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Confidence Intervals Recapitulation Estimation by Maximum Likelihood

Types of Estimators

Focus on finding point estimators first, i.e. for which the true
value of a (function of a) parameter is assumed to be a point.

Several methods exist to compute point estimators, including the
“methods of moments” and “maximum likelihood”, but also the
“method of least squares” (see Regression Analysis chapter), etc.

Second, focus on finding interval estimators, i.e. acknowledge the
utility for some interval about the point estimate together with some
measure of accurance that the true value of the parameter lies
within the interval.
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Types of Estimators

Inference choices:

1 making the inference of estimating the true value of the
parameter to be a point,

2 making the inference of estimating that the true value of the
parameter is contained in some interval.



Desirable Properties of a Point Estimator

Unbiased functions: ĝ(X) is said to be unbiased for a function
g(θ) if E[ĝ(X)] = g(θ).

Even if θ̂ is an unbiased estimator of θ, g(θ̂) will generally not be an
unbiased estimator of g(θ) unless g is linear or affine. We need
additional properties . . .

Unbiasedness
Trading off Bias and Variance

MSE
MVUE

Efficiency
Consistency
Sufficiency

Depending on the method used to derive a point estimator, different
performances are to be expected



Method 1: Sample Moments as Estimators

For a random variable X , the r th moment about the origin 0, or the
r th moment of its corresponding density function is defined as
µ′
r = E (X r ).

For a random sample X1,X2, . . . ,Xn, the r th sample moment about
the origin is defined by

Mr =

n∑

i=1

X r
i /n, r = 1, 2, 3, . . .

and its observed value is denoted by mr =
∑n

i=1 x
r
i /n.

The following property of sample moments holds:

Theorem

Let X1,X2, . . . ,Xn be a random sample of X . Then

E(Mr ) = µ′
r , r = 1, 2, 3, . . .



The MME Procedure

Let X1,X2, . . . ,Xn be a random sample from F (x : θ1, . . . , θk).
Hence, suppose that there are k parameters to be estimated.

Let µ′
r , mr (r = 1, 2, . . . , k) denote the first k population and

sample moments respectively.

Suppose that each of these population moments are certain known
functions of the parameters:

µ′
1 = g1(θ1, . . . , θk ),

µ′
2 = g2(θ1, . . . , θk ),

.

.

.

µ′
k = gk (θ1, . . . , θk ).

Solving simultaneously the set of equations,

gr (θ̂1, . . . , θ̂k) = mr , r = 1, 2, . . . , k

gives the required estimates θ̂1, . . . , θ̂k .



The MME Procedure Applied

Let µ′
r , mr (r = 1, 2) denote the first k population and sample

moments. The population moments are known functions of these
population parameters.

For the normal distribution, we know that µ′
1 = E (X ) = µ and

σ2 = E (X 2)− µ2, so µ′
2 = E (X 2) = σ2 + µ2.

The unknown parameters to estimate are µ and σ2

Equate:

m1 =
1

n

∑
xi = x → µ′

1 = µ,

m2 =
1

n

∑
x2
i → µ′

2 = σ2 + µ2.

Solving simultaneously the set of equations, gives

µ̂ = x , and σ̂2 =
1

n

∑
x2
i − x2.



Confidence Intervals Recapitulation Estimation by Maximum Likelihood

The MME Procedure Applied

#_____________NormalMoments.R ___________

set.seed(69)

mu <- 14

sigma <- 4

sampsz <- 10

nsimulations <- 100

mu.estimates <- numeric(nsimulations)

var.estimates <- numeric(nsimulations)

for (i in 1:nsimulations){

rn <- rnorm(mean=mu,sd=sigma,n=sampsz)

## computing MMEs

mu.estimates[i] <- mean(rn)

var.estimates[i] <- mean( (rn -mean(rn))^2 )

} # end of i loop

plot(density(mu.estimates),main="MME of population mean")

plot(density(var.estimates),main="MME for population variance")
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The MME Procedure Applied

pretty “ok”; MME=x pretty “skew”; MME= 1
n

∑

x2
i − x2



Mean-Squared Error

Lemma (The MSE variance-bias tradeoff)

The MSE, E ((θ̂ − θ)2), decomposes as

MSE(θ̂) = Var(θ̂) + Bias(θ̂)2.



