Probability and Statistics Kristel Van Steen, PhD²

Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg

kristel.vansteen@ulg.ac.be

COURSE INTRODUCTION

1. Course contents

- CH1: Probability theory
- CH2: Random variables and associated functions
- CH3: Some important distributions
- CH4: It is all about data
- CH5: Parameter estimation
- CH6: Hypothesis testing

2. General course objectives

2.1. Introduction

- General objectives are 3-fold:
 - Have a good notion about / understand the basic elements of probability and statistics
 - Be able to use the concepts in practical applications (practical sessions)
 - \odot Be able to generalize material to a broader variety of practical problems

• Specific objectives:

- These are chapter/topic dependent
- o These will be communicated to you as classes advance
- Meeting the specific objectives of this course **P**assing this course

• For example:

Compute the probability that a particular event will occur	CH1
Use the right probability distribution (normal, t, binomial, etc.) for	CH2-
your analysis	CH3
Retrieve relevant information by looking at your data	CH4
Estimate population means and proportions, based on sample	CH5
data	
Determine margin of error and confidence levels	CH5
Test hypotheses about means and proportions	CH6

2.2 An engineer's perspective

- **3.** Organization of the classes
- **3.1.** Course websites:

General information + notes theory classes: <u>www.montefiore.ulg.ac.be/~kvansteen</u>

Notes practical classes:

www.montefiore.ulg.ac.be/~vanlishout

www.montefiore.ulg.ac.be/~kvansteen

Kristel Van Steen, PhD²

Home

List of Publications Curriculum Vitae Short Curriculum Vitae Long NEW - March 2011: Consultancy Charter

Links to affiliations

- ULg homepage
- Institut Montefiore
- <u>Center for Medical Genetics</u> <u>Ghent (at UG)</u>
- <u>Center for Statistics (at</u> UHasselt)
- <u>Center for Human Genetics (at</u> <u>K.U.Leuven)</u>
- Global Allergy and Asthima European Network

Teaching 2011-2012

MATH0008-2 : Introduction to
 Probability and Statistics

Contact Information

Dépt / Unité : Dép. d'électric., électron. et informat. (Inst.Montefiore) / Bioinformatique

Mail Adresse : BAT. B28 Bioinformatique Grande Traverse, 10 4000 Liège 1 Belgium

Office: 0.15 (BAT 37) Tel: +32 4 366 2692

Email : Kristel.VanSteen@ulg.ac.be

Research Interests

Statistical Genetics

- Components analysis
- FBAT testing
- Gene-environment interactions
- Gene-gene interactions and interaction graphs
- Genetic heterogeneity
- Genetic imprinting
- · Genome-wide association analysis
- Kinshin and denomic background

3.2. Theoretical classes

Date	Т	Р	Changes	T Chapter	T Keywords
	(10.30-	(08.15-10.15)			
	12.30)				
20/09	B7b "les p	petits amphis"	10.30-	CH1	Probability
			13.00		
04/10	B7b			CH2	Random
11/10	B7b			CH2-3	Functions /
					discrete
18/10	B7b			CH3	Continuous distr
25/10	B7b			CH4	Explore data
08/11	B7b			CH5	Estimate
15/11	B7b			CH6	Test
20/12	To be	announced		Repetition	Case study (guest)

Written notes

- Theory:
 - o Slides in English

Downloadable from: http://www.montefiore.ulg.ac.be/~kvansteen/

• The theory slides are "complete" for the purposes of this class. If you are in need for a good reference book to this course, we recommend:

○ In English:

"Introduction to the theory of statistics – 3rd edition", Alexander M Mood; Franklin A Graybill; and Duane C Boes, McGraw-Hill series in probability and statistics 1974. ISBN : 0-07-042864-6

\circ In French:

"Probabilités analyse des données et statistique - 2e édition révisée et augmentée", Saporta G., Editions TECHNIP 2006, Paris, France ISBN : 978-2-7108-0814-5

3.3. Practical classes

Date	Р	T Chapter	T Keyword
	(08.15-10.15)		
04/10	B4 (R.52) / B4 (R.53) / B4	CH1	Probability
	(R.54)		
11/10	B4 (R.52) / B4 (R.53) / B4	CH2	Random
	(R.54)		
18/10	B4 (R.52) / B4 (R.53) / B4	CH2-3	Functions
	(R.54)		
25/10	B4 (R.52) / B4 (R.53) / B4	CH3	Distributions
	(R.54)		
08/11	B4 (R.52) / B4 (R.53) / B4	CH4	Explore
	(R.54)		
15/11	To be announced	CH5	Estimate
22/11	To be announced	CH6	Test
20/12	To be appounded	Loose end + your T+P	Case study
	i o be unnounced	questions	(guest)

- Special efforts will be made to ensure that practicals are given AFTER the relevant theory has been seen
- If not, the relevant theory needed to solve the exercises will be summarized.
- Details about the practical sessions:

http://www.montefiore.ulg.ac.be/~vanlishout/

Version

English

Français

Bienvenue !

