at least
approximately.

Suppose that S = y1, y2, . . . , yk. To simplify the notation, let pj = f0(yj) for j = 1, 2, . . . , k.
Now let Nj = #{i ∈ 1, 2, ..., n : yi = yj} for j = 1, 2, . . . , k. Under the null hypothesis,
(N1, N2, . . . , Nk) has the multinomial distribution with parameters n and p1, p2, . . . , pk with
E(Nj) = npj and Var(Nj) = npj(1− pj). This results indicates how we might begin to construct
our test: for each j we can compare the observed frequency of yj (namely Nj) with the expected
frequency of value yj (namely npj), under the null hypothesis. Specifically, our test statistic will
be

X
2 =

(N1 − np1)2

np1
+

(N2 − np2)2

np2
+ · · ·+ (Nk − npk)2

npk
.

Note that the test statistic is based on the squared errors (the differences between the expected
frequencies and the observed frequencies). The reason that the squared errors are scaled as they
are is the following crucial fact, which we will accept without proof: under the null hypothesis,
as n increases to infinity, the distribution of X2 converges to the chi-square distribution with
k − 1 degrees of freedom.

For m > 0 and r in (0, 1), we will let χ2
m,r

denote the quantile of order r for the chi-square
distribution with m degrees of freedom. Then, the following test has approximate significance
level α: reject H0 : f = f0 versus H1 : f �= f0, if and only if X2

> χ
2
k−1,1−α

. The test is an
approximate one and works best when n is large. Just how large n needs to be depends on
the pj. One popular rule of thumb proposes that the test will work well if all the expected
frequencies satisfy npj ≥ 1 and at least 80% of the expected frequencies satisfy npj ≥ 5.

Example 6.17 (Genetical inheritance).
In crosses between two types of maize four distinct types of plants were found in the second generation. In a
sample of 1301 plants there were 773 green, 231 golden, 238 green-striped, 59 golden-green-striped. According
to a simple theory of genetical inheritance the probabilities of obtaining these four plants are 9

16
, 3

16
, 3

16
and 1

16

respectively. Is the theory acceptable as a model for this experiment?
Formally we will consider the hypotheses:

H0 : p1 = 9

16
, and p2 = 3

16
, and p3 = 3

16
and p4 = 1

16
;

H1 : not all the above probabilities are correct.

The expected frequencies for any plant under H0 is npi = 1301pi. We therefore calculate the following table:

Observed Counts Expected Counts Contributions to X2

Oi Ei (Oi − Ei)2/Ei

773 731.8125 2.318
231 243.9375 0.686
238 243.9375 0.145
59 81.3125 6.123

X2 = 9.272

Since X2 embodies the differences between the observed and expected values we can say that if X2 is large
that there is a big difference between what we observe and what we expect so the theory does not seem to be
supported by the observations. If X2 is small the observations apparently conform to the theory and act as
support for the theory. The test statistic X2 is distributed X2 ∼ χ2

3df
. In order to define what we would

consider to be an unusually large value of X2 we will choose a significance level of α = 0.05. The R command
qchisq(p=0.05,df=3,lower.tail=FALSE) calculates the 5% critical value for the test as 7.815. Since our value
of X2 is greater than the critical value 7.815 we reject H0 and conclude that the theory is not a good model
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for these data. The R command pchisq(q=9.272,df=3,lower.tail=FALSE) calculates the p-value for the test
equal to 0.026. ( These data are examined further in chapter 9 of Snedecor and Cochoran. )

Very often we do not have a list of probabilities to specify our hypothesis as we had in the
above example. Rather our hypothesis relates to the probability distribution of the counts
without necessarily specifying the parameters of the distribution. For instance, we might want
to test that the number of male babies born on successive days in a maternity hospital followed
a binomial distribution, without specifying the probability that any given baby will be male.
Or, we might want to test that the number of defective items in large consignments of spare
parts for cars, follows a Poisson distribution, again without specifying the parameter of the
distribution.

The X2 test is applicable when all the probabilities depend on unknown parameters, provided
that the unknown parameters are replaced by their maximum likelihood estimates and provided
that one degree of freedom is deducted for each parameter estimated.

