Elements of statistics (MATH0487-1)

Prof. Dr. Dr. K. Van Steen

University of Liège, Belgium

December 10, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Outline I

Introduction to Statistics

- Why?
- What?
 - Probability
 - Statistics
- Some Examples
- Making Inferences
 - Inferential Statistics
 - Inductive versus Deductive Reasoning
- 2 Basic Probability Revisited
- Sampling
 - Samples and Populations
 - Sampling Schemes
 - Deciding Who to Choose
 - Deciding How to Choose
 - Non-probability Sampling
 - Probability Sampling
 - A Practical Application
 - Study Designs

Outline II

- Classification
- Qualitative Study Designs
- Popular Statistics and Their Distributions
- Resampling Strategies
- Exploratory Data Analysis EDA
 - Why?
 - Motivating Example
 - What?
 - Data analysis procedures
 - Outliers and Influential Observations
 - How?
 - One-way Methods
 - Pairwise Methods
 - Assumptions of EDA

5 Estimation

- Introduction
- Motivating Example
- Approaches to Estimation: The Frequentist's Way
- Estimation by Methods of Moments

Outline III

- Motivation
- What?
- How?
- Examples
- Properties of an Estimator
- Recapitulation
 - Point Estimators and their Properties
 - Properties of an MME
- Estimation by Maximum Likelihood
 - What?
 - How?
 - Examples
 - Profile Likelihoods
 - Properties of an MLE
 - Parameter Transformations

6 Confidence Intervals

- Importance of the Normal Distribution
- Interval Estimation
 - What?
 - How?
 - Pivotal quantities

- ∢ ≣ →

э

Outline IV

- Examples
- Interpretation of CIs
- Recapitulation
 - Pivotal quantities
 - Examples
 - Interpretation of CIs

7 Hypothesis Testing

- General procedure
- Hypothesis test for a single mean
- P-values
- Hypothesis tests beyond a single mean
- Errors and Power

Table analysis

- Dichotomous Variables
 - ${\small O}$ Comparing two proportions using 2×2 tables
 - About RRs and ORs and their confidence intervals
- Chi-square Tests
 - Goodness-of-fit test
 - Independence test

Outline V

Homogeneity test

Introduction to Linear Regression

- Correlation Analysis
- Simple Linear Regression
- Centering
- Inference on Regression Coefficients
- Checking Model Assumptions
- Relation between Experience and Wage

Testing Hypothesis with Table Data

Several Types of χ^2 -tests:

- The following tests give rise to test statistics that follow a χ^2 -distribution under their appropriate null (hypothesis)
 - Test of Goodness of fit
 - Test of independence
 - Test of homogeneity or (no) association

Recall: Properties of the χ^2 -distribution

Derived from the normal distribution

$$\chi_1^2 = (\frac{y - \mu}{\sigma})^2 = Z^2$$

$$\chi_k^2 = Z_1^2 + Z_2^2 + \dots + Z_k^2$$

where Z_1, \ldots, Z_k are all standard normal random variables

- k denotes the degrees of freedom
- A χ_k^2 random variable has
 - $\blacksquare mean = k$
 - variance = 2k
- Since a normal random variable can take on values in the interval (-∞,∞), a chi-square random variable can take on values in the interval (0,∞)

<ロト <回ト < 注ト < 注ト = 注

A family of χ^2 -distributions

◆□▶ ◆□▶ ◆三▶ ◆三▶

- E

 $\mathbf{k} = \mathrm{degrees} \ \mathrm{of} \ \mathrm{freedom}$

Critical values of χ^2

- \blacksquare We generally use only a one-sided test for the χ^2 distribution
- Area under the curve to the right of the cutoff for each curve is 0.05
- Increasing critical value with increasing number of degrees of freedom