Uniformly minimum-variance unbiased estimator - UMVUE

Why is the MME method a good starting point? Answer: The MME
method almost always produces some asymptotically unbiased
estimators, although they may not be the best estimators.

When no bias-variance trade-off can be made, one approach is to
restrict ourselves to the subclass of estimators that are unbiased and
minimum variance

If an unbiased estimator of g(θ) has minimum variance among all
unbiased estimators of g(θ) it is called a minimum variance
unbiased estimator (MVUE).



How to find MVUE when it exists?

Lemma (Fisher information)

The variance of S(θ) is the expected Fisher information about θ

E(I(θ)) = E{S(θ)2} ≡ E

{(
∂

∂θ
ln f (x |θ)

)2
}

Throughout this course, we will call S(θ)2 observed Fisher
Information I(θ) and E{S(θ)2} (logically) expected Fisher
information E(I(θ)).
Remember: E(I(θ)) = E

[(
∂
∂θ ln f (x |θ)

)2
]
= −E

[
∂2

∂θ2 ln f (x |θ)
]



How to find a lower bound for MVUE?

Theorem (Cramér Rao Lower Bound - CRLB)

Let θ̂ be an unbiased estimator of θ. Then

Var(θ̂) ≥ { E(I(θ)) }−1.

Although this bound is typically used to prioritize estimators among
the class of unbiased estimators, it is also useful to assess the
“quality” of a biased estimator:

Biased estimators will be considered good, if their variances are
lower than the CRLB.

Remember: Since we are talking about estimators/estimates, we
need to compute the expected Fisher information on the sample....
(so do not forget that this will involve the sample size n)
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Efficiency

An unbiased estimator θ̂ is said to be efficient if eff(θ̂) = 1, with

eff(θ̂) =
CRLB

Var(θ̂)
,

The asymptotic efficiency of an unbiased estimator θ̂ is the limit
of the efficiency as n → ∞.

For 2 unbiased estimators of θ ( θ̂1 and θ̂2) with respective variances

Var(θ̂1), Var(θ̂2), θ̂1 is more efficient than θ̂2 if

Var(θ̂1) < Var(θ̂2).
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Consistency

Consistency has to do only with the limiting behaviour of an

estimator as the sample size increases without limit and does not
imply that the observed value of θ̂ is necessarily close to θ for any
specific size of sample n.

If only a relatively small sample is available, it would seem
immaterial whether a consistent estimator is used or not.

θ̂n is a consistent estimator of θ if

lim
n→∞

P(
∣∣∣θ̂n − θ

∣∣∣ > ǫ) = 0 for all ǫ > 0.

We then say that θ̂n converges in probability to θ as n → ∞.

Theorem

If limn→∞ E (θ̂n) = θ and limn→∞ Var(θ̂n) = 0, then θ̂n is a consistent

estimator of θ.



The Concepts of Loss and Risk

Consider estimating θ and let H(x1, . . . , xn) denote an estimate of θ.

The loss function denoted by l(H(x1, . . . , xn); θ) is defined to be a
real-valued function satisfying

l(H(x1, . . . , xn); θ) ≥ 0 for all possible estimates H(x1, . . . , xn) and all
allowable θ
l(H(x1, . . . , xn); θ) = 0 for H(x1, . . . , xn) = θ

Example: l(H(x1, . . . , xn); θ) = (θ̂ − θ)2 (squared error loss)

The function l(H(x1, . . . , xn); θ) equals the loss incurred if one

estimates the true parameter to be θ̂

The average loss or risk function is
defined as Rl(θ) = E (l(θ̂; θ)) and
coincides with the MSE for the
squared error loss function above.
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Sufficiency

The random sample X1,X2, . . . ,Xn drawn from the distribution with
F (x ; θ) contains information about the parameter θ.

To estimate θ, this sample is first condensed to a single random
variable by use of a statistic θ∗ = H(X1,X2, . . . ,Xn).

The question now of interest is whether any information about θ has
been lost by this condensing process : With a possible choice of
θ∗ = H(X1, . . . ,Xn) = X1, it seems that some of the information in
the sample has been lost since the observations X2, . . . ,Xn have
been ignored.

