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Recapitulation

es of Estimators

@ Focus on finding point estimators first, i.e. for which the true
value of a (function of a) parameter is assumed to be a point.

@ Several methods exist to compute point estimators, including the
“methods of moments” and “maximum likelihood”, but also the
“method of least squares” (see Regression Analysis chapter), etc.

@ Second, focus on finding interval estimators, i.e. acknowledge the
utility for some interval about the point estimate together with some
measure of accurance that the true value of the parameter lies
within the interval.

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATH0487-1)



Types of Estimators

Inference choices:

@ making the inference of estimating the true value of the
parameter to be a point,

@ making the inference of estimating that the true value of the
parameter is contained in some interval.




Desirable Properties of a Point Estimator

o Unbiased functions: g(X) is said to be unbiased for a function
g(0) if E[g(X)] = &(0).

o Even if § is an unbiased estimator of 6, g(é) will generally not be an
unbiased estimator of g(f) unless g is linear or affine. We need
additional properties ...

Unbiasedness
Trading off Bias and Variance

MSE
MVUE
Efficiency
Consistency
Sufficiency

@ Depending on the method used to derive a point estimator, different
performances are to be expected



Method 1: Sample Moments as Estimators

@ For a random variable X, the rth moment about the origin 0, or the
rth moment of its corresponding density function is defined as
py = E(X").

@ For a random sample Xi, X5, ..., X, the rth sample moment about
the origin is defined by

n
M, = X/nr=123,...
i=1

and its observed value is denoted by m, = 3" | x//n.
@ The following property of sample moments holds:

Let X1, Xa,...,Xn be a random sample of X. Then

E(M,)=pul,r=1,2,3,...




The MME Procedure

o Let Xi,Xz,...,X, be a random sample from F(x : 6y,...,60k).
Hence, suppose that there are k parameters to be estimated.

o Let p), m, (r=1,2,...,k) denote the first k population and
sample moments respectively.

@ Suppose that each of these population moments are certain known
functions of the parameters:

pi = g1(61,-..,6k),
wo = g2(61,. ., 0k),

wi = 8k(01,...,0k).

@ Solving simultaneously the set of equations,

~

gr(é\h"'?ek):mrar:1527"'7k

gives the required estimates 9A1, ceey Or.



The MME Procedure Applied

o Let u), m, (r =1,2) denote the first k population and sample
moments. The population moments are known functions of these
population parameters.

@ For the normal distribution, we know that pj = E(X) = p and
02 = E(X?) — u?, so pbh = E(X?) = 0% + p?.

@ The unknown parameters to estimate are ;1 and o2

o Equate:
1 _
leEZXiIXH#QZ#,
1 2 2 2
m2:EZX,- — ph =0+ p’.
@ Solving simultaneously the set of equations, gives

A= R 1 -
0 =X, anda2:f§ x? —X°.
n



Recapitulation Estim )y Maximum Likeli

The MME Procedure Applied

set.seed(69)

mu <- 14

sigma <- 4

sampsz <- 10

nsimulations <- 100

mu.estimates <- numeric(nsimulations)
var.estimates <- numeric(nsimulations)
for (i in 1l:nsimulations){

rn <- rnorm(mean=mu,sd=sigma,n=sampsz)

## computing MMEs
mu.estimates[i] <- mean(rmn)
var.estimates[i] <- mean( (rn -mean(rn))~2 )

} # end of i loop

plot(density(mu.estimates) ,main="MME of population mean")
plot(density(var.estimates) ,main="MME for population variance")
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The MME Procedure Applied

MME of population mean MME for population variance
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Mean-Squared Error

Lemma (The MSE variance-bias tradeoff)

The MSE, E((f — 0)?), decomposes as

MSE(f) = Var(f) + Bias(f)>.




Uniformly minimum-variance unbiased estimator - UMVUE

@ Why is the MME method a good starting point? Answer: The MME
method almost always produces some asymptotically unbiased
estimators, although they may not be the best estimators.

