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hi-square Tests

Testing Hypothesis with Table Data

Several Types of y>-tests:
@ The following tests give rise to test statistics that follow a
x?-distribution under their appropriate null (hypothesis)

o Test of Goodness of fit
o Test of independence
@ Test of homogeneity or (no) association
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Recall: Properties of the y?-distribution

m Derived from the normal distribution

2 Y = Hy\2 _ ZZ
X1 (40 )
X2 = B3+ o+ 27
where Z1, ..., Z, are all standard normal random variables

m k denotes the degrees of freedom
m A Xﬁ random variable has
m mean = k
m variance = 2k
m Since a normal random variable can take on values in the
interval (—oc, 00), a chi-square random variable can take on
values in the interval (0, o0)



A family of y2-distributions

k = degrees of freedom



Critical values of x?

m We generally use only a one-sided test for the x?2 distribution

m Area under the curve to the right of the cutoff for each curve
is 0.05

m Increasing critical value with increasing number of degrees of
freedom

Chi-square value



The y>-table
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The y?-table via the R software

For 2 random variables with degrees of freedom = df we'll use
pchisq(a, df, lower.tail=F) to find P(xq4r > a) =7

P(ChiSq>a)=7? P(ChiSq>?)=b

qchisq(b, df, lower.tail=F) to find P(xqr >7) = b



is Variables  Chi-square Tests

The x? goodness-of-fit test

Determine whether or not a sample of observed values of some
random variable is compatible with the hypothesis that the sample
was drawn from a population with a specified distributional form,
ie.

m Normal

m Binomial

m Poisson

m etc...

Here, the expected cell counts would be derived from the
distributional assumption under the null hypothesis
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The x? goodness-of-fit test

observed frequency

Z [ ] where
m O =
mE=

th expected frequency in the /™ cell of a table
m Degrees of freedom = (# categories — 1)

Note: This test is based on frequencies (cell counts) in a table, not
proportions



Example: Handgun survey

m Survey 200 adults regarding handgun bill:

m Statement: “| agree with a ban on handguns”
m Four categories: Strongly agree, agree, disagree, strongly
disagree

m Can one conclude that opinions are equally distributed over
four responses?



Example: Handgun survey

1 2 3 4
Response (count) | Strongly agree | disagree S.trongly
agree disagree
Responding (O;) 102 30 60 8
Expected (E;) 50 50 50 50
2 (0 - E)?
o= ) A
i=1 Ei
102 -50)2 (30 —50)2 (60 —50)> (8 — 50)2
_ (02502 (3050 (60 50)* (3-50)
50 50 50 50
= 00.36

df =4-1=3



Example: Handgun survey

m Critical value: Xil‘o‘% = X%.o‘os =7.81

m Since 99.36 > 7.81, we conclude that our observation was
unlikely by chance alone (p < 0.05)

m Based on these data, opinions do not appear to be equally
distributed among the four responses



Chi-square Tests

The x? test of independence

m Test the null hypothesis that two criteria of classification are
independent

m r X ¢ contingency table

Criterion 1
1 2 3 ... c | Total
1 ni N2 M3oce- Nie | N
m1 N M3 s+ N2 | N2
Criterion 2 3 N3y N3 N33 -+ N3¢ | N3
r Nt N2 Ne3 - Nrc Nr.
Total | ny nyo n3 -+ nc n
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The x? test of independence

m Test statistic:
k
(0 - E)?
D
i=1 !

m Degrees of freedom = (r — 1)(c — 1)
where r is the number of rows and ¢ is number of columns

m Assume the marginal totals are fixed



-square Tests

The x? test of no association (homogeneity)

m Test the null hypothesis that the samples are drawn from
populations that are homogenous with respect to some factor

m i.e. no association between group and factor

m Same test statistic as y? test of independence

m Test statistic: ,

P i 24
X* = Z[L' EiE') ]

i=1
m Degrees of freedom = (r — 1)(c — 1)
where r is the number of rows and ¢ is number of columns
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Example: treatment response

Response to Treatment
Treatment | Yes No Total
A 37 13 50
Observed Numbers B 17 53 20
Total 54 66 120

m Test Hy that there is no association between the treatment
and response

m Calculate what numbers of “Yes" and “No" would be
expected assuming the probability of “Yes" was the same in
both treatment groups

m Condition on total the number of “Yes” and “No" responses



Example: treatment response

m Expected proportion with “Yes" response = % =0.45
m Expected proportion with “No" response = % =0.55
Response to Treatment
Treatment Yes No Total
Observed A 37 (22.5) | 13 (27.5) 50
(Expected) B 17 (31.5) | 53 (38.5) 70
Total 54 66 120

m Get expected number of Yes responses on treatment A:

>t 50 = 0.45 x 50 =225
mx — . >< — .

m Using a similar approach you get the other expected numbers



Example: treatment response

k

0: — E-)2
Test statistic: 2 = (O —E)
est statistic: x ;[ E ]
(37 -225)?  (13-27.5)2
N 22.5 27.5
(17 — 31.5)> (53 —38.5)?
315 38.5

= 201

m Degrees of freedom = (r-1)(c-1) = (2-1)(2-1) = 1
m Critical value for &« = 0.001 is 10.82 so we see p<0.001

m Reject the null hypothesis, and conclude that the treatment
groups are not homogenous (similar) with respect to response

m Response appears to be associated with treatment



Correlation Analysis Simple Linear

Quanitfying Associations

Goal: Express the strength of the relationship between two
variables
m Metric depends on the nature of the variables
m For now, we'll focus on continuous variables
(e.g. height, weight)
m Important! association does not imply causation

To describe the relationship between two continuous variables, use:

m Correlation analysis
m Measures strength and direction of the linear relationship
between two variables
m Regression analysis
m Concerns prediction or estimation of outcome variable, based
on value of another variable (or variables)
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Correlation Analysis

m Plot the data (or have a computer to do so)

m Visually inspect the relationship between two continous
variables

m Is there a linear relationship (correlation)?
m Are there outliers?

m Are the distributions skewed?



Correlation Coefficients

m Measures the strength and direction of the linear relationship
between two variables X and Y

m Population correlation coefficient:
L eov(XY) EX = )Y = )]
Vvar(X) -var(Y)  E[(X — px)?] - E[(Y — 11y

m Sample correlation coefficient:
(obtained by plugging in sample estimates)

sample cov(X,Y) 27 1 W

N 2. 2 0 (Y,_V)2
5% SY \/ZI 1 n— 1 .Ziil n—1




Correlation Coefficients

The correlation coefficient, p, takes values between -1 and +1
m -1: Perfect negative linear relationship
m 0: No linear relationship

m +1: Perfect positive relationship



Correlation Coefficients

m Plot standardized Y versus
standardized X

m Observe an ellipse
(elongated circle)

m Correlation is the slope of
the major axis




m Other names for r

m Pearson correlation coefficient
m Product moment of correlation

m Characteristics of r

m Measures *linear* association

m The value of r is independent of units used to measure the
variables

m The value of r is sensitive to outliers

m 2 tells us what proportion of variation in Y is explained by
linear relationship with X



d Qeret




Perfect positive correlation, r ~ 1




Examples

Perfect negative correlation, r & -1

Imperfect positive correlation, 0< r <1




Imperfect negative correlation, -1<r <0 Imperfect negative correlation, -1<r <0




. Some relation but little *linear* relationship, r ~ 0
No relation, r =~ 0




Association and Causality

m In general, association between two variables means there is
some form of relationship between them
m The relationship is not necessarily causal
m Association does not imply causation, no matter how much we
would like it to

m Example: Hot days, ice cream, drowning



Bradford Hill's Criteria for Causality

m Strength: magnitude of association

m Consistency of association: repeated observation of the
association in different situations

m Specificity: uniqueness of the association
Temporality: cause precedes effect
Biologic gradient: dose-response relationship

[ ]

]

m Biologic plausibility: known mechanisms

m Coherence: makes sense based on other known facts
[ ]

Experimental evidence: from designed (randomized)
experiments

Analogy: with other known associations



imple Linear Regression (

Simple Linear Regression (SLR)

Linear regression can be used to study a continuous outcome
variable as a linear function of a predictor variable

Example: 60 cities in the US were evaluated for numerous
characteristics, including:

Outcome variable (y) the % of the population with low income

Predictor variable (x) median education level

Linear regression can help us to model the association between
median education and % of the population with low income
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Boxplot of % low income by education level:

Education level is coded as a binary variable with values
‘low’ and ‘high’

20 25 30
L n L
.