Example 6.18.
Feller reports an analysis of flying-bomb hits in the south of London during World War II. Investigators partitioned
the area into 576 sectors each beng 1

4
km2. The following table gives the resulting data:

No. of hits (x) 0 1 2 3 4 5
No. of sectors with x hits 229 221 93 35 7 1

If the hit pattern is random in the sense that the probability that a bomb will land in any particular sector in
constant, irrespective of the landing place of previous bombs, a Poisson distribution might be expected to model
the data.

x P (x) = θ̂xe−θ̂ Expected Observed Contributions to X2

x! 576× P (X) (Oi − Ei)2/Ei

0 0.395 227.53 229 0.0095
1 0.367 211.34 211 0.0005
2 0.170 98.15 93 0.2702
3 0.053 30.39 35 0.6993
4 0.012 7.06 7 0.0005
5 0.002 1.31 1 0.0734

X2 = 1.0534

The MLE of θ was calculated as θ̂ = 535/576 = 0.9288, that is, the total number of observed hits divided by
the number of sectors. We carry out the chi-squared test as before except that we now subtract one additional
degree of freedom because we had to estimate θ. The test statistic X2 is distributed X2 ∼ χ2

4df
. The R command

qchisq(p=0.05,df=4,lower.tail=FALSE) calculates the 5% critical value for the test as 9.488. Alternatively,
the R command pchisq(q=1.0534,df=4,lower.tail=FALSE) calculates the p-value for the test equal to 0.90.
The result of the chi-squared test is not statistically significant indicating that the divergence between the observed
and expected counts can be regarded as random fluctuations about the expected values. Feller comments, “It is
interesting to note that most people believed in a tendency of the points of impact to cluster. It this were true,
there would be a higher frequency of sectors with either many hits or no hits and a deficiency in the intermediate
classes. the above table indicates perfect randomness and homogeneity of the area; we have here an instructive
illustration of the established fact that to the untrained eye randomness appears a regularity or tendency to
cluster.” �

6.12 The χ2 test for contingency tables

Let X and Y be a pair of categorical variables and suppose there are r possible values for X
and c possible values for Y . Examples of categorical variables are Religion, Race, Social Class,
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Blood Group, Wind Direction, Fertiliser Type etc. The random variables X and Y are said to
be independent if P [X = a, Y = b] = P [X = a]P [Y = b] for all possible values a of X and b

of Y . In this section we consider how to test the null hypothesis of independence using data
consisting of a random sample of N observations from the joint distribution of X and Y .

Example 6.19.
A study was carried out to investigate whether hair colour (columns) and eye colour (rows) were genetically
linked. A genetic link would be supported if the proportions of people having various eye colourings varied from
one hair colour grouping to another. 955 people were chosen at random and their hair colour and eye colour
recorded. The data are summarised in the following table :

Oij Black Brown Fair Red Total

Brown 60 110 42 30 242
Green 67 142 28 35 272
Blue 123 248 90 25 486
Total 250 500 160 90 1000

The proportion of people with red hair is 90/1000 = 0.09 and the proportion having blue eyes is 486/1000 = 0.486.
So if eye colour and hair colour were truly independent we would expect the proportion of people having both
black hair and brown eyes to be approximately equal to (0.090)(0.486) = 0.04374 or equivalently we would expect
the number of people having both black hair and brown eyes to be close to (1000)(0.04374) = 43.74. The observed
number of people having both black hair and brown eyes is 60.5. We can do similar calculations for all other
combinations of hair colour and eye colour to derive the following table of expected counts :

Eij Black Brown Fair Red Total

Brown 60.5 121 38.72 21.78 242
Green 68.0 136 43.52 24.48 272
Blue 121.5 243 77.76 43.74 486
Total 250.0 500 160.00 90.00 1000

In order to test the null hypothesis of independence we need a test statistic which measures the magnitude of the
discrepancy between the observed table and the table that would be expected if independence were in fact true. In
the early part of this century, long before the invention of maximum likelihood or the formal theory of hypothesis
testing, Karl Pearson ( one of the founding fathers of Statistics ) proposed the following method of constructing
such a measure of discrepancy:

(Oij−Eij)
2

Eij
Black Brown Fair Red

Brown 0.004 1.000 0.278 3.102
Green 0.015 0.265 5.535 4.521
Blue 0.019 0.103 1.927 8.029

For each cell in the table calculate (Oij −Eij)2/Eij where Oij is the observed count and Eij is the expected count
and add the resulting values across all cells of the table. The resulting total is called the χ2 test statistic which
we will denote by W . The null hypothesis of independence is rejected if the observed value of W is surprisingly
large. In the hair and eye colour example the discrepancies are as follows :

W =
r�

i=1

c�

j=1

(Oij − Eij)2

Eij
= 24.796

What we would now like to calculate is the p-value which is the probability of getting a value for W as large as
24.796 if the hypothesis of independence were in fact true. Fisher showed that, when the hypothesis of independence
is true, W behaves somewhat like a χ2 random variable with degrees of freedom given by (r − 1)(c− 1) where
r is the number of rows in the table and c is the number of columns. In our example r = 3, c = 4 and so
(r − 1)(c − 1) = 6 and so the p-value is P [W ≥ 24.796] ≈ P [χ2

6 ≥ 24.796] = 0.0004. Hence we reject the
independence hypothesis.
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7.1 Distribution of S2

Recall that if X1, X2, . . . , Xn is a random sample from a N(µ, σ2) distribution then

S
2 =

n�

i=1

(Xi −X)2/(n− 1)

is an unbiased estimator of σ2. We will find the probability distribution of this random variable.
Firstly note that the numerator of S2 is a sum of n squares but they are not independent as each
involves X. This sum of squares can be rewritten as the sum of squares of n− 1 independent
variables by the method which is illustrated below for the cases n = 2, 3, 4.