In many cases, the statistic θ∗ does contain all the relevant
information about the parameter θ that the sample contains, in
which case we call it a sufficient statistic.
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Sufficiency

Formally, let X1, . . . ,Xn be a random sample from the density f (.; θ),
where θ may be a vector. A statistic S(X1, . . . ,Xn) is a sufficient
statistic if and only if the conditional distribution of X1, . . . ,Xn given
S = s does not depend on θ for any value s of S .

Without proof, this definition is equivalent to the following one:

Let X1, . . . ,Xn be a random sample from the density f (.; θ), where θ
may be a vector. A statistic S = g(X1, . . . ,Xn) is a sufficient
statistic if and only if the conditional distribution of T given S = s

does not depend on θ, for any statistic T = t(X1, . . . ,Xn).

Let X1, . . . ,Xn be a random sample from the density f (.; θ), where θ
may be a vector. Statistics S1, . . . , Sr are said to be jointly
sufficient if and only if the conditional distribution of X1, . . . ,Xn

given S1 = s1, . . . , Sr = sr does not depend on θ.



Confidence Intervals Recapitulation Estimation by Maximum Likelihood

Rao-Blackwell Theorem

The concept of sufficiency can certainly help us in our search for
UMVUEs.

Loosely speaking, an unbiased estimator which is a function of
sufficient statistics has smaller variance than an unbiased estimator
which is not based on sufficient statistics.

Hence, our aim is to look for unbiased estimators that are functions
of sufficient statistics . . .
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Rao-Blackwell Theorem

Theorem

Let X1,X2, . . . ,Xn be a random sample from the density f (.; θ), and let

S1 = s1(X1,X2, . . . ,Xn), . . . , Sk = sk(X1,X2, . . . ,Xn) be a set of jointly

sufficient statistics. Let the statistic T = t(X1,X2, . . . ,Xn) be an

unbiased estimator of τ(θ). Define T
′

by T
′

= E(T |S1, . . . , Sk), then

T
′

is a statistic and a function of the sufficient statistics S1, . . . , Sk .
[Hence, we can write T

′

= t
′

(S1, . . . , Sk)]

E(T
′

) = τ(θ). [Hence, T
′

is an unbiased estimator of τ(θ)]

Varθ[T
′

] ≤ Varθ[T ], for every θ.
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Sufficiency by example

Consider three independent binomial trials where θ = P(X = 1).

Event Probability Set
0 0 0 (1 − θ)3 A0

1 0 0
0 1 0
0 0 1

θ(1 − θ)2 A1

0 1 1
1 0 1
1 1 0

θ2(1 − θ) A2

1 1 1 θ3 A3

T = t(X ) =
∑

Xi (i.e., the number of “successes”) identifies Ai .

Once we know in which set Ai the sample belongs to, P(X = x |Ai )
does not depend on θ : i.e. P(010|A1; θ) = 1/3.



Sufficiency by example

Summarizing:

You should think of sufficiency in the sense of using all the relevant
information in the sample.

For example, to say that X is sufficient for µ in a particular
distribution means that knowledge of the actual observations
x1, x2, . . . , xn gives us no more information about µ than does only
knowing the average of the n observations.



How to find a sufficient estimator?

Theorem (Neyman’s Factorization Criterion)

A statistic T = t(X ) is sufficient for θ if and only if the joint density
f (x ; θ) of X1, . . . ,Xn can be factorized as

f (x ; θ) = h(x)k {t(x); θ} , x ∈ X , θ ∈ Θ.

i.e. into a function h(.) which does not depend on θ and a function
k(.) which only depends on x through t(x). This is true in general
(i.e., can be generalized to find jointly sufficient statistics).



How to find a sufficient estimator?

Let X = (X1, . . . ,Xn) be independent and Bernoulli distributed with
parameter θ so that

f (x ; θ) =

n∏

i=1

θxi (1− θ)1−xi = θΣxi (1− θ)n−Σxi

Take k {∑ xi ; θ} = θΣxi (1− θ)n−Σxi and h(x) = 1, then
t(x) =

∑
i xi is sufficient.

In a similar way, it can be shown that T1 = t1(X ) = X̄ is sufficient
for µ when Xi ∼ i .i .d . N(µ, σ2). In fact,

∑
Xi and

∑
X 2
i are jointly

sufficient.