@ When no bias-variance trade-off can be made, one approach is to
restrict ourselves to the subclass of estimators that are unbiased and
minimum variance

o If an unbiased estimator of g(#) has minimum variance among all
unbiased estimators of g(6) it is called a minimum variance
unbiased estimator (MVUE).



How to find MVUE when it exists?

Lemma (Fisher information)

The variance of S(6) is the expected Fisher information about 6

E(Z(9)) = E{S(#)*} =E { (% In f(x|9)> }

@ Throughout this course, we will call S(0)? observed Fisher
Information Z(#) and E{S(0)?} (logically) expected Fisher
information E(Z(0)).

o Remember: E(Z(0)) = E | (& In (x16))"| = ~E [ &z Inf(x/6)]



How to find a lower bound for MVUE?

Theorem (Cramér Rao Lower Bound - CRLB)

Let & be an unbiased estimator of . Then

Var(d) > { E(Z(9)) }7*.

@ Although this bound is typically used to prioritize estimators among
the class of unbiased estimators, it is also useful to assess the
“quality” of a biased estimator:

@ Biased estimators will be considered good, if their variances are
lower than the CRLB.

@ Remember: Since we are talking about estimators/estimates, we
need to compute the expected Fisher information on the sample....
(so do not forget that this will involve the sample size n)



Recapitulation Estir

Efficiency

@ An unbiased estimator @ is said to be efficient if eff(d) = 1, with

i) - CRLB
Var(d) ’

@ The asymptotic efficiency of an unbiased estimator 8 is the limit
of the efficiency as n — oco.

o For 2 unbiased estimators of 6 (6, and 6,) with respective variances
Var(61), Var(0,), 61 is more efficient than 0, if

Var(6;) < Var(6,).
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o Consistency has to do only with the limiting behaviour of an
estimator as the sample size increases without limit and does not
imply that the observed value of 6 is necessarily close to 6 for any
specific size of sample n.

@ If only a relatively small sample is available, it would seem
immaterial whether a consistent estimator is used or not.

~

@ 0, is a consistent estimator of 0 if

lim P(

n—oo

97,—9‘>6):Oforalle>0.

We then say that é:, converges in probability to § as n — co.

I limp_so0 E(Bn) = 0 and lim,_,o0 Var(0,) = 0, then 6, is a consistent
estimator of 6.




The Concepts of Loss and Risk

o Consider estimating 6 and let H(xi, ..., x,) denote an estimate of 6.

o The loss function denoted by /(H(xi,...,x,);8) is defined to be a
real-valued function satisfying

o I(H(x1,...,xa);0) > 0 for all possible estimates H(xi,...,x,) and all
allowable 6
o I(H(x1,...,xn);0) =0 for H(x1,...,x,) =0
o Example: I(H(xq, ..., xn);0) = (6 — 6) (squared error loss)
o The function /(H(x,...,x,); ) equals the loss incurred if one
estimates the true parameter to be 6

- The average loss or risk function is
defined as R,(0) = E(/(6;0)) and
coincides with the MSE for the
squared error loss function above.



Recapitulation

The random sample Xi, X5, ..., X, drawn from the distribution with
F(x; 0) contains information about the parameter 6.

To estimate 6, this sample is first condensed to a single random
variable by use of a statistic 6* = H(X1, X, ..., X,).

The question now of interest is whether any information about € has
been lost by this condensing process : With a possible choice of

0* = H(Xy,...,X,) = Xi, it seems that some of the information in
the sample has been lost since the observations X5, ..., X, have
been ignored.

In many cases, the statistic * does contain all the relevant
information about the parameter 6 that the sample contains, in
which case we call it a sufficient statistic.
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o Formally, let Xi,..., X, be a random sample from the density (.;6),
where 6 may be a vector. A statistic S(Xi, ..., X,) is a sufficient
statistic if and only if the conditional distribution of Xi,..., X, given
S = s does not depend on 8 for any value s of S.

@ Without proof, this definition is equivalent to the following one:

Let Xi,..., X, be a random sample from the density f(.; ), where 6
may be a vector. A statistic S = g(Xy, ..., X,) is a sufficient
statistic if and only if the conditional distribution of T given S =s
does not depend on 6, for any statistic T = t(Xy,..., X,).

o Let Xi,..., X, be a random sample from the density f(.;6), where 0
may be a vector. Statistics Sy,..., S, are said to be jointly
sufficient if and only if the conditional distribution of Xi,..., X},
given S; = s1,...,5, = s, does not depend on 6.