15

L

% of population with income < $3000

T —

Low Education High Education

10

L




Simple Linear Regression: Regression Line

m Mean in low education group: 15.7%
m Mean in high education group: 13.2%
The two means could be compared by a t-test or ANOVA, but

regression provides a unified equation:

Vi = Bo+bixi
yi = 15.7—2.5x

where
m x; = 1 for high education and O for low education (x is called
a dummy variable or indicator variable that designates group)

m §; is our estimate of the mean % low income for the given the

value of education
m what about the 3's?



Regression Analysis represented by Regression Line

Equation

In simple linear regression, we use the equation for a line
y=mx+b

but we write it slightly differently:
Y = Bo+ pix

fBo = vy-intercept (value y when x=0)
31 = slope of the line (rise/run)



Interpretation of Regression Model Components

i = Po+ X
}7,' = 15.772.5X,'

m x; = 0 (low education)
§ = 157 -25x0
= 15.7=/%p
m x; = 1 (high education)

g = 157-25x1
= 132=/fo+ /A



Interpretation of Regression Model Components

Intercept
m o is the mean outcome for the reference group, or the
group for which x; = 0.
m Here, (3 is the average percent of the population that is low
income for cities with low education.

Slope
m (31 is the difference in the mean outcome between the two
groups (when x; = 1 vs. when x; = 0)
m Here, (3; is difference in the average percent of the
population that is low income for cities with high education
compared to cities with low education.



Why is Linear Regression so popular?

@ Linear regression can refer to simple linear regression (one predictor)
or multiple linear regression (more than 1 predictor)

@ Linear regression naturally extends to quadratic, cubic ... regression
to investigate curvilinear relationships

@ Linear regression is flexible, since it can deal with

binary X

continuous X

categorical X

confounders
interactions (leading to k-order regression models)

¢ ¢ ¢ ¢ ¢



Example: Galton's study on height

m 1000 records of heights of family groups

m Really tall fathers tend on average to have tall sons but not
quite as tall as the really tall fathers

m Really short fathers tend on average to have short sons but
not quite as short as the really short fathers

m There is a regression of a sons height toward the mean height
for sons



Example: Galton's study on height

Regression of Sans Stature on Father's
(?)- 3373+ 0.516%

74

Son's Height

4 66 68 70
Father's Height (inches)



Regression Formalism |

m Probability model: Independent responses y1, yo, ..., Y, are
sampled from
¥i ~ N(pui, 0?)

m Systematic model: 1; = E(yi|xi) = Bo + fixi
where

Bo = intercept

B1 = slope



Regression Formalism Il

m Systematic: y; = (5o + [1Xx; + €
m Probability (random): €; ~ N(0,?)

m The response y; is a linear function of x; plus some random,
normally distributed error, ¢;

m data = signal + noise



Regression Formalism: Model Assumptions

@ The regression formalism naturally leads to four model assumptions:
@ The relationship is linear
¢ The errors have the same variance
@ The errors are independent of each other
@ The errors are normally distributed
@ When we satisfy the assumptions, it means that we have used all of
the information available from the patterns in the data.

@ When we violate an assumption, it usually means that there is a
pattern to the data that we have not included in our model, and we
could actually find a model that fits the data better.



Regression Formalism: Geometric Interpretation

?i =BD+BII|' ‘p= BO+BII

Bi= Ay [ AX
= slope

Bo = Intercept + Yi=Fo+ P+ &

X, X



Another example: City education versus income

When education is a continuous variable (not binary)

% of population with income < $3000

Q]
5]

25
L

20
I

15

10

T
11
Median education




Another example: City education versus income

Using the continuous variable for median education in city i (x;):
E(y,'|x,-) = o+ Pixi
E(y;|x,-) = 36.2— 2.0X,'

When x; =0 E(y;lx) = 36.2—2.0(0)
36.2 = [
When x; =1
E(vilx) = 36.2—2.0(1)
342 = Gy + By
When x; = 2

E(yvilx) = 36.2-2.0(2)
32.2 =g+ 1 x 2



Simple Linea Centering Infer

Where is our Intercept?
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Median education

The intercept isn't in the range of our observed data. This means:
m The intercept isn't very interpretable since the average of y
when x = 0 was never observed
m Possible solution: we might want to center our x variable
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Need for Centering

As in the “City education versus income” example:

= B, makes no sense!