Methods of moments estimators may NOT be functions of sufficient
statistics (for instance in the case the uniform distribution family
over the interval [θ1, θ2])

In contrast, maximum likelihood estimators will ALWAYS depend o
the sample through any set of jointly sufficient statistics.



Confidence Intervals Recapitulation Estimation by Maximum Likelihood

Crude Summary

Bias = expected value of estimator does not necessarily equal
parameter

Consistency = estimator approaches parameter as n approaches
infinity

Efficiency = smaller variance of parameter implies higher
efficiency

Sufficient = utilizes all pertinent information in a sample
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Properties of an MME

Estimator Unbiased Consistent Efficient Sufficient
MME ν generally not not

very efficient necessarily
when adjusted to often leads to minimum

be unbiased −→ variance estimators
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Confidence Intervals Recapitulation Estimation by Maximum Likelihood

The Likelihood Function

Let x1, x2, . . . , xn be sample observations taken on the random
variables X1,X2, . . . ,Xn. Then the likelihood of the sample,
L(θ|x1, x2, . . . , xn) = fX (x |θ), is defined as:

the joint probability of x1, x2, . . . , xn if X1,X2, . . . ,Xn are discrete,
and
the joint probability density function of X1, . . . ,Xn evaluated at
x1, x2, . . . , xn if the random variables are continuous.
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Confidence Intervals Recapitulation Estimation by Maximum Likelihood

The Likelihood Function

The likelihood function for a set of n identically and independently
distributed (i.i.d.) random variables, X1,X2, . . . ,Xn, can thus be
written as:

 L(θ; x1, . . . , xn) =

{

P(X1 = x1) · P(X2 = x2) · · ·P(Xn = xn) for X discrete,

f (x1; θ) · f (x2; θ) · · · f (xn; θ) for X continuous
.

Important: the argument of fX (x ;θ) ≡ fX (x |θ) is x , but the
argument of L(θ|x) is θ, where θ = (θ1, θ2, . . . , θm)

T is a vector of
m unknown parameters to be estimated.
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Confidence Intervals Recapitulation Estimation by Maximum Likelihood

Method 2: Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) θ̂ of θ is the solution to
the score equation

S(θ) = 0.

In other words, the maximum likelihood estimate (MLE) of θ is that
value of θ which maximizes the likelihood. Or stated otherwise, the
MLE of θ is that value of θ, say θ̂ such that

L(θ̂; x1, . . . , xn) > L(θ′; x1, . . . , xn)

where θ′ is any other value of θ.

To find MLE:

it is helpful to take log
one needs calculus (taking derivatives)
one should remember to check values at boundaries and second
derivatives
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Maximum Likelihood Estimation
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Examples of Likelihood Functions
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Log-Likelihood Function for Gaussian Distribution

Consider data X1,X2 . . . ,Xn distributed as N(µ, υ). Then the
likelihood function is

L(µ, υ) =

(
1√
πυ

)n

exp




−

n∑
i=1

(xi − µ)2

2υ





The log-likelihood function is

ℓ(µ, υ) = −n

2
ln (2π)− n

2
ln (υ)− 1

2υ

n∑

i=1

(xi − µ)2



MLEs for Gaussian Distribution

Unknown mean and known variance:

As υ is known we treat this parameter as a constant when
differentiating wrt µ.

Then

S(µ) =
1

υ

n∑

i=1

(xi − µ), µ̂ =
1

n

n∑

i=1

xi ,

and

E[I(µ)] = n
1

υ2
E[(X − µ)2] =

n

υ
> 0 ∀ µ.

Also, E[µ̂] = nµ/n = µ, and so the MLE of µ is unbiased.

Finally

Var[µ̂] =
1

n2
Var

[
n∑

i=1

xi

]
=

υ

n
= (E[I(θ)])−1

.



MLEs for Gaussian Distribution

Known mean and unknown variance:

Differentiating the log-likelihood function for the Gaussian density
with mean µ and variance υ wrt υ returns

S(υ) = − n

2υ
+

1

2υ2

n∑

i=1

(xi − µ)2,

and setting S(υ) = 0 implies

υ̂ =
1

n

n∑

i=1

(xi − µ)2.

Differentiating again, and multiplying by −1 yields the information
function

I (υ) = − n

2υ2
+

1

υ3

n∑

i=1

(xi − µ)2.