Recapitulation

Rao-Blackwell Theorem

@ The concept of sufficiency can certainly help us in our search for
UMVUEs.

@ Loosely speaking, an unbiased estimator which is a function of
sufficient statistics has smaller variance than an unbiased estimator
which is not based on sufficient statistics.

@ Hence, our aim is to look for unbiased estimators that are functions
of sufficient statistics . ..
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Recapitulation Estimation by Maximum Likelihood

Rao-Blackwell Theorem

Theorem

Let X1, Xa,..., X, be a random sample from the density f(.;0), and let
S1 =s1( X1, Xay ooy Xn), oo Sk = sk(X1, Xa, . .., Xyy) be a set of jointly
sufficient statistics. Let the statistic T = t(Xy, Xa, ..., X,) be an
unbiased estimator of 7(0). Define T by T =E(T|S1,...,Sk), then

o T is a statistic and a function of the sufficient statistics Sy, ..., Sk.

[Hence, we can write T = 1.*/(517 5 SK)]
e E( T/) = 7(0). [Hence, T' is an unbiased estimator of 7(6)]
o Varg[T'] < Varg[T], for every 6.

Prof. Dr. Dr. K. Van Steen Elements of statistics (MATH0487-1)



Sufficiency by example

@ Consider three independent binomial trials where § = P(X = 1).

Event Probability ~ Set
0 0 0 1-0) Ao
10 0
01 0 A(1—0)> A
0 0 1
0 1 1
1 0 1 0?(1—-0) A
110
11 1 63 As

o T =t(X)=>_X (i.e., the number of “successes") identifies A;.

@ Once we know in which set A; the sample belongs to, P(X = x|A;)
does not depend on @ : i.e. P(010|A1;6) =1/3.



Sufficiency by example

@ Summarizing:

@ You should think of sufficiency in the sense of using all the relevant
information in the sample.

o For example, to say that X is sufficient for  in a particular
distribution means that knowledge of the actual observations
X1, X2, . .., Xn gives us no more information about u than does only
knowing the average of the n observations.




How to find a sufficient estimator?

Theorem (Neyman's Factorization Criterion)
A statistic T = t(X) is sufficient for 6 if and only if the joint density
f(x; 0) of Xi,...,X, can be factorized as

f(x;0) = h(x)k {t(x); 0}, x€ X, 6 € ©.

i.e. into a function h(.) which does not depend on 6 and a function
k(.) which only depends on x through t(x). This is true in general
(i-e., can be generalized to find jointly sufficient statistics).




How to find a sufficient estimator?

o Let X = (X,...,X,) be independent and Bernoulli distributed with
parameter 6 so that

f(x;0) = [[or@—0)— = 6™ (1—0)">

i=1

o Take k{>°x;0} = 6%9(1 — 0)"~2% and h(x) = 1, then
t(x) = >, x; is sufficient.

@ In a similar way, it can be shown that T; = t;(X) = X is sufficient
for yu when X; ~ i.i.d. N(p,02). In fact, > X; and > X? are jointly
sufficient.

@ Methods of moments estimators may NOT be functions of sufficient
statistics (for instance in the case the uniform distribution family
over the interval [0, 65])

@ In contrast, maximum likelihood estimators will ALWAYS depend o
the sample through any set of jointly sufficient statistics.