= We don't observe any cities with median
education = 0

= We can change X to fix this problem by a
process called centering
1. Pick a value of X (c) within the range of the data
2. For each observation, generate

Xcentered = X‘»'C

3. Redo the regression with X .ntereq



Use ¢ = 12,

as education level to center with:

30
I

25
I

% of population with income < $3000
15 20
L]

10




Centering - New Regression Equation / Interpretation

);i = Bo + Bl (Xmm-ed i)

YAi :BO+BI(X:’ _12)

Y, =122-2.0(X,-12)
= B, has not changed

= B, now corresponds to average of y when
Xeentered i=0 OF, €quivalently, X;=12 (not X;=0)

= Note: with X;=0, we have
¥, =12.2-2.0(0-12)
=12.2+24=36.2



Using Sample Data to Estimate the Truth

@ So far, we have presented our fitted regression line as

Vi = Bo + Bixi,

without having said anything about how to obtain the “best” such
regression line.



Using Sample Data to Estimate the Truth

@ Note: Sometimes linear regression is referred to as “least squares
regression”. This has to do with the fact that a criterium of
“minimizing squared deviations from the mean” is often used to
estimate the parameters of the regression model. However, other
estimation methods exist (beyond the scope of this course).

@ Hence, since we actually used a sample to estimate the population
regression line, a more accurate notation would have been

Vi = Bo+ Bixi



Drawing Conclusions about Population Associations

= B,: changes depending on centering of
X, which doesn't affect association of
interest

= Real concern: is X associated with Y?
= Assess by testing B;:
Does B,=0 in the population from which
this sample was drawn?
= Hypothesis testing
= Confidence interval



Hypothesis Testing in Regression

Formulation of null hypothesis, alternative hypothesis, derivation of test

statistic:
" Ho: B;=0
" Ho: B1#0
= Test statistic: _B,-0
obs S "l
= df = n-k-1

= n = number of observations
= k = number of predictors (X's)



Hypothesis Testing in Regression

Would you have expected this statistic to follow a t-distribution? J




Hypothesis Testing in Regression

Would you have expected this statistic to follow a t-distribution? )

Summary table:Confidence intervals for difference in means

Population | Sample | Population 95% Confidence
Distribution Size Variances Interval
o o 22 o2
Any known (X1 —Xo) = 1.96\/ﬁ + 2
- - 2 2
Normal Any unknown, | (Xi — X2) = t0.025,n,+m—2 IST‘; + %‘;
0} =03
Any unknown, (X1 — X2) % to.005.00 ,sT‘j + %
o #£03
P PR
Large known (X1 —Xo) = 1.96\/ﬁ + 2
- - Fo—
Not Normal/ | Large | unknown, (X1 —X2) £1.96y/ 2 + 2
Unknown 0? =03
- - R
Large un2knowr21, (X1 = X2) £1.96¢/7 + 2
oi # 03
Small Any Non-parametric methods




Example: Education

* Ho: ;=0 -
= Test statistic: ¢ :M:—3.36

0 0.59

= df = n-k-1 = 60-1-1 = 58
= n = number of observations = 60
= k = number of predictors (X’s) = 1

= Calculate our p-value
2*pt(-3.36, df=58)
[1] 0.001383108

= p-value=0.001



Example: Education

= If there were no association between median
education and percentage of disadvantaged
citizens in the population, there would be
about a 1% chance of observing data as or
more extreme than ours.

= The null probability is very small, so:
= reject the null hypothesis
= conclude that median education level and
percentage of disadvantaged citizens are
associated in the population



The use of Confidence Intervals

It becomes easy once you have a pivotal quantity identified:

We calculate the CI using the usual formula:

B, +1,SE,)

df of tr = n-k-1

For the education example, the 95% CI for B, is:
—-2.0+2.021x0.59
= (-3.2,-0.8)



The use of Confidence Intervals

= We are '‘95% confident’ that the true
population decrease in percentage of low
income citizens per additional year of median
education is between 3.2 and 0.8

= Since this interval does not contain 0, we
believe percentage of low income citizens and
median education are associated among cities
in the United States



Correlation Analysis Simple Line

Statistical Modeling

General Approach:

General approach for most statistical modeling:
= Define the population of interest

= State the scientific questions & underlying
theories

= Describe and explore the observed data

= Define the model
= Probability part (models the randomness / noise)
= Systematic part (models the expectation / signal)
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Statistical Modeling

General Approach (continued):

= Estimate the parameters in the model
= Fit the model to the observed data

= Make inferences about covariates

= Check the validity of the model
= Verify the model assumptions

= Re-define, re-fit, and re-check the model if
necessary

= Interpret the results of the analysis in terms
of the scientific questions of interest



Model Validity Checks

= Check that the assumptions of the
model hold

= Plots
= Residual Checking

= Global Model Checks
(adjusted R?, AIC, BIC)



Model Validity Checks

What do we have to check?