For n = 2,
2�

i=1

(Xi − �X)2 = Y
2
1 where Y1 = (X1 −X2)/

√
2;

for n = 3,

3�

i=1

(Xi −X)2 =
2�

j=1

Y
2
j

where Y1 = (X1 −X2)/
√
2, Y2 = (X1 +X2 − 2X3)/

√
6;

for n = 4,
4�

i=1

(Xi − �X)2 =
3�

j=1

Y
2
j

where Y1, Y2 are as defined above and

Y3 = (X1 +X2 +X3 − 3X4)/
√
12.
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Note that Y1, Y2, Y3 are linear functions of X1, X2, X3, X4 which are mutually orthogonal with
the sum of the squares of their coefficients equal to 1.

Consider now the properties of the Xi and the Yj as random variables. Since Y1, Y2, Y3 are
mutually orthogonal linear functions of X1, X2, X3, X4 they are uncorrelated, and since they are
normally distributed (being sums of normal random variables), they are independent. Also,

E(Y1) = 0 = E(Y2) = E(Y3)

and,

V ar(Y1) =
1

2
(V ar(X1) + V ar(X2)) = σ

2

V ar(Y2) =
1

6
V ar(X1) +

1

6
V ar(X2) +

4

6
V ar(X3) = σ

2
.

Similarly, V ar(Y3) = σ
2.

In general the sum of n squares involving the X’s can be expressed as the sum of n − 1
squares involving the Y ’s. Thus

�
n

i=1(Xi −X)2 can be expressed as

n�

i=1

(Xi −X)2 =
n−1�

j=1

Y
2
j
=

ν�

j=1

Y
2
j

where ν = n− 1 is called the number of degrees of freedom and

Yj =
X1 +X2 + · · ·+Xj − jXj+1�

j(j + 1)
, j = 1, 2, · · · , n− 1.

The random variables Y1, Y2, . . . , Yν each have mean zero and variance σ2. So each Yj ∼ N(0, σ2)
and the Yj’s are independent.

Now write S
2 =

�ν
j=1 Y

2
j

ν
and recall that

1. If X ∼ N(µ, σ2) then (X−µ)2

2σ2 ∼ Γ
�
1
2

�
, [Statistics 260, (8.16)]

2. If X1, X2, . . . , Xν are independent N(µ, σ2) variates, then
�ν

j=1(Xj−µ)2

2σ2 is distributed as
Γ
�
ν

2

�
[Statistics 260, section 7.4].

Applying this to the Yj where µ = 0,
Y

2
j

2σ2 ∼ Γ
�
1
2

�
and

V =
1

2

ν�

j=1

Y
2
j

σ2
is distributed as Γ

�
ν

2

�
. (7.1.1)

Thus the pdf of V is given by

f(v) =
1

Γ
�
ν

2

�v(
ν
2−1)

e
−v
, v ∈ (0,∞)

with V and S
2 being related by

S
2 =

�
ν

j=1 Y
2
j

ν
=

2σ2
V

ν
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or
V =

ν

2σ2
S
2 (7.1.2)

Now V is a strictly monotone function of S2 so, by the change-of-variable technique, the pdf of
S
2 is

g(s2) = f(v)
��dv/ds2

��

=
e
−νs

2
/2σ2

Γ(ν/2)

�
νs

2

2σ2

�(ν/2)−1

·
�

ν

2σ2

�
, s

2 ∈ (0,∞)

which is
1

Γ
�
ν

2

� × (s2)(
ν
2−1)

�
ν

2σ2

�ν/2
exp

�
− ν

2σ2
s
2
�

(7.1.3)

This is the pdf of S2 derived from a N(µ, σ2) distribution.

7.2 Chi-Square Distribution

Define the random variable W as

W = νS
2
/σ

2 = 2V,

where V is defined in (7.1.2). Note that W is a “sum of squares” divided by σ
2, and can be

thought of as a standardized sum of squares. Then the p.d.f. of W is

h(w) = g(s2)

����
ds

2

dw

���� ,where
ds

2

dw
=

σ
2

ν

which can be written as
e
−w/2

w
(ν/2)−1

2ν/2Γ(ν/2)
, w ∈ [0,∞]. (7.2.1)

A random variable W with this pdf is said to have a chi-square distribution on ν degrees
of freedom (or with parameter ν) and we write W ∼ χ

2
ν
.

Notes:

1. W/2 ∼ γ(ν/2).

2. This distribution can be thought of as a special case of the generalized gamma distribution.

3. When ν = 2, (7.2.1) becomes h(w) = 1
2e

−w/2, w ∈ [0,∞], which is the exponential
distribution.