[Note: −E

[

∂2

∂θ2 ln f (x |θ)
]

= E

[

(

∂
∂θ

ln f (x |θ)
)2

]

= E(I(θ))]



MLEs for Gaussian Distribution

Known mean and unknown variance:

Now define
Zi = (Xi − µ)/

√
υ,

so that Zi ∼ N(0, 1).

It can be shown that

n∑

i=1

Z 2
i ∼ χ2

n; E[
∑

Z 2
i ] = n,Var[

∑
Z 2
i ] = 2n.

Remarks:

In fact, the chi-square distribution is defined as a particular function,
which we will introduce later.
For every density for a random variable U we can compute a moment
generating function: mU(t) = EU(e

tU). Differentiating mU(t) r
times wrt t and letting t → 0 gives the rth moment around 0.
If two moment generating functions agree on some interval for t,
then the corresponding cumulative distributions functions agree.
Computing the moment generating function mU(t) for U =

∑

Z 2
i

gives the moment generating function of a chi-squared distribution
. . .
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The Chi-square Density Function

If X is a random variable with density

fX (x) =
1

Γ(k/2)
(
1

2
)k/2xk/2−1e−

1
2x , x ≥ 0

then X is defined to have a chi-square distribution with k
degrees of freedom. The density given above is called a chi-square

density with k degrees of freedom (a positive integer).
Here, Γ(j) = (j − 1)! (for any positive integer j) and
Γ(z) =

∫∞
0

e−ttz−1 dt (for any complex number z with positive real
part)
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MLEs for Gaussian Distribution

Known mean and unknown variance:

Our MLE can therefore be expressed as

υ̂ = (υ/n)

n∑

i=1

Z 2
i ,

and

E[υ̂] = E

[
υ

n

n∑

i=1

Z 2
i

]
= υ, Var[υ̂] =

(υ
n

)2

Var

[
n∑

i=1

Z 2
i

]
=

2υ2

n
.

Finally,

E [I (υ)] = − n

2υ2
+

1

υ3

n∑

i=1

E
[
(xi − µ)2

]
= − n

2υ2
+

nυ

υ3
=

n

2υ2
.

Hence the CRLB = 2υ2/n, and so υ̂ has efficiency 1.



MLEs for Gaussian Distribution

Our treatment of the two parameters of the Gaussian distribution in
the last example was to

(i) fix the variance and estimate the mean using maximum likelihood,
or
(ii) fix the mean and estimate the variance using maximum
likelihood.

It is possible to consider simultaneous MLEs of these parameters! -
no exam material



Multi-parameter Case getting More Complex

Under certain conditions, alternatively, the profile likelihood may
be used for estimation purposes just like any other likelihood.

Suppose, in the Gaussian example before, the interest is in the mean
µ. Then first treat it as fixed and derive the maximum likelihood
estimate for σ2. This MLE is a function of µ.

Next, substitue σ2 with this function of µ wherever it occurs in the
two-parameter based log-likelihood, giving rise to a function of µ
solely, say Lp(µ|x1, . . . , xn). Obtain the maximum profile likelihood
estimate for the mean by derivating Lp(µ|x1, . . . , xn) for the
parameter of interest µ.

It can be shown that this maximum is exactly the sample mean
(hence equal to the overall MLE for the problem that wishes to
maximize the log-likelihood surface for µ and σ at the same time).



Multi-parameter Case getting More Complex

Example: The bivariate normal setting

Bivariate densities add to the complexity: there is also (at least one)
parameter “connecting” the two marginal densities corresponding to
the two random variables under study
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Properties of an MLE

Estimator Unbiased Consistent Efficient Sufficient
MME ν generally not not

very efficient necessarily
when adjusted to often lead to minimum

be unbiased variance estimators
MLE ν if MLE exists,

with increasing ss with increasing ss then it is suff.
becomes unbiased becomes MVUE

The maximum likelihood estimate is unique for most “generalized
linear models” (see later)

Having in mind the construction of confidence intervals and genuine
hypothesis testing, it is interesting to know that the MLE has a
distribution that tends to normality as n → ∞. (See also syllabus:

MLEs for means and variances)
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Dealing with parameter transformations

The MLE is invariant under functional transformations: a one-to-one
function g evaluated in an MLE estimate for a parameter θ will be
an MLE estimate of g(θ). This is called the invariance property of
MLEs.

