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Introduction to Statistics Basic Probability Revisited Sampling Why? What? Some Examples Making Inferences

Why study Statistics?

We like to think that we have control over our lives.

But in reality there are many things that are outside our control.

Everyday we are confronted by our own ignorance.

According to Albert Einstein:

God does not
play dice

The world is governed by quantum mechanics where probability
reigns supreme.
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Relevant Questions to Probability

If someone asks you what probability is, can you point out a key question
to him/her?



Consider a day in the life of an average ULg student

You wake up in the morning and the sunlight hits your eyes. Then
suddenly without warning the world becomes an uncertain place.

How long will you have to wait for the Number 48 bus this morning?

When it arrives will it be full?

Will it be out of service?

Will it be raining while you wait?

Will you be late for your stats lecture?
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Probability is the Science of Uncertainty

Probability originated from the study of games of chance and
gambling during the 16th century

It is derived from the verb “to probe”: to “find” out what is not
easily accessible or understandable

Probability was a branch of mathematics (Blaise Pascal and Pierre
Fermat)
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Probability is the Science of Uncertainty

It is used by physicists to predict the behaviour of elementary
particles.

It is used by engineers to build computers.

It is used by economists to predict the behaviour of the economy.

It is used by stockbrokers to make money on the stockmarket.

It is used by psychologists to determine if you should get that job.



Probability is the Science of Uncertainty

1 Rules → data: Given the rules, describe the likelihoods of various
events occurring.

2 Probability is about prediction - looking forward.

3 Probability is mathematics.
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What about Statistics?

Statistics was born in the mid 17th century.

It originated from John Graunt reviewing a weekly church
publication issued by the local parish clerk that listed the number of
births, christenings and death in each parish. These so-called “Bills
of Mortality” also listed the causes of death.

The way the “data” were organized was what we call now
“descriptive statistics”.

Statistics is the science of data . . .
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Descriptive Statistics

With descriptive statistics we condense a set of known numbers into a
few simple values (either numerically or graphically) to simplify an
understanding of those data that are available to us.

This is analogous to writing up a summary of a lengthy book. The
book summary is a tool for conveying the gist of a story to others.

The mean and some measures of spread of a set of numbers is a tool
for conveying the gist of the individual numbers (without having to
specify each and every one).



Statistics is the Science of Data

The original idea of statistics was the collection of information about
and for the “state”. The word statistics derives directly, not from
any classical Greek or Latin roots, but from the Italian word for state.

With the “Bills of Mortality” in mind, statistics has to borrow some
concepts from sociology, such as the concept of “population”.

It has been argued that since statistics usually involves the study of
human behavior, it cannot claim the precision of the physical
sciences.

Although new and ever growing diverse fields of human activities are
using statistics, the field itself remains hard to access to the larger
public.



Statistics is the Science of Data

1 Rules ← data: Given only the data, try to guess what the rules
were. That is, some probability model controlled what data
came out, and the best we can do is guess - or approximate -
what that model was. We might guess wrong; we might refine
our guess as we get more data.

2 Statistics is about looking backward.

3 Statistics is an art. It uses mathematical methods, but it is
more than maths.

4 Once we make our best statistical guess about what the
probability model is (what the rules are), based on looking
backward, we can then use that probability model to predict the
future → The purpose of statistics is to make inference about
unknown quantities from samples of data



Statistics is the Science of Data

Sampling and experimentation: Clarifying the question, deciding
on methods of collection and analysis to produce valid information.

Exploring data: Using graphical and numerical techniques to study
patterns and departures from patterns (in order to interpreting data)

Anticipating patterns: Exploring random phenomena using
probability and simulation. Probability is our tool for anticipating
distributions . . .

Statistical Inference: Estimating population parameters and
testing hypothesis.



Statistical Modeling under Uncertainties: From Data to
Knowledge



Relevant Questions to Statistics

If someone asks you what statistics is, can you point out a key question
to him/her?



Consider a day in the life of an average ULg student

You wake up in the morning and the sunlight hits your eyes. Then
suddenly without warning the world becomes an uncertain place.