Computer Exercise 7.1. Graph the chi-square distributions with 2, 3 and 4 degrees of freedom
for x = 0.05, 0.1, 0.15, . . . , 10, using one set of axes.

Solution of Computer Exercise 7.1.
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x <- seq(from=0.05,to=10,by=0.05)

for (d in 2:4){
fx <- dchisq(x,df=d)
if(d==2) plot(fx ~ x,type=’l’,

ylim=c(0,0.5),las=1)
else lines(x,fx,lty=(d-1))

} # end of d loop
legend(6,0.4,
expression(chi[2]^2,chi[3]^2,chi[4]^2),

lty=1:3)

Rcmdr plots the Chi-square density or distribution function readily,

Cumulative Distribution Function

If W ∼ χ
2
ν
, percentiles (i.e. 100P) of the chi-square distribution are determined by the inverse

of the function

P

100
=

1

2ν/2Γ(ν/2)

�
w1−.01P

0

w
1
2ν−1

e
−w/2

dw = P (W ≤ w1−.01P ).

Fig 7.2.1 depicts the tail areas corresponding to P (lower tail) and 1− P (upper tail) for the
density function and superimposed is the distribution function. The scales for the Y-axes of the
density function (left side) and the distribution function (right side) are different.

The R function for calculating tail area probabilities for given quantiles is

pchisq(q= , df = ,lower.tail= T (or F) )

and for calculating quantiles corresponding to a probability, qchisq(p = , df = )
These functions are included in the Rcmdr menus. The following example requires us to find

a probability.
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Figure 7.2.1: Area corresponding to the 100P percentile of the χ2 random variable w.

Example 7.1.
A random sample of size 6 is drawn from a N(µ, 12) distribution. Find P (2.76 < S2 < 22.2).

Solution of Example 7.1. We wish to express this as a probability statement about the random
variable W . That is,

P (2.76 < S
2
< 22.2) = P

�
5

12
× 2.76 <

νS
2

σ2
<

5

12
× 22.2

�

= P (1.15 < W < 9.25) where W ∼ χ
2
5

= P (W < 9.25)− P (W < 1.15)

#___ Pint.R _______
Q <- c(2.76,22.2)*5/12
Pint <- diff( pchisq(q=Q,df=5))
cat("P(2.76 < S2 < 22.2) = ",Pint,"\n")

> source("Pint.R")
P(2.76 < S2 < 22.2) = 0.85

Figure 7.2.2: P (2.76 < S2 < 22.2)
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Moments

As V (defined in (7.1.2)) has a gamma distribution its mean and variance can be written down.
That is, V ∼ γ(ν/2), so that

E(V ) = ν/2 and V ar(V ) = ν/2

Then since W is related to V by W = 2V

E(W ) = 2(ν/2) = ν

and
V ar(W ) = 4(ν/2) = 2ν. (7.2.2)

Thus, a random variable W ∼ χ
2
ν
has mean ν and variance 2ν.

Exercise: find E(W ) and V ar(W ) directly from h(w).

Moment Generating Function

The MGF of a chi-square variate can be deduced from that of a gamma variate. Let V ∼ γ(ν/2)
and let W = 2V . We know MV (t) = (1− t)−ν/2 from Statistics 260, Theorem 4.4. Hence

MW (t) = M2V () = MV (2t) = (1− 2t)−ν/2
.

So if W ∼ χ
2
ν
then

MW (t) = (1− 2t)−ν/2
. (7.2.3)

Exercise: Find the MGF of W directly from the pdf of W . (Hint: Use the substitution
u = w(1− 2t)/2 when integrating.)

To find moments, we will use the power series expansion of MW (t).

MW (t) = 1 +
ν

2
· 2t+ ν

2

�
ν

2
+ 1

� (2t)2

2!
+

ν

2

�
ν

2
+ 1

��
ν

2
+ 2

� (2t)3

3!
+ · · ·

= 1 + νt+ ν(ν + 2)
t
2

2!
+ ν(ν + 2)(ν + 4)

t
3

3!
+ · · ·

Moments can be read off as appropriate coefficients here. Note that µ�
1 = ν and µ

�
2 = ν(ν + 2).

The cumulant generating function is

KW (t) = logMW (t) = −ν

2
log(1− 2t)

= −ν

2

�
−2t− 22t2

2
− 23t3

3
− 24t4

4
− · · ·

�

= νt+
2νt2

2!
+

8νt3

3!
+

48νt4

4!
+ · · ·

so the cumulants are
κ1 = νκ2 = 2ν,κ3 = 8ν,κ4 = 48ν.

We will now use these cumulants to find measures of skewness and kurtosis for the chi-square
distribution.
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Comparison with Normal

1. Coefficient of skewness,

γ1 =
κ3

κ

3
2
2

=
8ν

2ν
√
2ν

for the χ
2
ν
distribution

→ 0 as ν → ∞

That is, the χ
2 distribution becomes symmetric for ν → ∞.

