Probability and Statistics

$$
\text { Kristel Van Steen, PhD }{ }^{2}
$$

Montefiore Institute - Systems and Modeling GIGA - Bioinformatics
ULg

kristel.vansteen@ulg.ac.be

COURSE INTRODUCTION

1. Course contents

- CH1: Probability theory
- CH2: Random variables and associated functions
- CH3: Some important distributions
- CH4: It is all about data
- CH5: Parameter estimation
- CH6: Hypothesis testing

2. General course objectives

2.1. Introduction

- General objectives are 3-fold:
- Have a good notion about / understand the basic elements of probability and statistics
- Be able to use the concepts in practical applications (practical sessions)
- Be able to generalize material to a broader variety of practical problems
- Specific objectives:
- These are chapter/topic dependent
- These will be communicated to you as classes advance
- Meeting the specific objectives of this course ϑ Passing this course
- For example:

Compute the probability that a particular event will occur	CH 1
Use the right probability distribution (normal, t , binomial, etc.) for your analysis	$\mathrm{CH} 2-$ CH 3
Retrieve relevant information by looking at your data	CH 4
Estimate population means and proportions, based on sample data	CH 5
Determine margin of error and confidence levels	CH 5
Test hypotheses about means and proportions	CH 6

2.2 An engineer's perspective

3. Organization of the classes
3.1. Course websites:

General information + notes theory classes:
www.montefiore.ulg.ac.be/~kvansteen

Notes practical classes:
www.montefiore.ulg.ac.be/ ${ }^{\text {vanlishout }}$

www.montefiore.ulg.ac.be/~kvansteen

Kristel Van Steen, PhD²

Home
List of Publications
Curriculum Vitae Short
Curriculum Vitae Long
NEW - March 2011:
Consultancy Charter

Links to affiliations

- ULa homedace
- Instrut Montefiore
- Center for Medical Gentetics Ghent (atUG)
- Center for Statisticsial UHasselt
- Center for Human Genetics Iat kul.Leuven)
- Slobal Alleray and Astima European Network

Teaching 2011-2012

- MATH0008-2: Introduction to

Contact Information

Dépt / Unité : Dép. d'électric., électron. et informat. (Inst.Montefiore) / Bioinformatique

Mail Adresse : BAT. B28 Bioinformatique
Grande Traverse, 10
4000 Liège 1
Belgium
Office: 0.15 (BAT 37)
Tel: +32 43662692

Email : Kristel.VanSteen@ulg.ac.be

Research Interests

Statistical Genetics

- Components analysis
- FBAT testing
- Gene-environment interactions
- Gene-gene interactions and interaction graphs
- Genetic heterogeneity
- Genetic imprinting
- Genome-wide association analysis
- Kinshin and nonnmic harknroıınd

Introduction to Probability and Statistics 2011-2012

MATH0008-2: Introduction to Probability and Statistics

SOME PRACTICAL ARRANGEMENTS

-When are the classes given and which topics will be covered?

- Complete Course Schedule
- T.Theory P. Practical
(Updated: 15 September 2011)
-Where do the classes take place?
- Room Schedule
- T: Theory, P. Practical (Updated: 15 September 2011)

How can I pass the exam?

- General information about the course: Click here
(Updated: 15 September 2011)
- What if I have questions on the course in general or on specifics?
- Consult François Van Lishout (f.vanlishout@ulg.ac.be) or

3.2. Theoretical classes

Date	T (10.30- $12.30)$	$\begin{gathered} P \\ (08.15-10.15) \end{gathered}$	Changes	T Chapter	T Keywords
20/09	B7b "les petits amphis"		$\begin{aligned} & 10.30- \\ & 13.00 \end{aligned}$	CH1	Probability
04/10	B7b			CH 2	Random
11/10	B7b			CH2-3	Functions / discrete
18/10	B7b			CH3	Continuous distr
25/10	B7b			CH4	Explore data
08/11	B7b			CH5	Estimate
15/11	B7b			CH6	Test
20/12	To be announced			Repetition	Case study (guest)

Written notes

- Theory:
- Slides in English
- Downloadable from: http://www.montefiore.ulg.ac.be/~kvansteen/
- What if I have questions on the course in general or on specifics?
- Consult François Van Lishout (f.vanlishout@ulg.ac.be) or
- Kristel Van Steen (kristel.vansteen@ulg.ac.be)
- Send an e-mail first to check availability I!!