How long will you have to wait for the Number 10 bus this morning?

When it arrives will it be full?

Will it be out of service?

Will it be raining while you wait?

Will you be late for your stats lecture?
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Example: Particle Emission

X : the number of particles that will be emitted from a radioactive
source in the next one minute period.

We know that X will turn out to be equal to one of the
non-negative integers but, apart from that, we know nothing about
which of the possible values are more or less likely to occur.

The quantity X is said to be a random variable. [In fact, a random
variable is a function - see later ]
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Example: Particle Emission

Suppose we are told that the random variable X has a Poisson
distribution with parameter λ = 2.



Example: Particle Emission

Then, if x is some non-negative integer, we know that the probability
that the random variable X takes the value x is given by the formula

P(X = x) =
λx exp (−λ)

x!

where λ = 2. [It does not matter how we “denote” the parameter
. . . ]

For instance, the probability that X takes the value x = 4 is

P(X = 4) =
24 exp (−2)

4!
= 0.0902 .

We have here a probability model for the random variable X .

We are usually using upper case letters for random variables and
lower case letters for the values taken by random variables - We shall
persist with this convention throughout the course.



Example: Particle Emission

Now suppose we are told that the random variable X has a Poisson
distribution with parameter θ where θ is some unspecified (!)
positive number.

Then, if x is some non-negative integer, we know that the probability
that the random variable X takes the value x is given by the formula

P(X = x |θ) =
θx exp (−θ)

x!
,

for θ ∈ R
+.

However, we cannot calculate probabilities such as the probability
that X takes the value x = 4 without knowing the value of θ.



Example: Particle Emission

Suppose that, in order to learn something about the value of θ, we
decide to measure the value of X for each of the next 5 one minute
time periods.

Let us use the notation X1 to denote the number of particles
emitted in the first period, X2 to denote the number emitted in the
second period and so forth.

We shall end up with data consisting of a random vector
X = (X1,X2, . . . ,X5).

Consider x = (x1, x2, x3, x4, x5) = (2, 1, 0, 3, 4). Then x is a possible
value for the random vector X.



Example: Particle Emission

We know that the probability that X1 takes the value x1 = 2 is given
by the formula

P(X = 2|θ) =
θ2 exp (−θ)

2!

and similarly that the probability that X2 takes the value x2 = 1 is
given by

P(X = 1|θ) =
θ exp (−θ)

1!

and so on.

However, what about the probability that X takes the value x?



Example: Particle Emission

In order for this probability to be specified we need to know
something about the joint distribution of the random variables
X1,X2, . . . ,X5.

A simple assumption to make is that the random variables
X1,X2, . . . ,X5 are mutually independent.

This assumption may not be correct since X2 may tend to be more
similar to X1 than it would be to X5 !!!



Example: Particle Emission - an aside

Two events are independent if the joint probability of both events
occurring is the product of the probabilities of each event occurring:

P(A ∩ B) = P(A)× P(B).

Independence of events is closely related to conditional probability:
When events A and B are independent, then

P(A) = P(A|B) ≡
P(A ∩ B)

P(B)
,P(B) �= 0.



Example: Particle Emission - an aside

Likewise, independence of random variables is closely related to
conditional distributions of random variables: The random variables
X1, . . . ,Xk are (stochastically) independent if and only if

fX1,...,Xk
(x1, . . . , xk) =

k∏

i=1

fXi
(xi ),

for all x1, . . . , xk .

If two random variables X andY are independent, then

fY |X (y |x) = fY (y);

the conditional density of Y given x is the unconditional density of
Y . Hence, to show that two random variables are NOT independent,
it suffices to show that fY |X (y |x) depends on x!



Example: Particle Emission

However, with this assumption we can say that the probability that
X takes the value x is given by

P(X = x|θ) =

5∏

i=1

θxi exp (−θ)

xi !
,

=
θ2 exp (−θ)

2!
×

θ1 exp (−θ)

1!
×

θ0 exp (−θ)

0!