2. Coefficient of kurtosis,

γ2 =
κ4

κ
2
2

for any distribution

=
48ν

4ν2
for the χ

2 distribution

→ 0 as ν → ∞.

This is the value γ2 has for the normal distribution.

Additive Property

Let W1 ∼ χ
2
ν1

and W2 (independent of W1) ∼ χ
2
ν2
. Then from (7.2.3) W1 +W2 has moment

generating function

MW1+W2(t) = MW1(t)MW2(t) = (1− 2t)−ν1/2(1− 2t)−ν2/2

= (1− 2t)−(ν1+ν2)/2

This is also of the form (7.2.3); that is, we recognize it as the MGF of a χ
2 random variable on

(ν1 + ν2) degrees of freedom.
Thus if W1 ∼ χ

2
ν1

and W2 ∼ χ
2
ν2

and W1 and W2 are independent then

W1 +W2 ∼ χ
2
ν1+ν2

The result can be extended to the sum of k independent χ2 random variables.

If W1, . . . ,Wk are independent χ2
ν1
, . . . ,χ

2
νk

then
k�

i=1

Wi ∼ χ
2
ν

(7.2.4)

where ν =
�

νi. Note also that a χ
2
ν
variate can be decomposed into a sum of ν independent

chi-squares each on 1 d.f.

Chi-square on 1 degree of freedom

For the special case ν = 1, note that from (7.1.1) if Y ∼ N(0, σ2) then V = Y
2

2σ2 ∼ γ(1/2) and
W = 2V = Y

2
/σ

2 ∼ χ
2
1.

Thus if Z = Y/σ, it follows Z ∼ N(0, 1) and

Z
2 ∼ χ

2
1. (7.2.5)

(The square of a N(0, 1) random variable has a chi-square distribution on 1 df.)

159



CHAPTER 7. CHI-SQUARE DISTRIBUTION 7.3. INDEPENDENCE OF X AND S2

Summary

You may find the following summary of relationships between χ
2, gamma, S2 and normal

distributions useful.
Define S

2 =
�

n

i=1(Xi −X)2/(n− 1), the Xi being independent N(µ, σ2) variates, then

1. W = νS
2
/σ

2 ∼ χ
2
ν
where ν = n− 1,

2. 1
2W = νS

2
/2σ2 ∼ γ(ν/2),

3. If Zi =
Xi−µ

σ
, (that is, Zi ∼ N(0, 1)) then

Z
2
i
∼ χ

2
1 and Z

2
1 + Z

2
2 + · · ·+ Z

2
k
∼ χ

2
k

7.3 Independence of X and S
2

When X and S
2 are defined for a sample from a normal distribution, X and S

2 are statistically
independent. This may seem surprising as the expression for S2 involves X.

Consider again the transformation from X’s to Y ’s given in 7.1. We’ve seen that (n− 1)S2 =�
n

i=1(Xi −X)2 can be expressed as
�

ν

j=1 Y
2
j
where the Yj defined by

Yj =
X1 +X2 + · · ·+Xj − jXj+1�

j(j + 1)
, j = 1, 2, · · · , n− 1,

have zero means and variances σ2. note also that the sample mean,

X =
1

n
X1 +

1

n
X2 + · · ·+ 1

n
Xn

is a linear function of X1, . . . , Xn which is orthogonal to each of the Yj , and hence uncorrelated
with each Yj. Since the Xi are normally distributed, X is thus independent of each of the Yj

and therefore independent of any function of them.
Thus when X1, . . . , Xn are normally and independently distributed random variables X and

S
2 are statistically independent.

7.4 Confidence intervals for σ2

We will use the method indicated in 4.11 to find a confidence interval for σ
2 in a normal

distribution, based on a sample of size n. The two cases (i) µ unknown; (ii) µ known must be
considered separately.

Case (i)

Let X1, X2, . . . , Xn be a random sample from N(µ, σ2) where both µ and σ
2 are unknown. It has

been shown that S2 is an unbiased estimate of σ2 (Theorem 4.14) and we can find a confidence
interval for σ2 using the χ

2 distribution. Recall that W = νS
2
/σ

2 ∼ χ
2
ν
. By way of notation,

let wν,α be defined by P (W > wν,α) = α, where W ∼ χ
2
ν
.

The quantile for the upper 5% region is obtained by
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qchisq(p=0.05,df=5,lower.tail=F)

or

qchisq(p=0.95,df=5)

Figure 7.4.1: Area above wν,α

We find two values of W , wν,α/2 and wν,1−(α/2), such that

P
�
wν,1−(α/2) < W < wv,α/2

�
= 1− α.

