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Pivotal Quantity

A pivotal quantity or pivot is generally defined as a function of
observations and unobservable parameters whose probability
distribution does not depend on unknown parameters

Any probability statement of the form

P(a < H(X1,X2, . . . ,Xn; θ) < b) = 1− α

will give rise to a probability statement about θ

Hence, pivots are crucial to construct confidence intervals for
parameters of interest.

Examples when sampling from a normal distribution:

z = X−µ
σ/

√
n
(population variance known)

t = X−µ
s/

√
n
(population variance unknown)
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Confidence intervals for means

Towards a summary table:

Normal Pop. & Population Var. known

P(a < H(X1,X2, . . . ,Xn; θ) =
X − µ

σ/
√
n

< b) = 1− α

Normal Pop. & Population Var. UNknown

P(a < H(X1,X2, . . . ,Xn; θ) =
X − µ

s/
√
n

< b) = 1− α

Binom. Pop. & Sample Size Large

P(a < H(X1,X2, . . . ,Xn; θ) =
p̂ − P√

p̂(1− p̂)/
√
n
< b) = 1−α
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Confidence intervals for means

Summary table:



Confidence intervals for difference in means

Recall that formula’s for CIs for a single mean depend on

whether or not σ2 is known
sample size

For a difference in means, the formula’s for CIs depend on

whether or not the variances are assumed to be equal when the
variances are unknown
sample size in each group



Confidence intervals for difference in means

Variances assumed to be equal:

The standard error of the difference is estimated by

√
s2
p

n1
+

s2
p

n2
,

with s2
p the pooled variance

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
,

n1 and n2 the sample sizes of sample 1 and 2 respectively, or
rewritten:

s2
p =

ν1s
2
1 + ν2s

2
2

ν1 + ν2
,

where ν1 = n1 − 1 and ν2 = n2 − 1.



Is Unbiasedness a Good Thing?

Unbiasedness is important when combining estimates, as averages of
unbiased estimators are unbiased.

Example:

When combining standard deviations s1, s2, . . . , sk with degrees of
freedom df1, . . . , dfk we always average their squares

s̄ =

√

df1s2
1 + · · ·+ dfks

2
k

df1 + · · ·+ dfk

as s2
i are unbiased estimators of the variance σ2, whereas si are not

unbiased estimators of σ.

Therefore, be careful when averaging biased estimators! It may well
be appropriate to make a bias-correction before averaging.



Confidence intervals for difference in means

Variances assumed to be equal:

In this case, it is clear that the standard error can be estimated more
efficiently by combining the samples

Hint: Assume that the new estimator s2 is a linear combination of
the sample variances s2

1 and s2
2 such that s2 has the smallest

variance of all such linear, unbiased estimators.

Then, when we write s2 = a1s
2
1 + a2s

2
2 , it can be shown that

Var(s2) = a2
1Var(s

2
1 ) + (1− a1)

2Var(s2
2 ),

and

a1 =
Var(s2

2 )

Var(s2
1 ) + Var(s2

2 )
,

a2 =
Var(s2

1 )

Var(s2
1 ) + Var(s2

2 )



Confidence intervals for difference in means

Variances assumed to be UNequal:

The standard error of the difference is estimated by

√
s2

1

n1
+

s2
2

n2
.

When sampling from two normal populations N(µ1, σ
2
1) and

N(µ2, σ
2
2), with σ1 6= σ2 and unknown, then

t =
(X1 − X2)− (µ1 − µ2)√

s2
1

n1
+

s2
2

n2

Any clue about the degrees of freedom?



Confidence intervals for difference in means

Variances assumed to be UNequal:

The degrees of freedom df = ν is taken to be

ν =
(
s2

1

n1
+

s2
2

n2
)2

(
s2
1
n1

)2

n1−1 +
(
s2
2
n2

)2

n2−1

This formula was developed by the statistician Franklin E.
Satterthwaite. The motivation and the derivation of the df result is
given in Satterthwaite’s article in Psychometrika (vol. 6, no. 5,
October 1941), for those interested - no exam material



Confidence intervals for difference in means

Variances assumed to be UNequal:

It is “safe” to adopt equal variance procedures when s2

s1
< 2 (s2 the

larger one)

The problem of unequal (unknown) variances is known as the
Behrens-Fisher problem and various solutions have been given
(beyond the scope of this course)

When unsure to consider the unequal variance solution, take it. It
may be the most conservative choice (less “power” - see later
Chapter “Hypothesis Testing”), but it will be the choice less likely to
be incorrect.