CLASS MATERIAL (use 7-Zip to unpack possibly zipped files):
T1 Class: 20 September 2011 : 10h30-12h30

- Course Introduction
- Theory course notes: Chapter 1
- The theory slides are "complete" for the purposes of this class. If you are in need for a good reference book to this course, we recommend:
o In English:
"Introduction to the theory of statistics $3^{\text {rd }}$ edition", Alexander M Mood; Franklin A Graybill; and Duane C Boes, McGraw-Hill series in probability and statistics 1974. ISBN : 0-07-042864-6

○ In French:

"Probabilités analyse des données et statistique-2e
édition révisée et augmentée", Saporta G., Editions
TECHNIP 2006, Paris, France
ISBN : 978-2-7108-0814-5

3.3. Practical classes

Date	$\begin{gathered} P \\ (08.15-10.15) \end{gathered}$	T Chapter	T Keyword
04/10	$\begin{aligned} & \text { B4 (R. } 52 \text {) / B4 (R.53) / B4 } \\ & \text { (R.54) } \end{aligned}$	CH1	Probability
11/10	$\begin{aligned} & \text { B4 (R. } 52 \text {) / B4 (R.53) / B4 } \\ & \text { (R.54) } \end{aligned}$	CH 2	Random
18/10	$\begin{aligned} & \text { B4 (R. } 52 \text {) / B4 (R.53) / B4 } \\ & \text { (R.54) } \end{aligned}$	CH2-3	Functions
25/10	$\begin{aligned} & \text { B4 (R. } 52 \text {) / B4 (R.53) / B4 } \\ & \text { (R.54) } \end{aligned}$	CH3	Distributions
08/11	$\begin{aligned} & \text { B4 (R.52) / B4 (R.53) / B4 } \\ & \text { (R.54) } \end{aligned}$	CH 4	Explore
15/11	To be announced	CH5	Estimate
22/11	To be announced	CH6	Test
20/12	To be announced	Loose end + your T+P questions	Case study (guest)

- Special efforts will be made to ensure that practicals are given AFTER the relevant theory has been seen
- If not, the relevant theory needed to solve the exercises will be summarized.
- Details about the practical sessions:
http://www.montefiore.ulg.ac.be/~vanlishout/

Partitioning for practical sessions

B4 (R.52)	B4 (R.53)		B4 (R.54)	
Group 1	Group 2		Group 3	
A-F (Van Lishout)	G-M	(Lousberg)	N-Z	(Huaux)

4. Course Assessment

- Exam - written:
- 1h15 theory (closed book) : multiple choice questions
- French and English versions will be provided
- 15 minutes BREAK
- 2 h 30 exercises (open book) : 4 exercises
- Weights :
- 1/3 for the theoretical part and 2/3 for the exercise part
- Total score: 20/20
- The same system for May-June / August-September. However, there is the opportunity to orally explain solutions in August-September.
- Oral explanations can obviously be given in French (English when desired)

Will NOT be rated ok :)

My HOBBY: EXTRAPOLATING

It is easy to get lost in misconceptions ...

The Monty Hall problem

http://www.youtube.com/watch?v=mhlc7peGIGg

CHAPTER 1: PROBABILITY THEORY

1 What's in a name

1.1 Relevant questions in a probabilistic context
1.2 Relevant questions in a statistics context

2 Probability and statistics: two related disciplines
2.1 Probability

3 Different flavors of probability
3.1 Classical or a priori probability
3.2 Set theory
3.3 Sample space and probability measures
3.4 A posteriori or frequency probability

4 Statistical independence and conditional probability

4.1 Independence

4.2 Conditional probability

Law of total probability
Bayes' theorem
Bayesian odds
Principle of proportionality
5 In conclusion
5.1 Take-home messages
5.2 The birthday paradox

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS

1 Random variables
1.1 Formal definition

2 Functions of one variable
2.1 Probability distribution functions
2.2 The discrete case: probability mass functions
2.3 The binomial distribution
2.4 The continuous case: density functions
2.5 The normal distribution
2.6 The inverse cumulative distribution function
2.7 Mixed type distributions
2.8 Comparing cumulative distribution functions

3 Two or more random variables

3.1 Joint probability distribution function
3.2 The discrete case: Joint probability mass function

A two-dimensional random walk
3.3 The continuous case: Joint probability density function