It seems intuitive that if θ̂ is most likely for θ and our knowledge
(data) remains unchanged then g(θ̂) is most likely for g(θ).
Frequentists generally accept the invariance principle without
question.

This is not the case for Bayesians, who assign a probability
distribution to a parameter.

Note that the invariant property is not necessarily true for other
(other than MLE) estimators.

For example, if θ̂ is the MVUE of θ, then g(θ̂) is generally not
MVUE for g(θ).
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Interesting functions of MLE estimates

Now suppose that an experiment consists of measuring random
variables X1,X2, . . . ,Xn which are i.i.d. with probability distribution
depending on a parameter θ.

Let θ̂ be the MLE of θ. Define

W1 =
√

E[I (θ)](θ̂ − θ)

W2 =
√

I (θ)(θ̂ − θ)

W3 =

√

E[I (θ̂)](θ̂ − θ)

W4 =

√

I (θ̂)(θ̂ − θ).

Then, W1,W2,W3, and W4 are all random variables and, as n → ∞,
the probabilistic behaviour of each of W1,W2,W3, and W4 is well
approximated by that of a N(0, 1) random variable.

As a consequence, for instance:

E[W1] ≈ 0, thus E[θ̂] ≈ θ [i.e., approx unbiased]

Var[W1] ≈ 1, thus Var[θ̂] ≈ (E[I (θ)])−1 [i.e., approx efficient]



Confidence Intervals Importance of the Normal Distribution Interval Estimation Interpretation of

Sampling Distibutions

We have seen the following table before. Note that mean and
variance are only a few characteristics, that may or may not
completely define a distribution! They do, when the underlying
distribution can be assumed to be Gaussian . . .

Statistic Mean Variance

X µ σ2

n

X1 − X2 µ1 − µ2
σ2

1

n1
+

σ2
2

n2

Sampling distributions allow us to make statements about the
unobserved true population parameter in relation to the observed

sample statistic −→ statistical inference
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The Normal Distribution

For completion, the normal density function

takes on values between −∞ and +∞,

Mean = Median = Mode,

area under the curve equals 1



Sampling Distribution of the Sample Mean X

When sampling from a normally distributed population,

X will be normally distributed
The mean of the distribution of X is equal to the true mean µ of the
population from which the samples were drawn
The variance of the distribution is σ2/n, where σ2 is the variance of
the population and n is the sample size
We can write: X ∼ N(µ, σ2/n)

When sampling from a population whose distribution is not normal
and the sample size is large, use the Central Limit Theorem



The Central Limit Theorem

Given a population of any distribution with mean µ and variance σ2,
the sampling distribution of X , computed from samples of size n

from this will be approximately N(µ, σ2/n) when this sample size is
large:

In general, this applies when n ≥ 25

The approximation of normality obviously becoms better as n
increases



The Standard Normal Distribution

Definition: a normal distribution N(µ, σ2) with parameters µ = 0
and σ = 1

Its density function is written as

f (x) =
1√
2π

e−x2/2,−∞ < x < ∞

We typically use the letter Z to denote a standard normal random
variable: Z ∼ N(0, 1)

Important: We can use the standard normal all the time (instead of
non-standardized version) because if X ∼ N(µ, σ2) then
X−µ
σ ∼ N(0, 1)

This process is called “standardizing” a normal random variable



The Standard Normal Distribution: 68-95-99.7 Rules



Normal Probabilities

We are often interested in the probability that z takes on values
between z0 and z1 (not necessarily symmetric round the mean µ):

Do we always have to (re-)compute this integral?