Figure 7.4.2: Upper and lower values for w

The event wν,1−(α/2) < W < wν,α/2 occurs iff the events

σ
2
< νS

2
/wν,1−(α/2), σ

2
> νS

2
/wν,α/2

occur. So

P
�
wν,1−(α/2) < W < wν,α/2

�
= P

�
νS

2
/wν,α/2 < σ

2
< νS

2
/wν,1−(α/2)

�

and thus
A 100(1− α)% CI for σ2 is

�
νs

2
/wν,α/2, νs

2
/wν,1−(α/2)

�
(7.4.1)
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Example 7.2.
For a sample of size n = 10 from a normal distribution s2 was calculated and found to be 6.4. Find a 95% CI for
σ2.

Solution of Example 7.2. Now ν = 9, and

qchisq(p=c(0.025,0.975),df=9,lower.tail=F)
[1] 19.0 2.7

w9,.025 = 19 and w9,.975 = 2.7.
Hence, νs2/w9,.025 = 3.02, and νs

2
/w9,.975 = 21.33.

That is, the 95% CI for σ
2 is (3.02, 21.33).

Case (ii)

Suppose now that X1, X2, . . . , Xn is a random sample from N(µ, σ2) where µ is known and we
wish to find a CI for the unknown σ

2. Recall that the maximum likelihood estimator of σ2

(which we’ll denote by S
∗2) is

S
∗2 =

n�

i=1

(Xi − µ)2/n.

We can easily show that this is unbiased.

E(S∗2) =
n�

i=1

E(Xi − µ)2

n
= n

1

n
σ
2 = σ

2

The distribution of S∗2 is found by noting that nS
∗2
/σ

2 =
�

n

i=1(Xi − µ)2/σ2 is the sum of
squares of n independent N(0, 1) variates and is therefore distributed as χ2

n
(using (7.2.4) and

(7.2.5)). Proceeding in the same way as in Case (i) we find

A 100(1− α)% CI for σ2 when µ is known is

�
ns

∗2

wn,α/2
,

ns
∗2

wn,1−(α/2)

�
(7.4.2)

7.5 Testing hypotheses about σ2

Again the cases (i) µ unknown; and (ii) µ known are considered separately.

Case (i)

Let X1, X2, . . . , Xn be a random sample from a N(µ, σ2) distribution where µ is unknown,
and suppose we wish to test the hypothesis

H : σ2 = σ
2
0 against A : σ2 �= σ

2
0.

Under H, νS2
/σ

2
0 ∼ χ

2
ν
and values of νs2/σ2

0 too large or too small would support A. For
α = .05, say, and equal-tail probabilities we have as critical region

R =

�
s
2 :

νs
2

σ
2
0

> wν,.025 or
νs

2

σ
2
0

< wν,.975

�
.
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Figure 7.5.1: Critical Region

Consider now a one-sided alternative. Suppose we wish to test

H : σ2 = σ
2
0 against A : σ2

> σ
2
0.

Large values of s2 would support this alternative. That is, for α = .05, use as critical region

{s2 : νs2/σ2
0 > wν,.05}.

Similarly, for the alternative A : σ2
< σ

2
0, a critical region is

{s2 : νs2/σ2
0 < wν,.95}.

Example 7.3.
A normal random variable has been assumed to have standard deviation σ = 7.5. If a sample of size 25 has
s2 = 95.0, is there reason to believe that σ is greater than 7.5?

Solution of Example 7.3. We wish to test H : σ2 = 7.52 (= σ
2
0) against A : σ2

> 7.52.
Using α = .05, the rejection region is {s2 : νs2/σ2

0 > 36.4}.
The calculated value of νs2/σ2 is 24×95

56.25 = 40.53.

> pchisq(q=40.53,df=24,lower.tail=F)
[1] 0.019

When testing at the 5% level, there is evidence that the standard deviation is greater than 7.5.

Case (ii)

Let X1, X2, . . . , Xn be a random sample from N(µ, σ2) where µ is known, and suppose we
wish to test H : σ2 = σ

2
0. Again we use the fact that if H is true, nS∗2

/σ
2
0 ∼ χ

2
n
where

S
∗2 =

�
n

i=1(Xi−µ)2/n, and the rejection region for a size-α 2-tailed test, for example, would be

�
s
∗2 :

ns
∗2

σ
2
0

> wn,α/2 or
ns

∗2

σ
2
0

< wn,1−(α/2)

�
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7.6 χ
2 and Inv-χ2 distributions in Bayesian inference

7.6.1 Non-informative priors

A prior which does not change very much over the region in which the likelihood is appreciable
and does not take very large values outside that region is said to be locally uniform.

For such a prior,
p(θ|y) ∝ p(y|θ) = �(θ|y)

The term pivotal quantity was introduced p. 107 and now is defined for (i) location parameter
and (ii) scale parameter.