Confidence intervals for difference in means

Summary table:



Confidence intervals for difference of proportions

Summary table:



Pivotal Quantities with Chi-square distribution

Theorem

If Z1, . . . ,Zn is a random sample from a standard normal distribution, then

1 Z has a normal distribution with mean 0 and variance 1/n

2 Z and
n∑

i=1
(Zi − Z)2 are independent

3

n∑

i=1
(Zi − Z)2 has a chi-square distribution with n − 1 degrees of freedom

The aforementioned theorem gives results to remember!

The special case of Zi =
Xi−µ
σ , gives Z = X−µ

σ , and
n∑

i=1

(Zi − Z )2 =
n∑

i=1

((Xi − X )2/σ2)



Confidence intervals for variances

Similarly, any random variable U =
n∑

i=1

(Xi − µ)2/σ2 with X1, . . . ,Xn

representing a random sample from a normal distribution with mean
µ and variance σ2, has a chi-square distribution with
n degrees of freedom.

The formula’s for CIs for a single variance depend on:

whether or not the population mean µ is known
sample size

Rather than relying on a normal distribution, the chi-square
distribution is a better choice here



Confidence intervals for variances

Towards a summary table:

Normal Pop. & Population Mean known

P(a < H(X1,X2, . . . ,Xn; θ) =

n∑

i=1

(Xi−µ)2/σ2 < b) = 1−α

Normal Pop. & Population Mean UNknown

P(a < H(X1,X2, . . . ,Xn; θ) =

n∑

i=1

(Xi−X )2/σ2 < b) = 1−α



Confidence intervals for variances

Summary table:

Population Sample Population Pivot and
Distribution Size Mean Distribution

Normal Any µ known
unbiased estimator of σ2

is s2 = 1
n

∑n
i=1(xi − µ)2 ns2

σ2 ∼ χ2
n

Normal Any µ unknown
unbiased estimator of σ2

is s2 = 1
n−1

∑n
i=1(xi − x)2 (n−1)s2

σ2 ∼ χ2
n−1

Not Normal/ Large µ known
Unknown unbiased estimator of σ2

is s2 = 1
n

∑n
i=1(xi − µ)2 ns2

σ2 ∼ χ2
n

Not Normal/ Large µ unknown
Unknown unbiased estimator of σ2

is s2 = 1
n−1

∑n
i=1(xi − x)2 (n−1)s2

σ2 ∼ χ2
n−1

Not Normal/ Small Any Non-parametric
Unknown methods
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Interpretation of Confidence Interval (CI)

Before the data are observed, the probability is at least (1− α) that
[L,U] will contain the population parameter [Note that here, L and U
are random variables]

In repeated sampling from the relevant distribution, 100(1 − α)% of all intervals
of the form [L,U] will include the true population parameter

After the data are observed, the constructed interval [L,U] either contains the
true parameter value or it does not (there is no longer a probability involved
here!)

A statement such as P(3.5 < µ < 4.9) = 0.95 is incorrect and should
be replaced by A 95% confidence interval for µ is (3.5,4.9)
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Testing Hypotheses

Inferential statistics

At best, we can only be confident in our statistical assertions, but
never certain of their accuracy.

Trying to Understand the True State of Affairs

In the absence of prior knowledge about the details of some population
of interest, sample data serve as our best estimate of that population.

True State of Affairs + Chance = Sample Data

The laws of chance combined with the true state of affairs create
a natural force that is always operating on the sampling process.
Consequently, the means of different samples taken from the same
population are expected to vary around the “true” mean just by
chance.
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Testing Hypotheses

Sampling Distributions

Populations, which are distributions of individual elements, give rise
to sampling distributions, which describe how collections of elements
are distributed in the population.

The Standard Error: A Measure of Sampling Error

We have some control over sampling error because sample size
determines the standard error (variability) in a sampling distribution.

Theoretical Sampling Distributions as Statistical Models of
the True State of Affairs

Theoretical sampling distributions have been generated so that
researchers can estimate the probability of obtaining various sample
means from a pre-specified population (real or hypothetical).



Towards a formalism

Making Formal Inferences about Populations: Hypothesis testing

When there are many elements in the sampling distribution, it is
always possible to obtain a rare sample (e.g., one whose mean is
very different from the true population mean).

The probability of such an outcome occurring just by chance is
determined by the particular sampling distribution specified in the
null hypothesis.