Z Tables



“Software R” Tables



Normal approximations

Under certain conditions, the normal distribution can be used to
approximate Binomial(n, p) distribution

np > 5
n(1− p) > 5

For instance, p̂ ∼ N(P , nP(1− P))

Statistic Mean Variance

p̂ P
P(1−P)

n

np̂ nP nP(1 − P)

p̂1 − p̂2 P1 − P2
P1(1−P1)

n1
+

P2(1−P2)
n2



Confidence Intervals Importance of the Normal Distribution Interval Estimation Interpretation of

From Point to Interval Estimators

Point estimation

X is a point estimator of µ

X1 − X2 is a point estimator of µ1 − µ2

p̂ is a point estimator of P

p̂1 − p̂2 is a point estimator of P1 − P2

We know the sampling distribution of these statistics, e.g.,

X ∼ N(µX = µ, σ2
X
= σ2/n)

If σ2 is not known, we need to estimate it. The natural point estimator
for σ2 is the sample variance s2.
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From Point to Interval Estimators

Interval estimation

100(1− α)% confidence interval:

point estimate ± (critical value of z or t or . . . ) × (standard error)

Example confidence interval for the population mean (plugging in
values):

X ± zα/2 × σX

The zα/2 is the value such that under a standard normal curve, the area
under the curve that is larger than zα/2 is α/2 and the area under the
curve that is less than −zα/2 is α/2.

Why do we use z from a standard normal, whereas we know that X does
not follow a standard normal distribution but has mean x?



Confidence Intervals Importance of the Normal Distribution Interval Estimation Interpretation of

Derivation of Confidence Interval (CI) for the Mean
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Derivation of Confidence Interval (CI) for the Mean

So, a 100(1−α)% confidence interval for µ, the population mean, is
given by the interval estimate:

x ± zα/2 × σx . . .

when the population variance is known!

However, the population variance is rarely known.

How could we possibly deal with this?



Using the Sample Variance

Suppose we have sampled from a normally distributed population
with population variance unknown

We can make use of the sample variance s2: Estimate σ2 with s2

Confidence intervals are now constructed as

X ± zα/2 × sX when n is “large”

X ± tα/2,n−1 × sX when n is “small”

We need the t distribution because the sampling distribution of X is
not quite normal.

In the CIs above, sX = s√
n
and tα/2 has n − 1 degrees of freedom.



The Student’s t Distribution

A random variable has a Student’s t distribution or t distribution
on ν degrees of freedom (or with parameter ν) if it can be expressed
as the ratio of Z to

√
W /ν where Z ∼ N(0, 1) and W (independent

of Z ) ∼ χ2
ν

It can be shown that the construct t = X−µ
s/

√
n
satisfies this condition.



The Student’s t Distribution

If X is a random variable having density given by

fX (x) =
Γ[(k + 1)/2]

Γ(k/2)

1√
kπ

1

(1 + x2/k)(k+1)/2
,

then X is defined to have a Student’s t distribution or the density
itself is called a Student’s t distribution with k degrees of freedom

Properties of t = X−µ
s/

√
n
:

Symmetric about the mean, like the normal distribution
Mean = Median = Mode = 0
t ranges from −∞ to +∞

Encompasses a family of distributions determined by ν = n − 1, the
degrees of freedom
The t distribution approaches the standard normal distribution as
n − 1 approaches ∞



Comparison of the Student’s t with the Standard Normal



Like Z tables, there are T tables



Confidence Intervals Importance of the Normal Distribution Interval Estimation Interpretation of

Pivotal Quantity

A pivotal quantity or pivot is generally defined as a function of
observations and unobservable parameters whose probability
distribution does not depend on unknown parameters

Any probability statement of the form

P(a < H(X1,X2, . . . ,Xn; θ) < b) = 1− α

will give rise to a probability statement about θ

Hence, pivots are crucial to construct confidence intervals for
parameters of interest.

Examples when sampling from a normal distribution:

z = X−µ
σ/

√
n
(population variance known)

t = X−µ
s/

√
n
(population variance unknown)
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Confidence Intervals Importance of the Normal Distribution Interval Estimation Interpretation of

Confidence intervals for means

Summary table:
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Confidence Intervals Importance of the Normal Distribution Interval Estimation Interpretation of

Interpretation of Confidence Interval (CI)

Before the data are observed, the probability is at least (1− α) that
[L,U] will contain the population parameter

In repeated sampling from the relevant distribution, 100(1− α)% of
all intervals of the form [L,U] will include the true population
parameter

After the data are observed, the constructed interval [L,U] either
contains the true parameter value or it does not (there is no longer a
probability involved here!)

A statement such as P(3.5 < µ < 4.9) = 0.95 is incorrect and should
be replaced by A 95% confidence interval for µ is (3.5,4.9)
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