×
θ3 exp (−θ)

3!
×

θ4 exp (−θ)

4!
,

=
θ10 exp (−5θ)

288
.



Example: Particle Emission

In general: if X = (x1, x2, x3, x4, x5) is any vector of 5 non-negative
integers, then the probability that X takes the value x is given by

P(X = x|θ) =

5∏

i=1

θxi exp (−θ)

xi !
,

=
θ
∑5

i=1 xi exp (−5θ)
5∏

i=1

xi !

.

We have here a probability model for the random vector (!) X.

Our plan is to use the value x of X that we actually observe to learn
something about the value of θ.

The ways and means to accomplish this task make up a large part of
this course.
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What is inferential statistics?

Inference Inference studies the way in which data we observe should
influence our beliefs about and practices in the real world.

Statistical inference Statistical inference considers how inference
should proceed when the data is subject to random fluctuation.
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What is inferential statistics?

Inferential statistics is used to make claims about the populations
that give rise to the data we collect.

This requires that we go beyond the data available to us.

Consequently, the claims we make about populations are always
subject to error; hence the term “inductive inference” in the context
of statistics.

Inferential statistics encompasses a variety of procedures to ensure
that the inferences are sound and rational, even though they may
not always be correct.



Relation between Descriptive and Inferential Statistics



Relevant Questions for Descriptive and Inferential Statistics
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Problem Solving

Logic: The science of correct reasoning.

Reasoning: The drawing of inferences or conclusions from known or
assumed facts.

When solving a problem, one must

understand the question,

gather all pertinent facts,

analyze the problem i.e. compare with previous problems (note
similarities and differences),

perhaps use pictures or formulas to solve the problem
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Deductive Reasoning

Deductive Reasoning: A type of logic in which one goes from a
general statement to a specific instance.

The classic example:

All men are mortal. (major premise)
Socrates is a man. (minor premise)
Therefore, Socrates is mortal. (conclusion)



Deductive Reasoning

The example on the previous slide is an example of a syllogism.

Syllogism: An argument composed of two statements or premises
(the major and minor premises), followed by a conclusion.

For any given set of premises, if the conclusion is guaranteed, the
argument is said to be valid.

If the conclusion is not guaranteed (at least one instance in which
the conclusion does not follow), the argument is said to be invalid.

Be careful, do not confuse “truth” with “validity” . . .



Inductive Reasoning

Inductive Reasoning involves going from a series of specific cases
to a general statement.

The conclusion in an inductive argument is never guaranteed.

Example:

Suppose we have a storage bin that contains 10 million flower seeds
which we know will each produce either white or red flowers. The
information which we want is: How many of these 10 million seeds
will produce whit flowers? The only way in which we can be
absolutely sre that this question is answered correctly is to plant
every seed and observe the number producing white flowers . . .



Types of Statistical Inference

Deductive Inference Inductive Inference
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Basic Probability Revisited: Events

A sample space Ω: the totality of possible outcomes of a
conceptual experiment of interest (“universe”)

An event space A: a set of subsets of Ω.

The event space A is assumed to be a (Boolean) algebra (explaining
the use of the symbol A), meaning that the collection of events A
satisfies the following properties:

The universum Ω ∈ A
If A ∈ A then Ω− A = A ∈ A
If A1 and A2 ∈ A, then A1 ∪ A2 ∈ A

An event is any collection (subset) of outcomes contained in the
sample space. An event is simple if it consists of exactly one
outcome and compound if it consists of more than one outcome
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Probability

Probability is a measure of uncertainty about the occurrence of
events

Two definitions of probability:

Classical definition (also referred to as “a priori probability”)
Relative frequency definition



Probability

Classical definition If a random experiment can result in n mutually
exclusive and equally likely outcomes and if nA of these outcomes
have an attribute A, then the probability of A is the fraction nA/n.