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The χ^2 -table

<u>a</u>	.005	.01	.025	.05	.10	.8	.50	.75	.90	.95	.975	.99	.995	.999
1	0.0*191	0.0152	0.01982	0.00393	0.02	0.10	0.45	1.32	2.71	3.84	5.62	6.61	7.88	10.83
2	0.0100	0.0201	0.0506	0.103	0.21	0.58	1.39	2.77	4.51	5.99	2.38	9.21	10.60	13.41
3	0.0717	0.115	0.216	0.352	0.58	1.21	2.37	4.11	6.25	7.81	9.15	11.34	12.84	16.27
	0.207	0.297	0.434	0.211	1.05	1.92	3.36	5.39	7.78	9.49	11.14	13.25	14.06	18.47
	0.412	0.554	0.831	1.15	1.61	2.47	4.15	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	0.676	0,872	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55	27.44
1	0.989	1,24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.17
	1.34	1.65	2.18	2.73	1.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	71.95	26.11
	1.23	2.09	2.70	3.53	4.17	5.90	8.34	11,39	14.68	16.92	19.62	21.67	23.58	12.00
10	2.16	2.56	3.25	3.94	4.87	6.74	9.14	12.55	15.99	18.31	23.48	23.21	25.19	27.57
п	2.60	3.65	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19 68	21 92	34.72	~ ~	
12	3.07	3.57	4.45	5.23	6.90	8.44	11,34	14.85	18.55	21.01	23.34	36.22	28.20	11.41
13	.3.57	4.11	5.01	5.89	7.64	9.30	12.34	15.98	19.81	22.16	26.24	37.48	10.00	24.71
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.12	34.35
15	4.60	5.23	6.27	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.47	30.58	12.50	87.70
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	28.54	26.30	28.85	12.00	34.22	10.10
17	5.70	6.41	7.56	0.67	10.09	12.79	16.34	20.49	24.77	27.59	35 10	33.41	25.72	10.0
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	11 51	24.91	33.72	40.77
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	35.14	37.81	26.10	30.04	43.63
20	7.43	8.26	9.59	10.85	12.44	15.45	19.14	21.83	28.41	31.41	34.17	37.57	40.00	45.12
23	8.63	8.90	10.28	11.59	13.24	16.34	20.34	24.93	29.62	12.67	35.48	18.93		41.00
22	8.64	9.54	10.58	12.34	14.04	17.24	21.34	26.04	22.51	11.47	36.78	45.70	43.90	45.00
23	9.26	10.20	11.49	13.09	14.85	18,14	22.54	22.14	32.65	35.17	10.04	0.4	44.18	40.72
24	9,89	10.66	12.40	13.85	15.66	19.04	23.34	28.24	\$\$ 35	16.42	10.34	41.00	41.74	49.75
25	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.31	46.93	52.62
26	11.16	12.20	13.84	15.38	17.29	29.54	25.34	30.43	35.56	18.89	41.92	45.64	48.10	14.00
27	11,81	12.88	14.57	16.15	18.11	21.75	26.34	31.53	36.74	40.11	43,19	46.96	42.64	55.40
28	12.46	11.56	15.31	16.93	18.94	22.66	27.34	32.62	37.92	41.34	44.45	48.78	\$0.95	16.00
29	11.12	14.26	16.05	17.71	19.77	23.57	28.34	33.71	39.09	42.56	45.72	49.59	\$2.34	58.30
30	13.79	14.95	16.79	18.49	20.60	24.48	29.34	34.80	40.76	43.77	46.90	50.89	53.62	59.70
-40	20.71	22.16	848	26.51	29.05	33.66	39.34	45.62	51.81	\$5.76	58.14	63.69	4.77	
50	27.59	29.71	12.36	34.76	37.69	42.94	49.33	56.13	63.12	62.50	71.42	76.15	15.40	
60	35.53	17.48	0).48	41.19	46.45	52.29	\$9.13	65.98	24.40	29.08	82.30		20.00	00.00
70	43.28	15.44	8.75	51.74	55.33	61.30	69.33	77.58	85.53	99.53	95.02	100.42	114 22	112.22
80	51.17	13.54	17.15	60.39	64.28	21.14	79.33	85.13	95.58	101.88	106.63	112.33	114.32	124.84
90	59.20	51.75	15.65	9.13	73.29	80.42	85.33	98.64	107.56	113.54	118.14	124.17	110.10	117.00
100	67.33	0.05	16.22	17.93	82.36	00.12	65.13	100.14				*****	***3.30	101.21

 $\chi^2_{\rm Lin}$ = ulli percentile of a χ^2 distribution with d degrees of freedom. ^ = 0.0000157 (= 0.000157 + 0.000157

(日) (四) (문) (문) (문)

The χ^2 -table via the R software

For χ^2 random variables with degrees of freedom = df we'll use pchisq(a, df, lower.tail=F) to find $P(\chi_{df} \ge a) =$?

(日) (四) (문) (문) (문) (문)

2 qchisq(b, df, lower.tail=F) to find $P(\chi_{df} \ge ?) = b$

The χ^2 goodness-of-fit test

Determine whether or not a sample of observed values of some random variable is compatible with the hypothesis that the sample was drawn from a population with a specified distributional form, i.e.