Recapitulation Estimat Maximum Likelihood

Crude Summary

@ Bias = expected value of estimator does not necessarily equal
parameter

o Consistency = estimator approaches parameter as n approaches
infinity

@ Efficiency = smaller variance of parameter implies higher
efficiency

@ Sufficient = utilizes all pertinent information in a sample
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Recapitulation Estim by Maximum Like

Properties of an MME

Estimator Unbiased Consistent Efficient Sufficient
MME v generally not not
very efficient necessarily
when adjusted to often leads to minimum
be unbiased — variance estimators

MME for population variance
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ecapitulation Estimation by Maximum Likelihood

The Likelihood Function

o Let xy,x0,...,x, be sample observations taken on the random
variables X1, X, ..., X,. Then the likelihood of the sample,
L(O|x1, x2, - .., Xxn) = fx(x|@), is defined as:

o the joint probability of x1,x2,...,x, if X1, Xa,..., X, are discrete,
and

@ the joint probability density function of Xi,..., X, evaluated at
X1, X2, . .., Xn if the random variables are continuous.
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on Estimation by Maximum Likelihood

The Likelihood Function

@ The likelihood function for a set of n identically and independently
distributed (i.i.d.) random variables, X1, Xa, ..., X,, can thus be
written as:

P(X1 =x1) - P(X2 =x2) -+ P(Xn = xa) for X discrete,

L(O;x1,...,xn) = . .
(8 x xn) {f(xl;e)-f(xz;a)---f(x,,;ﬂ) for X continuous

o Important: the argument of fx(x; 8) = fx(x|0) is x, but the

argument of L(0|x) is 8, where @ = (01,05,...,0,,)7 is a vector of
m unknown parameters to be estimated.
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ulation Estimation by Maximum Likelihood

Method 2: Maximum Likelihood Estimation

o The maximum likelihood estimate (MLE) 6 of 6 is the solution to
the score equation

S() =o.

@ In other words, the maximum likelihood estimate (MLE) of 6 is that
value of # which maximizes the I%elihood. Or stated otherwise, the
MLE of 6 is that value of 8, say 6 such that

L(@\;xl,...,x,,) > L0 X1, Xn)

where 0’ is any other value of 6.
@ To find MLE:

o it is helpful to take log

o one needs calculus (taking derivatives)

@ one should remember to check values at boundaries and second
derivatives
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Maximum Likelihood Estimation

turning point, stationary point & local maximum (-6, 972)
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Well-behaved one-dimensional
likelihood
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Estimation by Maximum Likelihood

| 0,
Well-behaved two-dimensional
likelihood
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Log-Likelihood Function for Gaussian Distribution

o Consider data Xi, Xz ..., X, distributed as N(yu,v). Then the
likelihood function is

@ The log-likelihood function is

o, v) = —g In (27) — g In (v) — % > =



MLEs for Gaussian Distribution

Unknown mean and known variance:

@ As v is known we treat this parameter as a constant when
differentiating wrt p.

@ Then

and
BIZ() = n SEI(X —uY]= " >0 v

o Also, E[fi] = nu/n = p, and so the MLE of p is unbiased.
o Finally

Var[g] = Var

Zx,] = 2= EEO)



MLEs for Gaussian Distribution

Known mean and unknown variance:

o Differentiating the log-likelihood function for the Gaussian density
with mean p and variance v wrt v returns

n 1 «
S(U)__%—i_ﬁ;(x —

and setting S(v) = 0 implies

o Differentiating again, and multiplying by —1 yields the information
function

I(U) - 2U2 U3 Z

[Note: —E [86—922 In f(x|9)] —E {(% In f(x|0)> ] = E(Z(9))]



MLEs for Gaussian Distribution

Known mean and unknown variance:

@ Now define

so that Z; ~ N(0, 1).
@ It can be shown that

iZ,? ~ X% E[Z 77 = n,Var[Z Z? = 2n.
i=1

@ Remarks:

o In fact, the chi-square distribution is defined as a particular function,
which we will introduce later.

o For every density for a random variable U we can compute a moment
generating function: my(t) = Ey(e™). Differentiating my(t) r
times wrt t and letting t — O gives the rth moment around 0.

o If two moment generating functions agree on some interval for t,
then the corresponding cumulative distributions functions agree.

o Computing the moment generating function my(t) for U = Y Z?
gives the moment generating function of a chi-squared distribution



ation  Estimation by Maximum Likelihood

The Chi-square Density Function

@ If X is a random variable with density

fi) = L (L

F(k/2)(2
then X is defined to have a chi-square distribution with k
degrees of freedom. The density given above is called a chi-square
density with k degrees of freedom (a positive integer).