Limitations:

The definition of probability must be modified somehow when the
total number of possible outcomes is infinite [e.g. draw from positive

integers]
Suppose that we toss a coin known to be biased in favor of heads
[What is the probability of a head? ]
Suppose notions of symmetry and equally likely do not apply? [What

is the probability that a male will die before the age of 60? ]



Probability

Relative frequency definition Assuming that a random experiment
is performed a large number of times, say n, then for any event A let
nA be the number of occurrences of A in the n trials and define the
ratio nA/n as the relative frequency of A. The limiting value of the
relative frequency is a probability measure of A.

Intuitive interpretation:

The probability of A is the limit of the relative frequency of A, as the
number of experiments (see later: sample size) n goes to infinity.
“Long run relative frequency”



Probability Function

The probability function P(.) is a set function having domain A and
counterdomain the interval [0, 1]. Probability functions allow to compute
the probability of certain “events” and satisfy the defining properties or
axioms:

P(A) ≥ 0 for all A ∈ A

P(Ω) = 1

If A1,A2, . . . is a sequence of mutually exclusive events in A (i.e.,
Ai ∩ Aj = φ for i �= j ; i , j = 1, 2, . . .) and if
A1 ∪ A2 ∪ . . . =

⋃∞
i=1 Ai ∈ A, then P(

⋃∞
i=1 Ai ) =

∑∞
i=1 P(Ai )



Probability Function

Some remarks:

The previous definition of a probability function is mathematical one,
motivated by the defintions of classical and relative frequency
probabilities.

It tells us which set functions can be called probability functions.

It does not tell us what value the probability function P(.) assigns to
a given event A.

We will have to model our random experiment in some way in order
to obtain values for the probability of events.



Problem Solving Steps in Probability

Step 1: Find the sample space

[When the sample space is not too large, it is feasible to use tree
diagrams, as in the breast cancer example below, to capture the
sample space]

Step 2: Define events of interest

Step 3: Assign outcome probabilities

Step 4: Compute event probabilities



Basic Probability Rules

P(Ac) = 1− P(A)

Addition rule: P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Mutually exclusive events are events which cannot occur at the
same time: P(AB) = P(A ∩ B) = 0

Probability of A occuring given that B has occurred,
P(A|B) = P(AB)/P(B)

Multiplicative rule:

P(AB) = P(A|B)P(B)

= P(B |A)P(A)



Independent Events

A and B are independent events if the occurrence of one event
does not affect the probability of the other event.

Relying on P(A|B) = P(AB)/P(B), if A and B are independent
then:

P(A|B) = P(A)
P(B|A) = P(B)
P(AB) = P(A)P(B)



Example 1: Positive Test for Disease (I)

Suppose one in every 10,000 people in Ireland suffer from AIDS

There is a test for HIV/AIDS which is 95% accurate.

You are not feeling well and you go to hospital where your Physician
tests you.

He says you are positive for AIDS and tells you that you have 18
months to live.

How should you react?



Example 1: Positive Test for Disease (II)

Let D be the event that you have AIDS

Let T be the event that you test positive for AIDS

P(D) = 0.0001

P(T |D) = 0.95

P(D|T ) =?



Example 1: Positive Test for Disease (III)

P(D|T ) = P(D∩T )
P(T )

= P(T |D)P(D)
P({T∩D}∪{T∩Dc}) (denominator: theorem of total probabilities)

= P(T |D)P(D)
P(T∩D)+P(T∩Dc )

= P(T |D)P(D)
P(T |D)P(D)+P(T |Dc )P(Dc )

= (0.95)(0.0001)
(0.95)(0.0001)+(0.05)(0.9999)

= 0.001897



Bayesian Odds

On occasion when there are two events, say A and B , whose
comparative posterior probabilities are of interest, it may be more
advantageous to consider the ratios, i.e.:

p(A|C )

p(B |C )
=

p(C |A)

p(C |B)
·
p(A)

p(B)
.

Ward Edwards gives a simple example where this comes in handy:
There are two bags, one containing 700 red and 300 blue chips, the
other containing 300 red and 700 blue chips. Flip a fair coin to
determine which one of the bags to use. Chips are drawn with
replacement. In 12 samples, 8 red and 4 blue chips showed up.