- Normal
- Binomial
- Poisson
- etc...

Here, the expected cell counts would be derived from the distributional assumption under the null hypothesis

A 3 - 5

The χ^2 goodness-of-fit test

$$\chi^{2} = \sum_{i=1}^{k} \left[\frac{(O_{i} - E_{i})^{2}}{E_{i}} \right] \text{ where}$$

$$O_{i} = i^{th} \text{ observed frequency}$$

$$E_{i} = i^{th} \text{ expected frequency in the } i^{th} \text{ cell of a table}$$

Note: This test is based on frequencies (cell counts) in a table, not proportions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Survey 200 adults regarding handgun bill:
 - Statement: "I agree with a ban on handguns"
 - Four categories: Strongly agree, agree, disagree, strongly disagree
- Can one conclude that opinions are equally distributed over four responses?

(日) (四) (문) (문) (문) (문)

	1	2	3	4
Response (count)	Strongly	agroo	disagroo	Strongly
	agree	agree	uisagiee	disagree
Responding (O_i)	102	30	60	8
Expected (E_i)	50	50	50	50

$$\chi^{2} = \sum_{i=1}^{k} \left[\frac{(O_{i} - E_{i})^{2}}{E_{i}} \right]$$

= $\frac{(102 - 50)^{2}}{50} + \frac{(30 - 50)^{2}}{50} + \frac{(60 - 50)^{2}}{50} + \frac{(8 - 50)^{2}}{50}$
= 99.36

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\mathsf{df}=4-1=3$

- Critical value: $\chi^2_{4-1,0.05} = \chi^2_{3,0.05} = 7.81$
- Since 99.36 > 7.81, we conclude that our observation was unlikely by chance alone (*p* < 0.05)
- Based on these data, opinions do not appear to be equally distributed among the four responses

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへで

The χ^2 test of independence

- Test the null hypothesis that two criteria of classification are independent
- $r \times c$ contingency table

		Criterion 1						
		1	2	3		С	Total	
	1	<i>n</i> ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₃		n_{1c}	<i>n</i> ₁ .	
	2	<i>n</i> ₂₁	<i>n</i> ₂₂	<i>n</i> ₂₃	•••	n_{2c}	<i>n</i> ₂ .	
Criterion 2	3	<i>n</i> ₃₁	<i>n</i> ₃₂	<i>n</i> 33	•••	<i>n</i> _{3c}	n з.	
		÷	÷	÷	÷	÷	÷	
	r	n_{r1}	n_{r2}	n _{r3}	• • •	n _{rc}	n _r .	
	Total	<i>n</i> .1	<i>n</i> .2	<i>n</i> .3	• • •	n. _c	n	

글 > : < 글 >

Test statistic:

$$\chi^{2} = \sum_{i=1}^{k} \left[\frac{(O_{i} - E_{i})^{2}}{E_{i}} \right]$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへで

- Degrees of freedom = (r 1)(c 1)where *r* is the number of rows and *c* is number of columns
- Assume the marginal totals are fixed

The χ^2 test of no association (homogeneity)

- Test the null hypothesis that the samples are drawn from populations that are homogenous with respect to some factor
 - i.e. no association between group and factor
- \blacksquare Same test statistic as χ^2 test of independence
- Test statistic:

$$\chi^{2} = \sum_{i=1}^{k} \left[\frac{(O_{i} - E_{i})^{2}}{E_{i}} \right]$$

Degrees of freedom = (r - 1)(c - 1)where *r* is the number of rows and *c* is number of columns

		Response to Treatment			
	Treatment	Yes	No	Total	
Observed Numbers	A	37	13	50	
Observed Multipers	В	17	53	70	
	Total	54	66	120	

- Test H_0 that there is no association between the treatment and response
- Calculate what numbers of "Yes" and "No" would be expected assuming the probability of "Yes" was the same in both treatment groups
- Condition on total the number of "Yes" and "No" responses

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

Example: treatment response

Expected proportion with "Yes" response = ⁵⁴/₁₂₀ = 0.45
 Expected proportion with "No" response = ⁶⁶/₁₂₀ = 0.55

		Response to Treatment				
	Treatment	Yes	No	Total		
Observed	А	37 (22.5)	13 (27.5)	50		
(Expected)	В	17 (31.5)	53 (38.5)	70		
	Total	54	66	120		