1. If the density of y, p(y|θ), is such that p(y − θ|θ) is a function that is free of y and θ, say
f(u) where u = y − θ, then y − θ is a pivotal quantity and θ is a location parameter.

Example: if (y|µ, σ2) ∼ N(µ, σ2), then (y − µ|µ, σ2) ∼ N(0, σ2) and y − µ is a pivotal
quantitiy.

2. If p
�

y

φ
|φ
�
is a function free of φ and y, say g(u) where u = y

φ
, then u is a pivotal quantitity

and φ is a scale parameter.

Example: if (y|µ, σ2) ∼ N(µ, σ2), then y−µ

σ
∼ N(0, 1).

A non-informative prior for a location parameter, θ, would give f(y − θ) for the posterior
distribution p(y− θ|y). That is under the posterior distribution, (y− θ) should still be a pivotal
quantity.

Using Bayes’ rule,
p(y − θ|y) ∝ p(θ)p(y − θ|θ)

Thus p(θ) ∝ C, where C is a constant.
For the case of a scale parameter, φ, Bayes’ rule is

p

�
y

φ
|y
�

∝ p(φ)p

�
y

φ
|φ
�

(7.6.1)

p(u|y) ∝ p(φ)p(u|φ) (7.6.2)

(The LHS of the first of those equations is the posterior of a parameter say φ
∗ = y

φ
and the RHS

is the density of a scaled variable y
∗ = y

φ
. Both sides are free of y and φ.)

p(y|φ) = p(u|φ)
����
du

dy

���� =
1

φ
p(u|φ)

p(φ|y) = p(u|y)
����
du

dφ

���� =
y

φ2
p(u|y)

Thus, from the last numbered equation, equate p(u|y) to p(u|φ),

p(φ|y) = y

φ
p(y|φ)

so that the uninformative prior is

p(φ) ∝ 1

φ
(7.6.3)
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7.7 The posterior distribution of the Normal variance

Consider normally distributed data,

y|µ, σ2 ∼ N(µ, σ2)

The joint posterior density of parameters µ, σ2 is given by

p(µ, σ2) ∝ p(y|µ, σ2)× p(µ, σ2) (7.7.1)

To get the marginal posterior distribution of the variance, integrate with respect to µ,

p(σ2|y) =
�

p(µ, σ2|y)dµ (7.7.2)

=

�
p(σ2|µ, y)p(µ|y)dµ (7.7.3)

Choose the prior

p(µ, σ2) ∝ p(µ)p(σ2) (µ ⊥ σ
2) (7.7.4)

p(µ, σ2) ∝ (σ2)−1 (p(µ) ∝ C, constant) (7.7.5)

Write the posterior density as

p(µ, σ2) ∝ σ
−n−2 exp

�
− 1

2σ2

n�

i=1

(y − µ)2
�

= σ
−n−2 exp

�
− 1

2σ2

�
n�

i=1

(yi − y)2 + n(y − µ)2
��

= σ
−n−2 exp

�
− 1

2σ2

�
(n− 1)S2 + n(y − µ)2

��

where S
2 =

�
(yi−y)2

(n−1) .
Now integrate the joint density with respect to µ,

p(σ2|y) ∝
�

σ
−n−2 exp

�
− 1

2σ2

�
(n− 1)S2 + n(y − µ)2

��

= σ
−n−2 exp

�
− 1

2σ2
(n− 1)S2

��
exp

�
− 1

2σ2/n
(y − µ)2

�
dµ

= σ
−n−2 exp

�
− 1

2σ2
(n− 1)S2

��
2πσ2/n

which equals

(σ2)−
n+1
2 exp

�
−(n− 1)S2

2σ2

�
(7.7.6)

The pdf of S2 was derived at (7.1.3),

g(s2) =
1

Γ
�
ν

2

� × (s2)(
ν
2−1)

�
ν

2σ2

� ν
2
exp

�
−νs

2

2σ2

�

∝ (s2)(
ν
2−1) exp

�
−νs

2

2σ2

�

with ν = (n− 1) and this is a Γ
�
n−1
2 ,

n−1
2σ2

�
distribution.
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7.7.1 Inverse Chi-squared distribution

Its Bayesian counterpart at (7.7.6) is a Scaled Inverse Chi-squared distribution. Since the prior
was uninformative, simular outcomes are expected.

The inverse χ
2 distribution has density function

p(σ2|ν) = 1

Γ
�
ν

2

�
�
1

2

� ν
2
�

1

σ2

� ν
2+1

exp

�
− 1

2σ2

�
× I(0,∞)(σ

2).

The scaled inverse chi-squared distribution has density

p(σ2|ν, s2) = 1

Γ
�
ν

2

�
�
ν

2

� ν
2
(σ2)−(

ν
2+1) exp

�
−νs

2

2σ2

�

The prior p(σ2) ∝ 1
σ2 can be said to be an inverse chi-squared distribution on ν = 0 degrees of

freedom or sample size n = 1. Is there any value in it? Although uninformative, it ensures a
mathematical “smoothness” and numerical problems are reduced.