Ingénieur civ	/il informatio	cien, je	suis ac	tuellem	ent assist	ant au	départer	nen
d'électricité, é	ilectronique	et inforn	natique (I	Nontefio	re) de l'ur	iversité	de Liège	L Je
réalise un c	loctorat en	bioinfor	matique,	sur le	développ	ement (de nouve	sau
algorithmes	permettan	t la	détectio	on d'i	nteraction	s ger	ne-gene	e
dene-environ	nement siani	ficatives	Mes co-r	romotte	urs sont le	es nrofes	seurs Kr	iste

Liens internes

ULg	
Montefiore	e
GIGA	
Statistical	Genetics Research

2010-2011

Probabilité et statistiques

Archive

Programmation fonctionelle

Les étudiants peuvent m'envoyer leurs questions par email à f.vanlishout@ulg.ac.be ou me contacter pour fixer un rendez-vous à mon bureau.

Pour plus de détail sur les différents cours, consultez les menus de gauche.

Cours

Liens internes

ULg	
Montefiore	
GIGA	
Statistical Genetics Research	

Partitioning for practical sessions

B4 (R.5	52)	B4 (R.53)		B4 (R.54)	
Group 1		Group 2		Group 3	
A-F	(Van Lishout)	G-M	(Lousberg)	N-Z	(Huaux)

4. Course Assessment

• Exam - written:

o 1h15 theory (closed book) : multiple choice questions

- French and English versions will be provided
- o 15 minutes BREAK
- o 2h30 exercises (open book) : 4 exercises

• Weights :

- \odot 1/3 for the theoretical part and 2/3 for the exercise part \odot Total score: 20/20
- The same system for May-June / August-September. However, there is the opportunity to orally explain solutions in August-September.
 Oral explanations can obviously be given in French (English when desired)

Will NOT be rated ok 🙂

(Sunday Comics. Posted by Brad Walters)

It is easy to get lost in misconceptions ...

The Monty Hall problem

http://www.youtube.com/watch?v=mhlc7peGlGg

CHAPTER 1: PROBABILITY THEORY

1 What's in a name

- 1.1 Relevant questions in a probabilistic context
- **1.2 Relevant questions in a statistics context**
- 2 Probability and statistics: two related disciplines
- 2.1 Probability
- **3 Different flavors of probability**
- **3.1 Classical or a priori probability**
- 3.2 Set theory
- 3.3 Sample space and probability measures
- 3.4 A posteriori or frequency probability

4 Statistical independence and conditional probability

4.1 Independence

4.2 Conditional probability

Law of total probability

Bayes' theorem

Bayesian odds

Principle of proportionality

5 In conclusion

- 5.1 Take-home messages
- **5.2** The birthday paradox

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS

- **1** Random variables
- **1.1 Formal definition**
- **2** Functions of one variable
- 2.1 Probability distribution functions
- 2.2 The discrete case: probability mass functions
- 2.3 The binomial distribution
- 2.4 The continuous case: density functions
- **2.5 The normal distribution**
- 2.6 The inverse cumulative distribution function
- 2.7 Mixed type distributions
- 2.8 Comparing cumulative distribution functions

- **3 Two or more random variables**
- **3.1 Joint probability distribution function**
- 3.2 The discrete case: Joint probability mass function

A two-dimensional random walk

- **3.3 The continuous case: Joint probability density function** Meeting times
- 4 Conditional distribution and independence
- **5** Expectations and moments
- 5.1 Mean, median and mode

A one-dimensional random walk

- 5.2 Central moments, variance and standard deviation
- **5.3 Moment generating functions**