Get expected number of Yes responses on treatment A:

$$\frac{54}{120} \times 50 = 0.45 \times 50 = 22.5$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Using a similar approach you get the other expected numbers

Example: treatment response

Test statistic:
$$\chi^2 = \sum_{i=1}^{k} [\frac{(O_i - E_i)^2}{E_i}]$$

= $\frac{(37 - 22.5)^2}{22.5} + \frac{(13 - 27.5)^2}{27.5}$
 $+ \frac{(17 - 31.5)^2}{31.5} + \frac{(53 - 38.5)^2}{38.5}$
= 29.1

- Degrees of freedom = (r-1)(c-1) = (2-1)(2-1) = 1
- \blacksquare Critical value for $\alpha = 0.001$ is 10.82 so we see p<0.001
- Reject the null hypothesis, and conclude that the treatment groups are not homogenous (similar) with respect to response

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Response appears to be associated with treatment

(B)

Quanitfying Associations

 $\ensuremath{\textbf{Goal:}}$ Express the strength of the relationship between two variables

- Metric depends on the nature of the variables
- For now, we'll focus on continuous variables (e.g. height, weight)
- Important! association does not imply causation

To describe the relationship between two continuous variables, use:

- Correlation analysis
 - Measures strength and direction of the linear relationship between two variables
- Regression analysis
 - Concerns prediction or estimation of outcome variable, based on value of another variable (or variables)

Correlation Analysis

- Plot the data (or have a computer to do so)
- Visually inspect the relationship between two continous variables

- Is there a linear relationship (correlation)?
- Are there outliers?
- Are the distributions skewed?

Correlation Coefficients

- Measures the strength and direction of the linear relationship between two variables X and Y
- Population correlation coefficient:

$$\rho = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \cdot \operatorname{var}(Y)}} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sqrt{E[(X - \mu_X)^2] \cdot E[(Y - \mu_Y)^2]}}$$

 Sample correlation coefficient: (obtained by plugging in sample estimates)

$$r = \frac{\text{sample cov}(X, Y)}{\sqrt{s_x^2 \cdot s_Y^2}} = \frac{\sum_{i=1}^n \frac{(X_i - X)(Y_i - Y)}{n-1}}{\sqrt{\sum_{i=1}^n \frac{(X_i - \bar{X})^2}{n-1} \cdot \sum_{i=1}^n \frac{(Y_i - \bar{Y})^2}{n-1}}}$$

The correlation coefficient, $\rho,$ takes values between -1 and +1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- -1: Perfect negative linear relationship
- 0: No linear relationship
- +1: Perfect positive relationship

Correlation Coefficients

- Plot standardized Y versus standardized X
- Observe an ellipse (elongated circle)
- Correlation is the slope of the major axis

$$\frac{X_i - \overline{X}}{s_x}$$

<ロ> (四)、(四)、(日)、(日)、

æ

To Remember

Other names for r

- Pearson correlation coefficient
- Product moment of correlation
- Characteristics of r
 - Measures *linear* association
 - The value of r is independent of units used to measure the variables
 - The value of r is sensitive to outliers
 - r^2 tells us what proportion of variation in Y is explained by linear relationship with X

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

To Remember

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Perfect positive correlation, $\mathsf{r}\approx 1$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

<ロ> (四)、(四)、(日)、(日)、

æ

Imperfect negative correlation, -1<r <0

▲□▶ ▲□▶ ▲□▶ ▲ □

æ

Some relation but little *linear* relationship, $r\approx 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Association and Causality

- In general, association between two variables means there is some form of relationship between them
 - The relationship is not necessarily causal
 - Association does not imply causation, no matter how much we would like it to

(日) (四) (문) (문) (문) (문)

Example: Hot days, ice cream, drowning

Bradford Hill's Criteria for Causality

- Strength: magnitude of association
- Consistency of association: repeated observation of the association in different situations
- Specificity: uniqueness of the association
- Temporality: cause precedes effect
- Biologic gradient: dose-response relationship
- Biologic plausibility: known mechanisms
- Coherence: makes sense based on other known facts
- Experimental evidence: from designed (randomized) experiments

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

Analogy: with other known associations
Simple Linear Regression (SLR)

Linear regression can be used to study a continuous outcome variable as a linear function of a predictor variable

Example: 60 cities in the US were evaluated for numerous characteristics, including: Outcome variable (y) the % of the population with low income Predictor variable (x) median education level