o Here, T'(j) = (j — 1)! (for any positive integer j) and
[(z) = [~ e *t> 1 dt (for any complex number z with positive real
part)

)k/2xk/2—le—i7x >0

Chi-square value
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MLEs for Gaussian Distribution

Known mean and unknown variance:

@ Our MLE can therefore be expressed as

o= (v/mY 2%

and
A Vo 5 R v\ 2 n ) 20,2
E[o] = E |23 22| = v, Varfo] = (=) Var |3 27| = =
i=1 i=1
@ Finally,
n 1 ¢ 5 n nv n
i=1

Hence the CRLB = 2v2/n, and so 9 has efficiency 1.



MLEs for Gaussian Distribution

@ Our treatment of the two parameters of the Gaussian distribution in
the last example was to
e (i) fix the variance and estimate the mean using maximum likelihood,
or
o (ii) fix the mean and estimate the variance using maximum
likelihood.

@ It is possible to consider simultaneous MLEs of these parameters! -
no exam material



Multi-parameter Case getting More Complex

@ Under certain conditions, alternatively, the profile likelihood may
be used for estimation purposes just like any other likelihood.

@ Suppose, in the Gaussian example before, the interest is in the mean
. Then first treat it as fixed and derive the maximum likelihood
estimate for 2. This MLE is a function of s.

@ Next, substitue o2 with this function of 1 wherever it occurs in the
two-parameter based log-likelihood, giving rise to a function of
solely, say Ly(u|xi,...,x,). Obtain the maximum profile likelihood
estimate for the mean by derivating L,(u|x1, ..., x,) for the
parameter of interest p.

@ It can be shown that this maximum is exactly the sample mean
(hence equal to the overall MLE for the problem that wishes to
maximize the log-likelihood surface for 1 and o at the same time).



Multi-parameter Case getting More Complex

Example: The bivariate normal setting

@ Bivariate densities add to the complexity: there is also (at least one)
parameter “connecting” the two marginal densities corresponding to
the two random variables under study



pitulation Estimation by Maximum Likelihood

Properties of an MLE

Estimator Unbiased Consistent Efficient Sufficient
MME v generally not not
very efficient necessarily
when adjusted to often lead to minimum
be unbiased variance estimators
MLE v if MLE exists,
with increasing ss with increasing ss then it is suff.
becomes unbiased becomes MVUE

@ The maximum likelihood estimate is unique for most “generalized
linear models” (see later)

@ Having in mind the construction of confidence intervals and genuine
hypothesis testing, it is interesting to know that the MLE has a
distribution that tends to normality as n — 00. (See also syllabus:
MLEs for means and variances)
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ation  Estimation by Maximum Likelihood

Dealing with parameter transformations

@ The MLE is invariant under functional transformations: a one-to-one
function g evaluated in an MLE estimate for a parameter 6 will be
an MLE estimate of g(6). This is called the invariance property of
MLEs.

o It seems intuitive that if § is most likely for 6 and our knowledge
(data) remains unchanged then g(f) is most likely for g(f).
Frequentists generally accept the invariance principle without
question.

@ This is not the case for Bayesians, who assign a probability
distribution to a parameter.

@ Note that the invariant property is not necessarily true for other
(other than MLE) estimators.

o For example, if 6 is the MVUE of 6, then g(é) is generally not
MVUE for g(8).
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Interesting functions of MLE estimates

@ Now suppose that an experiment consists of measuring random
variables X1, X5, ..., X, which are i.i.d. with probability distribution
depending on a parameter 6.

o Let O be the MLE of 0. Define

Wi = VE[(0)]0-0)
Wo = +/1(0)(6 —06)
Ws = /E[I(D)](6 - 06)

Wa = /1)@ -0).

o Then, Wi, W5, W3, and W, are all random variables and, as n — oo,
the probabilistic behaviour of each of Wi, Wah, Wa, and Wa is well
approximated by that of a N(0,1) random variable.