What is the probability that it was the predominantly red bag?



Bayesian Odds

Let A be the event of selecting the first bag. Let B be the event of
selecting the second bag. Finally, let C be the result of the
experiment, i.e., drawing 8 red and 4 blue chips from the selected
bag. Clearly,

p(C |A) =
( 7

10

)8( 3

10

)4
(1)

p(C |B) =
( 7

10

)4( 3

10

)8
(2)

so that p(C |A)
p(C |B) =

(
7
3

)4
≈ 29.642.

Now, p(A) = p(B) = 0.5, implying that
p(A|C)
p(B|C) =

p(C |A)
p(C |B) × 1 = 29.642.

From p(A|C ) + p(B |C ) = 1, it then follows that p(A|C)
1−p(A|C) = 29.642

(this is an odds . . . ) and

p(A|C ) ≈
29.642

1 + 29.642
=

29.642

30.642
≈ 0.967



Odds

Odds are just an alternative way of expressing the likelihood of an
event such as catching the flu. Probability is the expected number
of flu patients divided by the total number of patients. Odds would
be the expected number of flu patients divided by the expected
number of non-flu patients.

During the flu season, a medical doctor might see ten patients in a
day. One would have the flu and the other nine would have
something else.

So the probability of the flu in your patient pool would be one out of
ten.
The odds would be one to nine.

It is easy to convert a probability into an odds, and vice versa.

odds = probability / (1-probability)

probability = odds / (1 + odds)



Example 2: Monty Hall Problem (I)

Game Show

3 doors

1 Car & 2 Goats

You pick a door - e.g. #1

Host knows what’s behind all the doors
and he opens another door, say #3, and
shows you a goat

He then asks if you want to stick with your
original choice #1, or change to door #2?

Would you change doors?



Example 2: Monty Hall Problem (II)

At the beginning the sample space (set of
all outcomes) is {CGG ,GCG ,GGC}

Pick a door, e.g., #1

1 in 3 chance of winning

The host then shows you a goat.

So now {CGG ,GCG ,GGC}

Hence, switching is the best option! The
second door has a 2/3 of winning.



Example 2: Monty Hall Problem (III)

If your are not convinced, image a game with 100 doors . . .

1 Ferrari, 99 goats

Pick a door

Host opens 98 of the 99 other doors

Do you stick with your original choice?
(1/100 probability?)

Or do you switch to the unopened door?
(99/100 probability?)



Example 3: Tossing a Fair Coin (I)

Oh no .... not again !!!!



Example 2: Tossing a Fair Coin (II)

Misconception 1:

“There is no reason to assume at any point that a change of luck is
warranted based on prior trials (flips), because every outcome
observed will always have been as likely as the other outcomes that
were not observed for that particular trial, given a fair coin. ”

Assume a fair 16-sided die, where a win is defined as rolling a 1.
Assume a player is given 16 rolls to obtain at least one win
[1-P(rolling no ones)].

The probability of having at least 1 win in the 16 rolls is:
1− ( 1516 )

16 = 64.39%

Assume that the first roll was a loss, then the probability of having
at least 1 win is 1− ( 1516 )

15 = 62.02%

The previous losses in no way contribute to the results of the
remaining attempts, but there are fewer remaining attempts to gain
a win, which results in a lower probability of obtaining it.



Example 3: Tossing a Fair Coin (III)

Misconception 2:

Quote by William Feller (1957):

“. . . It is usual to read into the law of large numbers things which it
definitely does not imply. If Peter and Paul toss a perfect coin 10,000

times, it is customary to expect that Peter will be in the lead roughly half
the time. This is not true. In a large number of different coin-tossing

games it is reasonable to expect that any fixed moment heads will be in
the lead in roughly half of all cases. But it is quiet likely that the player
who ends at the winning side has been in the lead for practically the

whole duration of the game. ”



Example 3: Tossing a Fair Coin (IV)

When Peter and Paul toss a coin 10,000 times each, N = 10, 000
and 2N coins are tossed in total.