- **6** Functions of random variables
- 6.1 Functions of one random variable
- 6.2 Functions of two or more random variables
- 6.3 Two or more random variables: multivariate moments
- 7 Inequalities
- 7.1 Jensen inequality
- 7.2 Markov's inequality
- 7.3 Chebyshev's inequality
- 7.4 Cantelli's inequality
- 7.5 The law of large numbers

CHAPTER 3: SOME IMPORTANT DISTRIBUTIONS

1 Discrete case

1.1 Bernoulli trials

Binomial distribution – sums of binomial random variables

Hypergeometric distribution

Geometric distribution

Memoryless distributions

Negative binomial distribution

- **1.2 Multinomial distribution**
- **1.3 Poisson distribution**

Sums of Poisson random variables

1.4 Summary

2 Continuous case

2.1 Uniform distribution

2.2 Normal distribution

Probability tabulations

Multivariate normality

Sums of normal random variables

2.3 Lognormal distribution

Probability tabulations

2.4 Gamma and related distributions

Exponential distribution

Chi-squared distribution

2.5 Where discrete and continuous distributions meet

2.6 Summary

CHAPTER 4: IT IS ALL ABOUT DATA

- **1** An introduction to statistics
- **1.1 Different flavors of statistics**

1.2 Trying to understand the true state of affairs

- **Parameters and statistics**
- **Populations and samples**
- 1.3 True state of affairs + Chance = Sample data
 - **Random and independent samples**
- **1.4 Sampling distributions**
 - Formal definition of a statistics
 - Sample moments
 - Sampling from a finite population
 - Strategies for variance estimation The Delta method

- 1.5 The Standard Error of the Mean: A Measure of Sampling Error
- 1.6 Making formal inferences about populations: a preview to hypothesis testing
- 2 Exploring data
- 2.1 Looking at data
- 2.2 Outlier detection and influential observations
- 2.3 Exploratory Data Analysis (EDA)
- 2.4 Box plots and violin plots
- 2.5 QQ plots

CHAPTER 5: PARAMETER ESTIMATION

- **1 Estimation Methods**
- **1.1 Estimation by the Method of Moments**
- **1.2 Estimation by the Method of Maximum Likelihood**
- **2 Properties of Estimators**
- 2.1 Unbiasedness
- **2.2 Consistency**
- 2.3 Efficiency
- 2.34 Limiting distributions
- 2.5 Examples
 - Sample mean
 - Sample variance
 - **Pooling variances**

3 Confidence Intervals

3.1 Definitions

3.2 Method of finding confidence intervals in

practice: Pivotal quantity

3.3 One-sample problems

Confidence Intervals for σ^2

Derivation of the chi-square distribution Properties of the chi-square distribution

Distribution of S²

Independence of \overline{X} and ${\rm S^2}$

Known mean versus unknown mean

Confidence Intervals for $\boldsymbol{\mu}$

Derivation of the student t distribution Properties of the student t distribution

Known variance versus unknown variance

3.4 Two-sample problems

Confidence Interval for σ_1^2/σ_2^2

Derivation of the F-distribution Properties of the F distribution Distribution of S_1^2/S_2^2 Confidence Interval for $\mu_1 - \mu_2$

4 Bayesian estimation

- 4.1 Bayes' theorem for random variables
- **4.2 Post is prior × likelihood**
- 4.3 Likelihood
- 4.4 Prior
- **4.5 Posterior**
- 4.6 Normal Prior and Likelihood
- **5** In conclusion

CHAPTER 6: HYPOTHESIS TESTING

- **1** Terminology and Notation
- **1.1 Tests of Hypotheses**
- **1.2 Size and Power of Tests**
- 1.3 Examples
- 2 One-sided and Two-sided Tests
- 2.1 Case(a) Alternative is one-sided
- 2.2 Case (b) Two-sided Alternative
- 2.3 Two Approaches to Hypothesis Testing
- **3 Connection between Hypothesis testing and Cl's**

4 One-sample problems

- 4.1 Testing hypotheses about σ^2 when mean is known
- 4.2 Testing hypotheses about σ^2 when mean is unknown
- 4.3 Testing hypotheses about μ when σ^2 is known
- 4.3 Testing hypotheses about μ when σ^2 is unknown
- **5 Two-Sample Problems**
- 5.1 Testing equality of normal means
- 5.2 Testing equality of binomial proportions
- **5.3 Testing equality of sample variances**
- 6 Selecting an appropriate test statistic: some guidelines
- 7 In conclusion
- 8 Course summary