@ As a consequence, for instance:

o E[W4] = 0, thus E[f] ~ 0 [i.e., approx unbiased]
o Var[Wi] =~ 1, thus Var[d] ~ (E[/(9)])" [i.e., approx efficient]



Confidence Intervals Importance of the Normal Distribution |

Sampling Distibutions

@ We have seen the following table before. Note that mean and
variance are only a few characteristics, that may or may not
completely define a distribution! They do, when the underlying
distribution can be assumed to be Gaussian ...

Statistic | Mean Variance

— 2

X I o

X — % o 4 %
1= A2 | M1 —fe o + m

@ Sampling distributions allow us to make statements about the
unobserved true population parameter in relation to the observed
sample statistic — statistical inference
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The Normal Distribution

For completion, the normal density function
@ takes on values between —oo and +oo,
@ Mean = Median = Mode,

@ area under the curve equals 1

Normal Density, f(x)

The normal probability density function for X ~ N(y,o?) is:

f(x)= P N S

Note: ™ ~ 3.14 and e ~ 2.72 are mathematical constants



Sampling Distribution of the Sample Mean X

Population Distribution of X Distribution of Sample Mean X

-

X-N(u.o%) X-N(wo*/n)
= = — n=10
2 @ V| -~ n=30
[} @ j\‘ “++= n=100
o Q
. ‘\
atio ey : Niseis
n
X

@ When sampling from a normally distributed population,
o X will be normally distributed
@ The mean of the distribution of X is equal to the true mean p of the

population from which the samples were drawn
o The variance of the distribution is o /n, where o is the variance of
the population and n is the sample size
o We can write: X ~ N(u,c?/n)
@ When sampling from a population whose distribution is not normal

and the sample size is large, use the Central Limit Theorem



The Central Limit Theorem

@ Given a population of any distribution with mean y and variance o2,

the sampling distribution of X, computed from samples of size n
from this will be approximately N(u,o?/n) when this sample size is
large:

@ In general, this applies when n > 25

@ The approximation of normality obviously becoms better as n
increases



The Standard Normal Distribution

@ Definition: a normal distribution N(u,0?) with parameters y = 0
and 0 =1

@ Its density function is written as

@ We typically use the letter Z to denote a standard normal random
variable: Z ~ N(0,1)

o Important: We can use the standard normal all the time (instead of
non-standardized version) because if X ~ N(u,o?) then
T~ N0, 1)

@ This process is called “standardizing” a normal random variable



The Standard Normal Distribution: 68-95-99.7 Rules

68% of the density is within one standard deviation of the mean

Normal Density, f(x)

e u—1a I ptla i
x

95% of the density is within two standard deviations of the mean

Normal Density, f(x)

99.7% of the density is within three standard deviations of the

mean

=

g 0.997

8

©

E

5 oo ocors

z T T T T T T
e u-3 1 4430 oo



Normal Probabilities

@ We are often interested in the probability that z takes on values
between zy and z; (not necessarily symmetric round the mean p):

a1 2
P(20§z§21)=/ —.e ¥4z
Jz 2T
5 4 5z

@ Do we always have to (re-)compute this integral?
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x A~ B* L o4 | x A B < o0
0.0 ) .5000 .5000 0 0 032 6255 3745 1255 .2510
oaQ1 .5040 4960 0040 0080 033 6293 3707 1293 2586
0.02 .5080 4920 .0080 0160 0.34 6331 3669 1331 2661
0.03 5120 4880 0120 0239 035 6368 3632 1368 2737
0.04 5160 4840 0160 0319 0.36 6406 3594 1406 2812
0.05 5199 .4801 0199 0399 037 .6443 3557 1443 .2886

0.06 5239 4761 0239 0478 0.38 6480 3520 1480 2961



“Software R" Tables

For standard normal random variables Z ~ N(0,1) we'll use
pnorm(?) to find P(Z <7?)
pnorm(?, lower.tail=F) to find P(Z >7)

<? >?

? ?