Meeting times
4 Conditional distribution and independence
5 Expectations and moments
5.1 Mean, median and mode

A one-dimensional random walk
5.2 Central moments, variance and standard deviation
5.3 Moment generating functions

6 Functions of random variables

6.1 Functions of one random variable
6.2 Functions of two or more random variables
6.3 Two or more random variables: multivariate moments

7 Inequalities
7.1 Jensen inequality
7.2 Markov's inequality
7.3 Chebyshev's inequality
7.4 Cantelli's inequality
7.5 The law of large numbers

CHAPTER 3: SOME IMPORTANT DISTRIBUTIONS

1 Discrete case
1.1 Bernoulli trials

Binomial distribution - sums of binomial random variables
Hypergeometric distribution
Geometric distribution
Memoryless distributions
Negative binomial distribution
1.2 Multinomial distribution
1.3 Poisson distribution

Sums of Poisson random variables
1.4 Summary

2 Continuous case

2.1 Uniform distribution
2.2 Normal distribution

Probability tabulations
Multivariate normality
Sums of normal random variables
2.3 Lognormal distribution

Probability tabulations
2.4 Gamma and related distributions

Exponential distribution
Chi-squared distribution
2.5 Where discrete and continuous distributions meet
2.6 Summary

CHAPTER 4: IT IS ALL ABOUT DATA

1 An introduction to statistics
1.1 Different flavors of statistics
1.2 Trying to understand the true state of affairs

Parameters and statistics
Populations and samples
1.3 True state of affairs + Chance = Sample data

Random and independent samples
1.4 Sampling distributions

Formal definition of a statistics
Sample moments
Sampling from a finite population
Strategies for variance estimation - The Delta method

1.5 The Standard Error of the Mean: A Measure of Sampling Error

1.6 Making formal inferences about populations: a preview to hypothesis testing
2 Exploring data
2.1 Looking at data
2.2 Outlier detection and influential observations
2.3 Exploratory Data Analysis (EDA)
2.4 Box plots and violin plots
2.5 QQ plots

CHAPTER 5: PARAMETER ESTIMATION

1 Estimation Methods

1.1 Estimation by the Method of Moments
1.2 Estimation by the Method of Maximum Likelihood

2 Properties of Estimators
2.1 Unbiasedness
2.2 Consistency
2.3 Efficiency
2.34 Limiting distributions
2.5 Examples

Sample mean
Sample variance
Pooling variances

3 Confidence Intervals

3.1 Definitions

3.2 Method of finding confidence intervals in practice: Pivotal quantity
3.3 One-sample problems

Confidence Intervals for σ^{2}
Derivation of the chi-square distribution Properties of the chi-square distribution
Distribution of S^{2}
Independence of \bar{X} and S^{2}
Known mean versus unknown mean
Confidence Intervals for μ
Derivation of the student t distribution Properties of the student t distribution

Known variance versus unknown variance

3.4 Two-sample problems

Confidence Interval for $\sigma_{1}^{2} / \sigma_{2}^{2}$
Derivation of the F-distribution
Properties of the F distribution
Distribution of S_{1}^{2} / S_{2}^{2}
Confidence Interval for $\mu_{1}-\mu_{2}$
4 Bayesian estimation
4.1 Bayes' theorem for random variables
4.2 Post is prior \times likelihood
4.3 Likelihood
4.4 Prior
4.5 Posterior
4.6 Normal Prior and Likelihood
5 In conclusion

CHAPTER 6: HYPOTHESIS TESTING

1 Terminology and Notation
1.1 Tests of Hypotheses
1.2 Size and Power of Tests
1.3 Examples

2 One-sided and Two-sided Tests
2.1 Case(a) Alternative is one-sided
2.2 Case (b) Two-sided Alternative
2.3 Two Approaches to Hypothesis Testing

3 Connection between Hypothesis testing and Cl's

4 One-sample problems

4.1 Testing hypotheses about σ^{2} when mean is known
4.2 Testing hypotheses about σ^{2} when mean is unknown
4.3 Testing hypotheses about μ when σ^{2} is known
4.3 Testing hypotheses about μ when σ^{2} is unknown

5 Two-Sample Problems
5.1 Testing equality of normal means
5.2 Testing equality of binomial proportions
5.3 Testing equality of sample variances

6 Selecting an appropriate test statistic: some guidelines
7 In conclusion
8 Course summary