Model Systematic:

Yi=Bo+ BXi+g

Probability:

g ~ N(0,62)
Assumptions
= L Linear relationship
= I Independent observations
= N Normally distributed around line
= E Equal variance across X’'s



Model Validity Checks

How do we have to check?

= Simply plotting the data can be one of
the most powerful model checking
techniques

= From a simple plot of Y on X that
includes the fitted regression line,
we can check:
= |inearity, normality, equal (constant)

variance, outliers, etc.



Residual Plots

= Y-axis
= residuals
= standardized residuals

= standardized residuals are Z values, so extreme
observations are obvious

= X-axis
= continuous X
= fitted values
= fitted values are a linear combination of X's



LINE: Linear relationship

= Is the model correct?
= Is this the right line?

= Are there outliers for which the model may be
wrong?

= Assess with graphs
= 1 continuous X:
= graph Y vs. X with line
= residual plot
= 2+ continuous X's:
= adjusted variable plot



LINE: Linear relationship

o In applied statistics, a partial regression plot attempts to show the
effect of adding an additional variable to the model (given that one
or more independent variables are already in the model).

@ Partial regression plots are also referred to as added variable plots or
adjusted variable plots.
@ Partial regression plots are formed by:

Q@ Computing the residuals of regressing the response variable against
the independent variables but omitting Xi

@ Computing the residuals from regressing Xi against the remaining
independent variables

@ Plotting the residuals from 1. against the residuals from 2.



LINE: Independent observations

@ The relevant question here is: Are all the subjects surveyed
independent of one another?

@ In order to answer this question, one needs information about how
the data were collected ...

Can the “independence assumption” be assessed graphically? J




LINE: Independent observations

Can the “independence assumption” be assessed graphically? J
Normal Random Numbers: 4-Plot
3 3
2 | f 2 ¥ ’ x
1 Ak 1 LEonSEE
0 X 0 ‘!",’x:‘,':‘; x
4 H L 1 .
2 ¥ 2{ *
-3 3 *
o 10 20 30 &« 50 4 2 4 0 1 2 3
RUNSEQUENCE PLOT Y LAG PLOTY
6 3
5 2
a 1
3 o
- 1
1 2
o 3
-10 -5 o 5 10 4 2 4 0 1 2 3
HISTOGRAMY. NORMAL PROBABILITY PLOTY.

If the lag plot (Y; versus Y;_1) is without structure, then the randomness assumption
holds . ..



LINE

= At every value of X, the observed
points should follow a roughly normal
distribution centered at the fitted value
of Y.

= Assess with residual plots



LINE

= At every value of X, the observed
points should follow a roughly normal
distribution with the same variance
across all X's

= Assess with residual plots



Graphical Model Validity Checks

Plotting y versus x

4 types of assumption violations

Non-Linear Cutlier
0 4§19 18
T -
_—— 10 o
-2 E: - —
> > 51+ ~
4 0 K/
kG
6 -5
2 0 2 0 10 20 30
X X
Non-Normal Non-Constant Variance
6 ® 15
4 10
> 2 > 5
0 0
2 5
2 8 1 12




Graphical Model Validity Checks: Residual Analysis

Standardized residuals:

= The residuals, €; , are the differences
between the observed values, y;, and their

fitted values: _ A
E=Y— Y

= Since our model states: ¢ ~ N(0,62)
= We know that the standardized residuals,

&0 where 67 = MSE

\/;

should follow a standard normal distribution




Graphical Model Validity Checks: Residual Analysis

If the model fits the data well, we expect:

= A histogram of the standardized residuals
should look normal.
= Check for asymmetry and outliers.
= A plot of the residuals vs. X should look like a
random scatter (no systematic relationship)
= A plot of the residuals vs. y; (the fitted values)
should also look like a random scatter.



Example 1: Residual Analysis on Health Status

Example: Relationship between health status and
pollution in 20 geographic areas

Regression scatterplot looks good
Standard Residuals appear fairly normally

L e wdeasn o Histog f S R distributed

P : ® Standard Residuals vs X appear randomly

3 o ) N scattered (i.e. no apparent patterns & no
N 17 extreme outliers)

T Y% g W R = Standard Residuals vs predicted values appear
| SwewmshemassX Saecadfesuds s e randomly scattered (i.e. no apparent patterns
2 | & no extreme outliers)

8 2

@ 100 0 S 100

& 80 70 &
Pollution Level Predicied Health Measure



Example 2: Non-linearity

0 s = Regression scatterplot shows non-linear
. , <~ relationship

# o T[ ‘ = Standard Residuals don't look normally

s oL LD distributed

X ‘Standardized Residuals .