For any normal random variable X ~ N(u, ?)
(but taking X ~ N(2,3?) as an example) we'll use
pnorm(?, mean=2, sd=3) to find P(X <?)
pnorm(?, mean=2, sd=3, lower.tail=F) to find P(X >7)



Normal approximations

@ Under certain conditions, the normal distribution can be used to
approximate Binomial(n, p) distribution

e np>5H
o n(l—p)>5

o For instance, p ~ N(P,nP(1— P))

Statistic | Mean Variance

- P(1I—P

p P ( = )

np nP nP(1— P)

pL— po Py — P, P1(1—P1) + P(1—-Pp)

ny n2




Confidence Intervals nterval Estimation Int:

From Point to Interval Estimators

Point estimation
@ X is a point estimator of s
o Xy — X isa point estimator of p; — o
@ pis a point estimator of P
@ p; — Py is a point estimator of P — P,
We know the sampling distribution of these statistics, e.g.,

X ~ N(ux = p, 0% = 0°/n)

If 2 is not known, we need to estimate it. The natural point estimator

for o2 is the sample variance s.
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From Point to Interval Estimators

Interval estimation
@ 100(1 — a))% confidence interval:
point estimate + (critical value of z or t or ...) X (standard error)

@ Example confidence interval for the population mean (plugging in
values): o
X+ Zo )2 X Ox

The Zo/2 is the value such that under a standard normal curve, the area
under the curve that is larger than z,/, is a/2 and the area under the
curve that is less than —z, » is /2.

Why do we use z from a standard normal, whereas we know that X does
not follow a standard normal distribution but has mean x?




Confidence Intervals

We get the 100(1 — )% confidence interval for ;. by taking:

P(_ZQ/Q < Z < Za/2) = l-a
P(*Za/2 < — ZO;/Z) = l-a
P(*Za/Z'O—)_(SX*FLSZQ/Z'O—)?) = l-a
After some algebra:
P(X—Za/g-a)-(S,ug)_(—l—za/g-a;() = 1l-a

PlL<p<U) = 1-a
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Derivation of Confidence Interval (Cl) for the Mean

@ So, a 100(1 — )% confidence interval for i, the population mean, is
given by the interval estimate:

Y:‘:Za/2 X Ox...

when the population variance is known!

@ However, the population variance is rarely known.

How could we possibly deal with this? J




Using the Sample Variance

@ Suppose we have sampled from a normally distributed population
with population variance unknown
o We can make use of the sample variance s?: Estimate o2 with s?
@ Confidence intervals are now constructed as
o X+ Z4/2 X S when n is “large”
o X+ ta/2,n—1 X Sx when nis “small”
@ We need the t distribution because the sampling distribution of X is
not quite normal.

@ In the Cls above, sy = ﬁ and t, /> has n — 1 degrees of freedom.



The Student’s t Distribution

@ A random variable has a Student’s t distribution or t distribution
on v degrees of freedom (or with parameter v) if it can be expressed
as the ratio of Z to /W /v where Z ~ N(0,1) and W (independent
of Z) ~ x2

@ It can be shown that the construct t = /\[ satisfies this condition.

t Density




The Student’s t Distribution

o If X is a random variable having density given by

Mk+1)/2] 1 1

YOV = T 02) Vi @Rk

then X is defined to have a Student’s t distribution or the density
itself is called a Student’s t distribution with k degrees of freedom

@ Properties of t =

¢ ¢ ¢ ¢

X—p.

s/v/n’

Symmetric about the mean, like the normal distribution

Mean = Median = Mode =0

t ranges from —oo to +oo

Encompasses a family of distributions determined by v = n — 1, the
degrees of freedom