As N increases, the chances that there are equal numbers of heads
and tails among the 2N tosses increases.

So by the Law of Large Numbers:

lim
n→∞

P(#H = #T ) = 1

In the limit, as N tends to infinity, the probability of matching
numbers of heads and tails approaches 1.



Example 3: Tossing a Fair Coin (V)

One of the key ideas in probability is to study not just events but
processes, which evolve in time and are driven by forces with a
random element. [Probability - Statistics - Stochastic Procesess]

A one-dimensional random walk can be illustrated as follows: A
marker is placed at zero on the number line and a fair coin is flipped.
If it lands on heads, the marker is moved one unit to the right. If it
lands on tails, the marker is moved one unit to the left.



Example 3: Tossing a Fair Coin (VI)

Take independent random variables Zi , i = 1, . . . , n where each
variable is either 1 or -1 with a 50% probability for either value, and
set S0 = 0 and Sn =

∑n

i=1 Zi . The series is called the simple random
walk on the integer numbers.

This series of 1’s and -1’s gives the distance walked, if each part of
the walk is of length 1.

The expectation Sn is 0. That is, the mean of all coin flips
approaches zero as the number of flips increase. This also follows by
the finite additivity property of expectations:

E(Sn) =

n∑

i=1

E(Zi ) = 0.



Example 3: Tossing a Fair Coin (VII)

How many times will a random walk cross the zero line?



Example 3: Tossing a Fair Coin (VIII)

The following, perhaps surprising, theorem is the answer: for any
random walk in one dimension, every point in the domain will almost
surely be crossed an infinite number of times. [In two dimensions,
this is equivalent to the statement that any line will be crossed an
infinite number of times.] This problem has many names: the
“level-crossing problem”, the “recurrence problem” or the “gambler’s
ruin” problem.



Problem Solving Steps in Statistics

Step 1: Observation

The first step of the scientific method is to make an observation
regarding some event or characteristic of the world. This observation
should lead to a question regarding the event or characteristic.

Step 2: Ask a question

The scientific method starts when you ask a question about
something that you observe:

How ? What ? When ? Who ? Which ? Why ? Where ?

In order for the scientific method to answer the question it must be
about something that you can measure, preferably with a number.

Step 3: Construct a statistical hypothesis

A hypothesis is an educated guess about how things work:

If [ I do this ], then [ this ] will happen.



Problem Solving Steps in Statistics

Step 3: Construct a statistical hypothesis

. . . You must state your hypothesis in a way that you can easily
measure and so that you are able to answer your original question.

Step 4: Test your hypothesis with data

Collect an appropriate sample, check the quality of your data and
carry out the test. It must be a fair test. All conditions are
preferentially the same for each factor in your experiment except the
one factor you are testing.

Step 5: Draw conclusions

These may be directly based on the formal hypothesis testing in
Step 4, but may also involve making “predictions”, with an
assessment of how “reliable” these predictions are.



Problem Solving Steps in Statistics



Introduction to Statistics Basic Probability Revisited Sampling Samples and Populations Sampling Schemes A Practical Application

Samples and populations: Trying to Understand the True
State of Affairs

The world just happens to be a certain way, regardless of how we
view it.

The phrase “true state of affairs” refers to the real nature of any
phenomenon of interest.

In statistics, the true state of affairs refers to some quantitative
property of a “population”. Numeric properties of populations (such
as their means, standard deviations, and sizes) are called
“parameters”. Parameters of a population (say, its mean and
standard deviation) are based on each and every element in that
population.

Thus, for the scientist who uses inferential statistics, “population
parameters” represent the true state of affairs.

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATH0487-1)



Trying to Understand the True State of Affairs

We seldom know the true state of affairs. The process of inferential
statistics consists of making use of the data we do have (observed
data) to make inferences about population parameters.

Unfortunately, the true state of affairs is also dependent on all of the
data we don’t have (unobserved data). Nevertheless, an important
aspect of “sample data” is that they are actual elements from an
underlying population. In this way, sample data are “representatives”
of the population that gave rise to them. This implies that sample
data can be used to estimate population parameters.