Linear regression can help us to model the association between median education and % of the population with low income

Boxplot of % low income by education level:

Education level is coded as a binary variable with values 'low' and 'high'

Simple Linear Regression: Regression Line

- Mean in low education group: 15.7%
- Mean in high education group: 13.2%

The two means could be compared by a t-test or ANOVA, but regression provides a unified equation:

$$\hat{y}_i = \beta_0 + \beta_1 x_i \hat{y}_i = 15.7 - 2.5 x_i$$

where

- x_i = 1 for high education and 0 for low education (x is called a dummy variable or indicator variable that designates group)
- \hat{y}_i is our estimate of the mean % low income for the given the value of education

(日) (四) (문) (문) (문)

what about the β's?

Regression Analysis represented by Regression Line Equation

In simple linear regression, we use the equation for a line

y = mx + b

but we write it slightly differently:

$$\hat{y} = \beta_0 + \beta_1 x$$

$$eta_0 =$$
 y-intercept (value y when x=0)
 $eta_1 =$ slope of the line (rise/run)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Interpretation of Regression Model Components

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$
$$\hat{y}_i = 15.7 - 2.5 x_i$$

• $x_i = 0$ (low education)

$$\hat{y}_i = 15.7 - 2.5 \times 0$$

= 15.7 = β_0

• $x_i = 1$ (high education)

$$\hat{y}_i = 15.7 - 2.5 \times 1$$

= 13.2 = $\beta_0 + \beta_1$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Interpretation of Regression Model Components

Intercept

- β_0 is the mean outcome for the **reference group**, or the group for which $x_i = 0$.
- Here, β_0 is the average percent of the population that is low income for cities with low education.

Slope

- β_1 is the **difference** in the mean outcome between the two groups (when $x_i = 1$ vs. when $x_i = 0$)
- Here, β₁ is difference in the average percent of the population that is low income for cities with high education compared to cities with low education.

Why is Linear Regression so popular?

- Linear regression can refer to *simple* linear regression (one predictor) or *multiple* linear regression (more than 1 predictor)
- Linear regression naturally extends to quadratic, cubic ... regression to investigate curvilinear relationships

<ロト <回ト < 注ト < 注ト = 注

- Linear regression is flexible, since it can deal with
 - binary X
 - continuous X
 - categorical X
 - confounders
 - interactions (leading to k-order regression models)

Example: Galton's study on height

- 1000 records of heights of family groups
- Really tall fathers tend on average to have tall sons but not quite as tall as the really tall fathers
- Really short fathers tend on average to have short sons but not quite as short as the really short fathers
- There is a regression of a sons height toward the mean height for sons

(日) (四) (문) (문) (문)

Example: Galton's study on height

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Probability model: Independent responses y₁, y₂,..., y_n are sampled from

$$y_i \sim N(\mu_i, \sigma^2)$$

Systematic model: $\mu_i = E(y_i|x_i) = \beta_0 + \beta_1 x_i$ where

$$\beta_0 = intercept$$

 $\beta_1 = slope$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Systematic: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- Probability (random): $\epsilon_i \sim N(0, \sigma^2)$
- The response y_i is a linear function of x_i plus some random, normally distributed error, ε_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• data = signal + noise

Regression Formalism: Model Assumptions

• The regression formalism naturally leads to four model assumptions:

- The relationship is linear
- The errors have the same variance
- The errors are independent of each other
- The errors are normally distributed
- When we *satisfy the assumptions*, it means that we have used all of the information available from the patterns in the data.
- When we *violate an assumption*, it usually means that there is a pattern to the data that we have not included in our model, and we could actually find a model that fits the data better.

<ロト <回ト < 注ト < 注ト = 注

Regression Formalism: Geometric Interpretation

(日) (四) (문) (문) (문)

Another example: City education versus income

When education is a continuous variable (not binary)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Another example: City education versus income

Using the continuous variable for median education in city $i(x_i)$:

$$E(y_i|x_i) = \beta_0 + \beta_1 x_i E(y_i|x_i) = 36.2 - 2.0 x_i$$

When
$$x_i = 0$$

 $E(y_i | x_i) = 36.2 - 2.0(0)$
 $= 36.2 = \beta_0$

When $x_i = 1$

$$E(y_i|x_i) = 36.2 - 2.0(1) = 34.2 = \beta_0 + \beta_1$$

When $x_i = 2$

$$E(y_i|x_i) = 36.2 - 2.0(2) = 32.2 = \beta_0 + \beta_1 \times 2$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Where is our Intercept?