When the probability (p) of the observed sample mean occurring by
chance is really low (typically less than one in 20, e.g., p < 0.05),
the researcher has an important decision to make regarding the
hypothesized true state of affairs. One of two inferences can be
made:

#1: The hypothesized value of the population mean is correct and a
rare outcome has occurred just by chance.
#2: The true population mean is probably some other value that is
more consistent with the observed data. Reject the null hypothesis in
favor of some alternative hypothesis.



Towards a formalism

The rational decision is to assume #2, because the observed data
(which represent direct (partial) evidence of the true state of affairs),
are just too unlikely if the hypothesized population is true.

Thus, rather than accept the possibility that a rare event has taken
place, the statistician chooses the more likely possibility that the
hypothesized sampling distribution is wrong.

However, rare samples do occur, which is why statistical inference is
always subject to error.

Even when observed data are consistent with a hypothesized
population, they are also consistent with many other hypothesized
populations. It is for this reason that the hypothesized value of a
population parameter can never be proved nor disproved from
sample data.



Towards a formalism

The nature of making inferences based on random sampling:

We use inferential statistics to make tentative assertions about
population parameters that are most consistent with the observed
data. Actually, inferential statistics only helps us to rule out values;
it doesn’t tell us what the population parameters are. We have to
infer the values, based on what they are likely not to be.

We can make errors while doing so. Only in the natural sciences
does evidence contrary to a hypothesis lead to rejection of that
hypothesis without error. In statistical reasoning there is also
rejection (inference #2), but with the possibility that a rare sample
has occurred simply by chance (sampling error).
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Basic Steps of Hypothesis Testing

Define the null hypothesis, H0

Define the alternative hypothesis, Ha, where Ha is usually of the
form “not” H0, but not necessarily

Define the type I error (probability of falsely rejecting the null), α,
usually 0.05, but not necessarily

Calculate the test statistic

Calculate the p-value (probability of getting a result “as or more
extreme” than observed if the null is true)

If the p-value is ≤ α, reject H0. Otherwise, fail to reject H0
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Hypothesis test for a single mean

Birthweight example

Assume a population of normally distributed birth weights with a
known standard deviation, σ = 1000 grams

Birth weights are obtained on a sample of 10 infants; the sample
mean is calculated as 2500 grams

Question: Is the mean birth weight in this population different from
3000 grams?

Set up a two-sided test of

H0 : µ = 3000,

Ha : µ 6= 3000

Let the probability of falsely rejecting the null be α = 0.05
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Hypothesis test for a single mean

Birthweight example

Calculate the test statistic:

Zobs =
X − µ0

σ/
√
n

=
2500− 3000

1000/
√
10

= −1.58

Do you recognize this statistic? Can you give another name for it? Can
you give an interpretation for the test value?



Hypothesis test for a single mean

Birthweight example

Calculate the test statistic:

zobs =
X − µ0

σ/
√
n

=
2500− 3000

1000/
√
10

= −1.58

Meaning: The observed mean is 1.58 standard errors below the
hypothesized mean

The test statistic is the standardized value of our data, assuming
that the null hypothesis is true

The question now is: If the true mean is 3000 grams, is our observed
sample mean of 2500 “common” or is this value (highly) unlikely to
occur?



Hypothesis test for a single mean

Birthweight example

Calculate the p-value to answer our question:

p − value = P(Z ≤ −|zobs |) + P(Z ≥ |zobs |) = 2× 0.057 = 0.114

If the true mean is 3000 grams, our data or data more extreme than
ours would occur in 11 out of 100 studies (of the same size, n=10)

In other words, in 11 out of 100 studies with sample size n = 10,
just by chance we are likely to observe a sample mean of 2500 or
more extreme if the true mean is 3000 grams

What does this say about our hypothesis? We fail to reject the null
hypothesis since we chose α = 0.05 and our p-value is 0.114

General guideline: if p-value ≤ α, then reject H0



Other approaches for 2-sided hypothesis testing

p-value : Calculate the test statistic (TS), get a p-value from the
TS and then reject the null hypothesis if p-value ≤ α or
fail to reject the null if p-value > α

Critical Region : Alternate, equivalent approach: calculate a critical
value (CV) for the specified α, compute the TS and reject
the null if |TS | > |CV | saying that the p-value is < α and
fail to reject the null if |TS | < |CV | saying p-value > α.
You never calculate the actual p-value.