. ‘ smuammdnes@fusvsx . ‘ Stndardized ?es\dua\svs‘ma‘ = Standard Residuals vs X shows non-
- PR S N linear relationship
§ o = Standard Residuals vs predicted values
i - . shows non-linear relationship

4 13
x Fitied values



Example 3: Outliers

= Regression scatterplot shows outlier

) ““"” = Standard Residuals look normal but
- s : m ‘large’ residual present
A el = Standard Residuals vs X shows a pattern
s paliAg, & the outlier
T 14 = Standard Residuals vs Y shows a pattern
P i & the outlier
5 0 % B ‘% £




Example 4: Non-normality

= Regression scatterplot shows non-even
Histogrm of Sadardizd Resiunls spread

e = Standard Residuals don't look normally
distributed

_ = Standard Residuals vs X shows non-
¥ candadosdResiss even spread

‘Standardized Residuals vs. Yhat

o = Standard Residuals vs predicted values
. shows non-even spread

v

stcres3
stcres3

[ 2 i
Fitted values



Example 5: Heteroscedasticity

o Constant Vi oo s ssngumorsns = Regression scatterplot shows increasing
N sy variability
., P : ‘ = Standard Residuals do look normally
0 o 5 i N distributed
st T = S = Standard Residuals vs X shows
‘Standardized Residuals vs. X Shnda;;e:rRZ:idu;zlv:aYshax inCreaSing Variab”ity
4 4
. . = Standard Residuals vs predicted values
FI [ shows increasing variability
2 2
. 8 1 12 N 48 51

49 5
“ Fittod values



Minimal Practice: Fit a regression line and . ..

Y = [Aiﬂ + ﬁ]Experience,

= Y, =8.38+0.04Experience,

Hourly Wage
30 40 50

20
H




Check model assumptions

For instance, plot residuals versus x:

= Used to assess remaining relationships
within data
= assumption of “linearity”

40

30

20

= Line has been “flattened”

= Residuals (or error terms) are centered
at 0: horizontal line shows “flattened”
regression line

Residuals

10

0

20 40
Years of Experience



Check model assumptions

Compute standardized residuals:

= With the actual residuals, it's hard to tell
which points are extreme

= Standardized residuals are
residual; _y

i

Standardized Residual, =

residuals
= |sres|>2 about 5%
= |sres|>3 about 1%

Note that for a normal distribution, About 68.27% of the values lie within 1 standard
deviation of the mean. Similarly, about 95.45% of the values lie within 2 standard
deviations of the mean. Nearly all (99.73%) of the values lie within 3 standard
deviations of the mean



Check model assumptions

Plot standardized residuals versus x:

= Plotting against X is fine when there’s
only one continuous X in model

= When multiple continuous X's are in
model

= plotting residuals against fitted values is
like plotting against all the X’s at once

= if problems are seen, one can plot residuals
against each X to see which causes
problem o

2 4 6 8

Standardized residuals

0

95
Fitted values

Model fit: Residual pattern for people with very little experience?



Caution: Outliers Check

= Qutliers far from the pattern of the rest
of the X's may affect the line

= the regression line always goes through
(mean X, mean Y) B

= an outlier near the mean X will not
influence the line very much

= an outlier far from the mean X can draw
the line towards itself

8

6

2

Standardized residuals
2

0

2




Caution: Normality Check

= Parameters estimates are still correct, but CI's
are misleading
= Including additional predictors sometimes
solves this problem
= Another solution is to transform Y
= InﬁY) or sqrt(Y) draws in data skewed to Ajgh
values
= 1/Y or 1/sqrt(Y) draws in data skewed to /ow
values

= use transformed Y instead of original Y
= interpret parameters according to transformed Y!

2 o
Years of Experience

Goal within each slice of X:

Normal curve centered at 0



Caution: Homescedasticity Check

= Again, parameter estimates are valid,
but CI's are misleading

= Adding additional parameters may solve
the problem

3 E) o
Goal within each slice of X: ~ YeasofBereme

Normal curve with equal variance



Recapitulation

Questions? )
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