The intercept isn't in the range of our observed data. This means:

- The intercept isn't very interpretable since the average of y when x = 0 was never observed
- Possible solution: we might want to *center* our *x* variable

Need for Centering

As in the "City education versus income" example:

- β_0 makes no sense!
- We don't observe any cities with median education = 0
- We can change X to fix this problem by a process called **centering**
 - 1. Pick a value of X (c) within the range of the data

(日) (四) (문) (문) (문)

- 2. For each observation, generate $X_{centered} = X_i$ -c
- 3. Redo the regression with X_{centered}

Use c = 12, as education level to center with:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Centering - New Regression Equation / Interpretation

$$\hat{Y}_{i} = \beta_{0} + \beta_{1} (X_{Centered i})$$
$$\hat{Y}_{i} = \beta_{0} + \beta_{1} (X_{i} - 12)$$
$$\hat{Y}_{i} = 12.2 - 2.0 (X_{i} - 12)$$

- β₁ has not changed
- β_0 now corresponds to average of y when $X_{centered i}=0$ or, equivalently, $X_i=12$ (not $X_i=0$)
- Note: with X_i=0, we have

$$\hat{\mathbf{Y}}_{i} = 12.2 - 2.0(0 - 12)$$

= 12.2 + 24 = 36.2

<ロト <回ト < 注ト < 注ト = 注

• So far, we have presented our fitted regression line as

$$\hat{y}_i = \beta_0 + \beta_1 x_i,$$

without having said anything about how to obtain the "best" such regression line.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Using Sample Data to Estimate the Truth

• Note: Sometimes linear regression is referred to as "least squares regression". This has to do with the fact that a criterium of "minimizing squared deviations from the mean" is often used to estimate the parameters of the regression model. However, other estimation methods exist (beyond the scope of this course).

• Hence, since we actually used a *sample* to *estimate* the *population regression line*, a more accurate notation would have been

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

<ロト <四ト <注ト <注ト = 三

Drawing Conclusions about Population Associations

- β₀: changes depending on centering of X, which doesn't affect association of interest
- Real concern: is X associated with Y?
- Assess by **testing** β_1 : Does β_1 =0 in the population from which this sample was drawn?

(日) (四) (문) (문) (문)

- Hypothesis testing
- Confidence interval

Formulation of null hypothesis, alternative hypothesis, derivation of test statistic:

- H₀: β₁=0
- H₀: β₁≠0
- Test statistic: $t_{obs} = \frac{\hat{\beta}_{1} - 0}{SE(\hat{\beta}_{1})}$
- df = n-k-1
 - n = number of observations
 - k = number of predictors (X's)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Would you have expected this statistic to follow a t-distribution?

Would you have expected this statistic to follow a t-distribution?

Summary table: Confidence intervals for difference in means

Population	Sample	Population	95% Confidence
Distribution	Size	Variances	Interval
Normal	Any	known	$(ar{X}_1 - ar{X}_2) \pm 1.96 \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$
	Any	unknown,	$(\bar{X}_1 - \bar{X}_2) \pm t_{0.025, n_1 + n_2 - 2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$
		$\sigma_1^2 = \sigma_2^2$	<u></u>
	Any	unknown,	$(ar{X}_1 - ar{X}_2) \pm t_{0.025, u} \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$
		$\sigma_1^2 \neq \sigma_2^2$	
	Large	known	$(ar{X}_1 - ar{X}_2) \pm 1.96 \sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}$
Not Normal/	Large	unknown,	$(ar{X}_1 - ar{X}_2) \pm 1.96 \sqrt{rac{s_{ m ho}^2}{n_1} + rac{s_{ m ho}^2}{n_2}}$
Unknown		$\sigma_{1}^{2} = \sigma_{2}^{2}$	·
	Large	unknown,	$(ar{X}_1 - ar{X}_2) \pm 1.96 \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$
		$\sigma_1^2 \neq \sigma_2^2$	
	Small	Any	Non-parametric methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ -

æ

Example: Education

•
$$H_0: \beta_1=0$$

• Test statistic: $t_{obs} = \frac{-2.0-0}{0.59} = -3.36$

- n = number of observations = 60
- k = number of predictors (X's) = 1

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

- Calculate our p-value 2*pt(-3.36, df=58) [1] 0.001383108
- p-value=0.001

Example: Education

- If there were no association between median education and percentage of disadvantaged citizens in the population, there would be about a 1% chance of observing data as or more extreme than ours.
- The null probability is very small, so:
 - reject the null hypothesis
 - conclude that median education level and percentage of disadvantaged citizens are associated in the population

<ロト <四ト <注入 <注下 <注下 <

It becomes easy once you have a pivotal quantity identified:

We calculate the CI using the usual formula: $\hat{\beta}_1 \pm t_{CR} \text{SE}(\hat{\beta}_1)$

df of $t_{CR} = n-k-1$

For the education example, the 95% CI for β_1 is:

$$-2.0 \pm 2.021 \times 0.59$$
$$\Rightarrow (-3.2, -0.8)$$

(日) (四) (문) (문) (문)

The use of Confidence Intervals

- We are '95% confident' that the true population decrease in percentage of low income citizens per additional year of median education is between 3.2 and 0.8
- Since this interval does not contain 0, we believe percentage of low income citizens and median education are associated among cities in the United States

<ロト <回ト < 注ト < 注ト = 注

Statistical Modeling

General Approach:

General approach for most statistical modeling:

- Define the population of interest
- State the scientific questions & underlying theories
- Describe and explore the observed data
- Define the model
 - Probability part (models the randomness / noise)
 - Systematic part (models the expectation / signal)

Statistical Modeling

General Approach (continued):

- Estimate the parameters in the model
 - Fit the model to the observed data
- Make inferences about covariates
- Check the validity of the model
 - Verify the model assumptions
- Re-define, re-fit, and re-check the model if necessary
- Interpret the results of the analysis in terms of the scientific questions of interest

<ロト <回ト < 注ト < 注ト = 注

Check that the assumptions of the model hold

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

- Plots
- Residual Checking
- Global Model Checks (adjusted R², AIC, BIC)

Model Validity Checks

What do we have to check?

Model Systematic: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ Probability: $\epsilon_i \sim N(0, \sigma^2)$

Assumptions

- L Linear relationship
- I Independent observations
- N Normally distributed around line

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

• E Equal variance across X's

How do we have to check?

- Simply plotting the data can be one of the most powerful model checking techniques
- From a simple plot of Y on X that includes the fitted regression line, we can check:
 - linearity, normality, equal (constant) variance, outliers, etc.

Residual Plots

Y-axis

- residuals
- standardized residuals
 - standardized residuals are Z values, so extreme observations are obvious
- X-axis
 - continuous X
 - fitted values
 - fitted values are a linear combination of X's

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

LINE: Linear relationship

- Is the model correct?
 - Is this the right line?
 - Are there **outliers** for which the model may be wrong?

- Assess with graphs
 - I continuous X:
 - graph Y vs. X with line
 - residual plot
 - 2+ continuous X's:
 - adjusted variable plot
LINE: Linear relationship

- In applied statistics, a **partial regression plot** attempts to show the effect of adding an additional variable to the model (given that one or more independent variables are already in the model).
- Partial regression plots are also referred to as added variable plots or adjusted variable plots.
- Partial regression plots are formed by:
 - Computing the residuals of regressing the response variable against the independent variables but omitting Xi
 - Computing the residuals from regressing Xi against the remaining independent variables

< ロ > (四 > (四 > (三 > (三 >)) 三 三)

Solution Plotting the residuals from 1. against the residuals from 2.

- The relevant question here is: Are all the subjects surveyed independent of one another?
- In order to answer this question, one needs information about how the data were collected ...

Can the "independence assumption" be assessed graphically?

<ロト <四ト <注入 <注下 <注下 <

Can the "independence assumption" be assessed graphically?

If the lag plot (Y_i versus Y_{i-1}) is without structure, then the randomness assumption holds . . .

(日) (四) (王) (王) (王)

æ

 At *every value of X*, the observed points should follow a roughly normal distribution centered at the fitted value of Y.