Other approaches for 2-sided hypothesis testing



Other approaches for 2-sided hypothesis testing

Birthweight example

You can also use the critical value approach

Based on our significance level (α = 0.05) and assuming H0 is true,
how “far” does our sample mean have to be from H0 : µ = 3000 in
order to reject?

Critical value = zc where 2× P(Z > |zc |) = 0.05

In our example, zc = 1.96 and test statistic zobs = −1.58
The rejection region is any value of our test statistic that is
≤ −1.96 or ≥ 1.96

|zobs | < |zc | since | − 1.58| < |1.96|, so we fail to reject the null with
p-value > 0.05

Decision is the same whether using the p-value or critical value



Other approaches for 2-sided hypothesis testing

Confidence interval : Another equivalent approach goes as follows:
create a 100(1− α)% CI for the population parameter.

If the CI contains the null hypothesis, you fail to
reject the null hypothesis with p-value > α.
If the CI does not contain the null hypothesis, you
reject the null hypothesis with p-value ≤ α.

You never calculate the actual p-value.

The confidence interval approach does not work with one-sided test
but the critical value and p-value approaches do



Other approaches for 2-sided hypothesis testing



Confidence intervals for means

Summary table:



Hypotheis test for a single mean

Birthweight example

An alternative approach for two sided hypothesis testing is to
calculate a 100(1− α)% confidence interval for the mean µ

X̂ ± zα/2
σ√
10
→ 2500± 1.96

1000√
10

The hypothetical true mean 3000 is a plausible value of the true
mean given our data since it is in the CI

We cannot say that the true mean is different from 3000

We fail to reject the null hypothesis with p-value > 0.05

Same conclusion as with p-value and critical value approach!
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Definition of a p-value

The p-value for a hypothesis test is the probability of obtaining a
value of the test statistic as or more extreme than the observed test
statistic when the null hypothesis is true

The rejection region is determined by α, the desired level of
significance, or probability of committing a type I error or the
probability of falsely rejecting the null

Reporting the p-value associated with a test gives an indication of
how common or rare the computed value of the test statistic is,
given that H0 is true

We often use zobs to denote the computed value of the test statistic,
since quite often we can assume a normal distribution for the test
statistic of our choice
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Fallacies of statistical testing

Failure to reject the null hypothesis leads to its acceptance.
(WRONG! Failure ro reject the null hypothesis implies insufficient
evidence for its rejection.)

The p value is the probability that the null hypothesis is incorrect.
(WRONG! The p value is the probability of the current data or
data that is more extreme assuming H0 is true.)

α = 0.05 is a standard with an objective basis. (WRONG! α = 0.05
is merely a convention that has taken on unwise mechanical use.)

Small p values indicate large effects. (WRONG! p values tell you
next to nothing about the size of a difference.)

Data show a theory to be true or false. (WRONG! Data can at best
serve to show that a theory or claim is highly unlikely.)

Statistical significance implies importance.
(WRONG!WRONG!WRONG! Statistical significance says very
little about the importance of a relation.)
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Hypothesis test for a single mean

Choosing the correct test statistic:

Depends on population sd (σ) assumption and sample size

When σ is known, we have a standard normal test statistic

When σ is unknown and

our sample size is relatively small, the test statistic has a
t-distribution and
our sample size is large, we have a standard normal test statistic
(CLT)

The only difference in the procedure is the calculation of the p-value
or rejection region uses a t- instead of normal distribution
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Hypothesis test for a single mean

H0 : µ = µ0;Ha : µ 6= µ0



Hypothesis test for a single proportion

H0 : p = p0;Ha : p 6= p0



Hypothesis test for diff of 2 means

Choosing the correct test statistic:

So far, we’ve been looking at only a single mean. What happens
when we want to compare the means in two groups?

We can compare two means by looking at the difference in the
means

Consider the question: is µ1 = µ2?
This is equivalent to the question: is µ1 − µ2 = 0 ?