The posterior density is Scaled Inverse Chi-squared with degrees of freedom ν = (n− 1) and
scale parameter s.

7.8 Relationship between χ
2
ν
and Inv-χ2

ν

Recall that χ
2
ν
is Γ

�
ν

2 ,
1
2

�
. The Inverse-Gamma distribution is also prominent in Bayesian

statistics so we examine it first.

7.8.1 Gamma and Inverse Gamma

The densities of the Gamma and Inverse Gamma are:

Gamma p(θ|α, β) = 1

Γ(α)
θ
(α−1)

β
α exp{−βθ}× I0,∞(θ) α, β > 0 (7.8.1)

Inverse Gamma p(θ|α, β) = 1

Γ(α)
θ
−(α+1)

β
α exp{−β/θ}× I0,∞(θ) α, β > 0 (7.8.2)

If θ−1 ∼ Γ(α, β), then θ ∼ Γ−1(α, β).
Put φ = θ

−1. Then

f(θ;α, β) = f(φ−1;α, β)

����
dφ

dθ

����

=
1

Γ(α)
θ
−(α−1)

β
α exp

�
−β

θ

�
θ
−2

=
1

Γ(α)
θ
−(α+1)

β
α exp

�
−β

θ

�

7.8.2 Chi-squared and Inverse Chi-squared

If Y = SX such that Y −1 ∼ S
−1
χ
2
ν
, then Y is S times an inverse χ

2 distribution. The Inverse-
χ
2(ν, s2) distribution is a special case of the Inverse Gamma distribution with α = ν

2 and

β = νs
2

2 .
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7.8.3 Simulating Inverse Gamma and Inverse-χ2 random variables

• InvGa. Draw X from Γ(α, β) and invert it.

• ScaledInv – χ
2
ν,s2

. Draw X from χ
2
ν
and let Y = νs

2

X
.

Example 7.4.
Give a 90% HDR for the variance of the population from which the following sample is drawn.
4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14

S2 = 0.34

p(σ2|ν, S2) = 0.34χ−2

9

The 90% CI for σ2 is (0.18, 0.92). The mode of the posterior density of σ2 is 0.28 and the 90% HDR for σ2 is
(0.13, 0.75).

The HDR was calculated numerically in this fashion,

1. Calculate the posterior density, (7.8.2)

2. Set an initial value for the “horizon,” estimate the abcissas (left and right of the mode) whose density is
at the horizon. Call these xl and xr

3. Integrate the density function over (xi, xr).

4. Adjust the horizon until this is 0.9. The HDR is then (xl, xr) at the current values.

#_________________ to calculate HDR of \sigma^2 ______________________
options(digits=2)
#_________________ functions to use later in the job __________________
closest <- function(s,v){
delta <- abs(s-v)
p <- delta==min(delta)
return(p) }
# ________________
IGamma <- function(v,a=df/2,b=0.5*df*S2){
p <- (1/gamma(a))* (v**(-(a+1)) ) * (b**a) * exp(-b/v)
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return(p) }
#_______________________________________________________________________________
wts <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14) # the data
n <- length(wts); S2 <- Var(wts); df <- n - 1 # statistics
cat("S-sq = ",S2,"\n")
# ___________ 90% CI ______________
Q <- qchisq(p=c(0.95,0.05),df=df)
CI <- df*S2/Q
cat("CI.sigma = ",CI,"\n")
# _____________ Posterior ___________________
Ew <- df*S2/(df-2)
Vw <- (2*df^2*S2^2)/((df-2)^2*(df-4)^2)
w <- seq(0.01,(Ew+10*sqrt(Vw)),length=501)
ifw <- IGamma(v=w)
mode <- w[closest(max(ifw),ifw)]
# ________ deriving the HDR by numerical integration ___________
PHDR <- 0.9 # this is the level of HDR we want
step <- 0.5; convergence.test <- 1e3; prop <- 0.9 # scalar variables for the numerical steps
while (convergence.test > 1e-3 ){ # iterate until the area is very close to 0.9
horizon <- max(ifw)*prop
left.ifw <- subset(ifw,subset=w < mode);lw <- w[w < mode]
right.ifw <- subset(ifw,subset=w > mode);rw <- w[w > mode]
xl <- lw[closest(horizon,left.ifw)]
xr <- rw[closest(horizon,right.ifw)]
Pint <- integrate(f=IGamma,lower=xl,upper=xr)
convergence.test <- abs(Pint$value - PHDR)
adjust.direction <- 2*(0.5 - as.numeric(Pint$value < PHDR)) # -1 if < +1 if >
prop <- prop+ adjust.direction*step*convergence.test
} # end of while loop
HDR <- c(xl,xr)
cat("HDR = ",HDR,"\n")
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