Therefore, as we have seen before, inferential statistics (both
estimating and testing components) involve inductive reasoning:
“from specific towards more general”



Introduction to Statistics Basic Probability Revisited Sampling Samples and Populations Sampling Schemes A Practical Application

Parameters and statistics
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Samples and Populations

Since sample data are only representatives, they are not expected to
be perfect estimators. Consider that we necessarily lose information
about a book when we only read a book review. Similarly, we lack
information about a population when we only have access to a
subset of that population.

It would be useful to have some measure of how “reliable” (or
representative) our sample data really are. What is the probability of
making an error?

Obviously, in order to get a better handle on how representative our
data are, we must first consider the sampling process itself: we must
first study “how to generate samples from populations”, before we
can learn to generalize from samples to populations

It is in this context that the importance of random and independent
sampling begins to emerge.



True state of affairs + Chance = Sample data

Some elements (say, “heights”) in a population are more frequent
than others. These more frequent elements are thus
over-represented in the population compared to less common
elements (e.g., the heights of very short and very tall individuals).

The laws of chance tell us that it is always possible to randomly
select any element in a population, no matter how rare (or
under-represented) that element may be in the population. If the
element exists, then it can be sampled, plain and simple.

However, the laws of probability tell us that rare elements are not
expected to be sampled often, given that there are more numerous
elements in that same population. It is the more numerous (or more
frequent) elements that tend to be sampled each time a random and
independent sample is obtained from the population.



Some Definitions

Target population The totality of elements which are under
discussion and about which information is desired will be called the
target population.

Random sample Let the random variables X1,X2, . . . ,Xn have a
joint density fX1,X2,...,Xn

that factors as

fX1,X2,...,Xn
(x1, x2, . . . , xn) = f (x1)f (x2) . . . f (xn),

where f (.) is the (common) density of each Xi . Then X1,X2, . . . ,Xn

is defined to be a random sample of size n from a population with
density f (.)



Some Definitions

Random variable For a given probability space (Ω,A,P(.)), a
random variable, denoted by X or X (.), is a function with domain Ω
and counterdomain the real line. The function X must be such that
the set defined by {ω : X (ω) ≤ r} belongs to A for every real
number r .

Ω: the sample space, this is the totality of possible outcomes of a
conceptual experiment of interest
A is a set of subsets of Ω, called the event space.

Sampled population Let X1,X2, . . . ,Xn be a random sample from
a population with density f (.), then this population is called the
sampled population.



Some Definitions - an aside

Cumulative distribution function Any function F (.) with domain
the real line and counterdomain [0,1] satisfying the following 3
properties is defined to be a cumulative distribution function:

F (−∞) ≡ limx→−∞ F (x) = 0 and F (∞) ≡ limx→∞ F (x) = 1
F (.) is a monotone, nondecreasing function [F (a) ≤ F (b) for any
a < b]
F (.) is continuous from the right; that is lim0<h→0 F (x + h) = F (x)



Example: 10 Million Flowers

In the example of the 10 million flower seeds (syllabus), each seed is
an element of the target population we wish to sample and will
produce a white or red flower.

Strictly speaking, there is not a numerical value associated with each
element of the population. When we associate for instance number
1 with white and number 0 with red, then there is a numerical value
associated with each element of the population, and we can discuss
whether a particular sample is random or not.

The random variable Xi is then 1 or 0 depending on whether the i-th
seed sampled produces a white or red flower, i = 1, . . . , n.

If the sampling is performed in such a way that the random variables
X1,X2, . . . ,Xn are independent and have the same density (cfr i.i.d.),
then, according to the previous definition of a random sample, the
sample is random.

We will see later in this course how we can look for signs against
“randomness” or “independent” obvervations.



Sampling Frame



Who are Those Angry Women?