The work done for testing hypotheses about single means extends to
comparing two means

Think about the pivotal quantities to construct confidence intervals:
Assumptions about the two population standard deviations
determine the formula to use



Hypothesis test for diff of 2 means

H0 : µ1 − µ2 = µ0;Ha : µ1 − µ2 6= µ0



The EPREDA trial



The EPREDA trial



The EPREDA trial



The EPREDA trial



The EPREDA trial
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Type of errors in hypothesis testing: α and β
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Type of errors in hypothesis testing: β

Two-sided hypothesis test

Power = 1 - β



Type of errors in hypothesis testing: β



Components of a statistical test: Relationships



Critical Regions

One-sided hypothesis test

One-sided hypothesis test



A note aside: Effect size

The effect size encodes the selected research findings on a numeric
scale

There are many different types of effect size measures (OR,
difference in means, correlations, ) , each suited to different research
situations

Each effect size type may also have multiple methods of computation

An example of a standardized effect size ES is

ES =
XG1 − XG2

sp
, sp =

√
s2

1 (n1 − 1) + s2
2 (n2 − 1))

n1 + n2 − 2
.

Does this seem natural to you?



Recall: The Standard Normal Distribution

Definition: a normal distribution N(µ, σ2) with parameters µ = 0
and σ = 1

Its density function is written as

f (x) =
1√
2π

e−x2/2,−∞ < x <∞

We typically use the letter Z to denote a standard normal random
variable: Z ∼ N(0, 1)

Important: We can use the standard normal all the time (instead of
non-standardized version) because if X ∼ N(µ, σ2) then
X−µ
σ ∼ N(0, 1)

This process is called “standardizing” a normal random variable



Recall: Hypothesis test for diff of 2 means

H0 : µ1 − µ2 = µ0;Ha : µ1 − µ2 6= µ0



Hypothesis Testing

Bacis Summary
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Proportions and 2× 2 tables
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Comparing proportions

Often, we want to compare p1, the probability of success in
population 1, to p2, the probability of success in population 2

Usually: “Success” = Disease
Population 1 = Treatment 1
Population 2 = Treatment 2 (maybe placebo)

How do we compare these proportions?

We’ve talked about comparing proportions by looking at their
difference
But sometimes we want to look at one proportion ‘relative’ to the
other
This approach depends on the type of study the data came from
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Cohort Study Design
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Case-control Study Design
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Study Example

Aceh Vitamin A Trial

Exposure levels (Vitamin A) assigned at baseline and then the
children are followed to determine survival in the two groups.

25,939 pre-school children in 450 Indonesian villages in northern
Sumatra
Vitamin A given 1-3 months after the baseline census, and again at
6-8 months
Consider 23,682 out of 25,939 who were visited on a pre-designed
schedule

References:
1 Sommer A, Djunaedi E, Loeden A et al, Lancet 1986.
2 Sommer A, Zeger S, Statistics in Medicine 1991.

What type of (epidemiological) design is this?
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Trial outcome: 12 month mortality



Trial outcome: 12 month mortality

In fact, with O = outcome of interest (e.g., death rate) and E =
exposure (e.g., 1 if Vit A given, 2 if no Vit A given), the attributable
risk in the exposed (E = 1) is given by

ARE =
P(O|E = 1)− P(O|E = 2)

P(O|E = 1)

=
(P(O|E = 1)− P(O|E = 2))/P(O|E = 2)

P(O|E = 1)/P(O|E = 2)

=
RR − 1

RR

RR = P(O|E = 1)/P(O|E = 2) = p1/p2



Calculation of Relative Risk (RR)



Confidence Interval for Relative Risk (RR)

How would you compute the variance of the RR?



Confidence Interval for Relative Risk (RR)

How would you compute the variance of the RR?

Take natural logarithm log(RR)

E = 1 and E = 0 groups are independent and therefore the
Var(log(RR)) = Var(log(p̂1)) + Var(log(p̂2))

Var(log(p̂1)) = (1/p̂1)
2Var(p̂1)

Var(p̂1) = [p̂1(1− p̂1)]/n1



Confidence Interval for Relative Risk (RR)



Confidence Interval for Relative Risk (RR)



Suppose the data were from a case-control study



Odds Ratio Revisited



Defining p1 and p2



Confidence Interval for Odds Ratio



Confidence Interval for Odds Ratio

Can we adopt the same reasoning as for the RR when computing the
variance of the OR?



RR and OR

In Summary

The relative risk cannot be estimated from a case-control study

The odds ratio can be estimated from a case-control study

The OR estimates the RR when the disease is rare in both groups:

OR =
P(diseased |exposed)/(1− P(diseased |exposed))

P(diseased |unexposed)/(1− P(diseased |unexposed) ,

RR =
P(diseased |exposed)

P(diseased |unexposed)
The OR is invariant to cohort or case-control designs, the RR is not

The OR is an essential concept in “logistic regression”, which is a
generalization of “regression”
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