The t distribution approaches the standard normal distribution as

n — 1 approaches oo




Comparison of the Student's t with the Standard Normal

= Std. normal
= = twith df=2

Density




Like Z tables, there are T tables

Degrees of —
freedom, & 73 80 83 30 95 575 95 595 9995
1 1.000 1376 1.963 3.078 6.314 12.706 31.821 63.657 636.619
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9,925 31.598
3 0.765 0978 1.250 1638 23853 3.182 4.541 5841 12924
4 0.741 0.941 1190 1.533 2132 2776 3.7a7 4.604 8610
5 0.727 0.920 1156 1476 2.015 257 3.365 4.032 6.869
6 0.718 0.906 1134 1440 1.943 2447 3143 3707 5959
7 0.711 0.896 1119 1415 1.895 2.365 2998 3.499 5.408
8 0.706 0.889 1.108 1397 1.850 2306 2896 3.355 5.041
9 0.703 0.883 1100 1.383 1.833 2262 2821 3250 4781
10 0.700 0.879 1.093 1372 1812 2228 2.764 3169  4.587
n 0.697 0.876 1.038 1.363 1.796 2200 278 3.106 4.437
12 0.695 0.873 1.083 1356 1782 2179 2681 3085 4318
13 0.694 0.870 1079 1.350 1771 2.160 2.650 3012 4221
14 0.692 0.868 1.076 1.345 1.761 2145 2.624 2.977 4.140
15 0.691 0D.866 1.074 130 1.753 213 2.602 2.947 4073
16 0.690 0.865 1,07 1337 1.746 2120 2.583 2.921 4015
17 0.689 0.863 1.069 1333 1.740 2110 2567 2.898 3965
18 0.688 0862 1067 1330 1734 21m 2552 2878 3922
19 0.688 0.861 1.066 1328 1.729 2093 2.539 2.861 3.883
20 0.687 0.860 1.064 1325 1.725 2086 2,528 2.845 3.850
21 0.686 0.859 1.063 1323 1.721 2.080 2518 2.831 3819
22 0.686 0858 1.061 1321 117 2074 2.508 2.819 3.792
23 0.685 0.858 1.060 1319 1.714 2,069 2.500 2.807 3767
24 0685 0857 1.059 1318 171 2064 2.492 2.797 3745
25 0.684 0856 1.058 1316 1.708 21060 2.485 2.787 3725
26 0.684 0.856 1.058 1315 1.706 2056 2.479 2779 3707
27 0.684 0855 1.057 1314 1.703 2052 2.473 2971 3.690
28 0.683 0855 1,056 1313 1.701 2,048 2.467 2.763 3.674
29 0.683 0854 1,085 1311 1.699 2,045 2.462 2.756 3,659
30 0.683 0854 1.055 1.310 1.697 2,042 2.457 2.750 3.646
40 0.681 0851 1.050 1.303 1.684 2021 2423 2.704 3.551
60 0.679 0848 1.046 1.296 1671 2.000 2.390 2660 3460
120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 3373

P 0674 0842  1.036 1282 1645 1960 2326 2576  3.29

“ITe uth percentle of 3 ¢ GISIDALON Wit d degrees of freedom.



Confidence Intervals nterval Estimation Int:

Pivotal Quantity

@ A pivotal quantity or pivot is generally defined as a function of
observations and unobservable parameters whose probability
distribution does not depend on unknown parameters

@ Any probability statement of the form
Pla< H(Xy,Xs,...,Xp0)<b)=1—«

will give rise to a probability statement about 6

@ Hence, pivots are crucial to construct confidence intervals for
parameters of interest.

° Examples when sampling from a normal distribution:

@ Z=

/f (population variance known)

s/f (population variance unknown)
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Confidence Intervals mal Dis on Interval Estimation Interpre

Confidence intervals for means

Summary table:

Population | Sample Population 95% Confidence
Distribution Size Variance Interval
Normal Any a2 known X £1.960/y/n
Any o2 unknown, use s2 X 4 t0.025.n-15/v/n
Not Normal/ | Large o2 known X £1.960/\/n
Large | o2 unknown, use s? X & 1.96s/v/n
Unknown Small Any Non-parametric methods
Binomial Large - p+1.961/p(1—p)/n
Small - Exact methods
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Confidence Intervals n Dis on n Interpretation of

Interpretation of Confidence Interval (Cl)

o Before the data are observed, the probability is at least (1 — «) that
[L, U] will contain the population parameter

o In repeated sampling from the relevant distribution, 100(1 — )% of
all intervals of the form [L, U] will include the true population
parameter

A

o After the data are observed, the constructed interval [L, U] either
contains the true parameter value or it does not (there is no longer a
probability involved here!)

A statement such as P(3.5 < p < 4.9) = 0.95 is incorrect and should
be replaced by A 95% confidence interval for p is (3.5,4.9)
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