In 1987, Shere Hite published a best-selling book called “Women and Love: A
Cultural Revolution in Progress”. This 7-year research project produced a
controversial 922-page publication that summarized the results from a survey
that was designed to examine how American women felt about their
relationships with men. Hite mailed out 100,000 fifteen-page questionnaires to
women who were members of a wide variety of organizations across the U.S.
Questionnaires were actually sent to the leader of each organization. The
leader was asked to distribute questionnaires to all members. Each
questionnaire contained 127 open-ended questions with many parts and
follow-ups. Part of Hite’s directions read as follows: “Feel free to skip around
and answer only those questions you choose.” Approximately 4,500
questionnaires were returned . . .

The population: all American women.

The sample: the 4,500 women who responded.

The sampling frame ?



Who are Those Angry Women?

It is also easy to identify that the sampling unit was an American
woman. So, the key question is “What is the sampling frame?”

Most people think the sampling frame was the 100,000 women who
received the questionnaires.

Is this answer correct?



Who are Those Angry Women?

This answer is not correct because the sampling frame was the list
from which the 100,000 who were sent the survey was obtained. In
this instance, the sampling frame included all American women who
had some affiliation with an organization.

There is no statistical term to attach to the 100,000 women who
received the questionnaire. However, if the response rate had been
100%, the sample would have been the 100,000 women who
responded to the survey. You should also remember that ideally the
sampling frame should include the entire population. If this is not
possible, the sampling frame should appropriately represent the
desired population. In this case, the sampling frame of all American
women who were “affiliated with some organization” did not
appropriately represent the population of all American women. This
problem is called “selection bias”.



Who are Those Angry Women?

Three difficulties that are possible when samples are obtained for (for
example) surveys:

1 Using the wrong sampling frame. This problem is also called
selection bias.

2 Not reaching the individuals selected. Because the questionnaire was
sent to leaders of organizations, there is no guarantee that these
questionnaires actually reached the women who were supposed to be
in the sample.

3 Getting “no response” or a “volunteer response.” This problem can
also be called nonresponse bias



Issues for Review

We already know the differences between theoretical / study population
and sampling frame / sample, and that several difficulties may arise when
samples are obtained.

Does sampling work?

What is sampling error and what can be done to reduce it?

How much sampling error can be tolerated?



Issues for Review

Is the sample size sufficient for “extrapolations”?

How much precision is there in the “extrapolation”?

How much larger should the sample be if more precision is desired?

What is the most “optimal” sampling scheme?
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Problem Setting

Why do we sample?

Size of the population
Cost of obtaining elements
Convenience and accessibility of elements

It is clear that in most practical applications, we need to generate a
sample. However, at this point, it is less clear how we “best” select
from an infinite number of observations we could possibly make . . .
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How do we Decide What to Observe?

This decision should be a matter of deliberate choice rather than
chance.

Representativeness: a small sample of individuals from a population
must contain essentially the same variations that exist in the
population

Limit to those characteristics that are relevant to the substantive
interests of the study, not ALL aggregate characteristics



How do we Decide Who to Choose?

Basically two sampling strategies available:

Probability sampling each member of the population has a certain
probability to be selected into the sample

Non-probability sampling members selected not according to logic
of probability (or mathematical rules), but by other means (e.g.
convenience, or access)
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Non-probability Sampling

Sometimes it is not possible to get the kind of information about
populations that is required for probability sampling

When the sampling frame is not known

Complicates and limits statistical analyses: Non-probability sampling
is well suited for exploratory research intended to generate new ideas
that will be systematically tested later. However, if the goal is to
learn about a large population, it is imperative to avoid judgment of
non-probabalistic samples.

Often well-suited for so-called qualitative research (i.e., a form of
systematic empirical inquiry into meaning - Shank 2002), where
distribution of characteristics is not important
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Convenience Sampling

Rely on available respondents

Most convenient method

Risky: exercise caution !!!



Purposive Sampling

Rely on those subjects that fit a specific purpose.

Select the sample on the basis of knowledge of the population: use
your own knowledge, or use expert judges to identify candidates to
select

Typically used for very rare populations, such as deviant cases, or in
market research.



Purposive Sampling

Expert Heterogeneity

Quota Snowball
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Major Types of Probability Sampling
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