Assess with residual plots

 At every value of X, the observed points should follow a roughly normal distribution with the same variance across all X's

Assess with residual plots

Graphical Model Validity Checks

Plotting y versus x

4 types of assumption violations

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Standardized residuals:

- The residuals, ε_i , are the differences between the observed values, y_i , and their fitted values: $\mathcal{E}_i = y_i - \hat{y}_i$
- Since our model states: $\epsilon_i \sim N(0, \sigma^2)$
- We know that the *standardized* residuals,

$$\frac{\varepsilon_i - 0}{\sqrt{\hat{\sigma}^2}}$$
 where $\hat{\sigma}^2 = MSE$

(日) (四) (문) (문) (문)

should follow a standard normal distribution

If the model fits the data well, we expect:

- A histogram of the standardized residuals should look normal.
 - Check for asymmetry and outliers.
- A plot of the residuals vs. X should look like a random scatter (no systematic relationship)
- A plot of the residuals vs. \hat{y}_i (the fitted values) should also look like a random scatter.

<ロト <四ト <注入 <注下 <注下 <

Example 1: Residual Analysis on Health Status

Example: Relationship between health status and pollution in 20 geographic areas

- Regression scatterplot looks good
- Standard Residuals appear fairly normally distributed
- Standard Residuals vs X appear randomly scattered (i.e. no apparent patterns & no extreme outliers)

(ロ) (日) (日) (日) (日)

 Standard Residuals vs predicted values appear randomly scattered (i.e. no apparent patterns & no extreme outliers)

Example 2: Non-linearity

- Regression scatterplot shows non-linear relationship
- Standard Residuals don't look normally distributed
- Standard Residuals vs X shows nonlinear relationship

(ロ) (日) (日) (日) (日)

臣

 Standard Residuals vs predicted values shows non-linear relationship

Example 3: Outliers

- Regression scatterplot shows outlier
- Standard Residuals look normal but 'large' residual present
- Standard Residuals vs X shows a pattern & the outlier
- Standard Residuals vs Y shows a pattern & the outlier

(ロ) (日) (日) (日) (日)

æ

Example 4: Non-normality

- Regression scatterplot shows non-even spread
- Standard Residuals don't look normally distributed
- Standard Residuals vs X shows noneven spread

イロト イヨト イヨト イヨト

æ

 Standard Residuals vs predicted values shows non-even spread

Example 5: Heteroscedasticity

- Regression scatterplot shows increasing variability
- Standard Residuals do look normally distributed
- Standard Residuals vs X shows increasing variability

(ロ) (日) (日) (日) (日)

 Standard Residuals vs predicted values shows increasing variability

Minimal Practice: Fit a regression line and

<ロ> (四)、(四)、(日)、(日)、

æ

Check model assumptions

For instance, plot residuals versus x:

- Used to assess remaining relationships within data
 - assumption of "linearity"
- Line has been "flattened"
- Residuals (or error terms) are centered at 0: horizontal line shows "flattened" regression line

Check model assumptions

Compute standardized residuals:

- With the actual residuals, it's hard to tell which points are extreme
- Standardized residuals are

Standardized Residual_i =
$$\frac{\text{residual}_i}{SD_{residuals}} = Z_i$$

- Isres|>2 about 5%
- Isres|>3 about 1%

Note that for a normal distribution, About 68.27% of the values lie within 1 standard deviation of the mean. Similarly, about 95.45% of the values lie within 2 standard deviations of the mean. Nearly all (99.73%) of the values lie within 3 standard deviations of the mean

Check model assumptions

Plot standardized residuals versus x:

- Plotting against X is fine when there's only one continuous X in model
- When multiple continuous X's are in model
 - plotting residuals against fitted values is like plotting against all the X's at once
 - if problems are seen, one can plot residuals against each X to see which causes problem

Model fit: Residual pattern for people with very little experience?

Caution: Outliers Check

- Outliers far from the pattern of the rest of the X's may affect the line
- the regression line always goes through (mean X, mean Y)
- an outlier near the mean X will not influence the line very much

(ロ) (日) (日) (日) (日)

 an outlier far from the mean X can draw the line towards itself

Caution: Normality Check

Normal curve centered at 0

- Parameters estimates are still correct, but CI's are misleading
- Including additional predictors sometimes solves this problem
- Another solution is to transform Y
 - In(Y) or sqrt(Y) draws in data skewed to high values
 - 1/Y or 1/sqrt(Y) draws in data skewed to *low* values
 - use transformed Y instead of original Y

(ロ) (日) (日) (日) (日)

interpret parameters according to transformed Y!

Caution: Homescedasticity Check

- Again, parameter estimates are valid, but CI's are misleading
- Adding additional parameters may solve the problem

${\sf Questions?}$

Acknowledgements

Most slides on formal statistical inference, chi-square testing and regression are based on an excellent course series of Sandy Eckel, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, USA.