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1 Terminology and Notation

1.1 Tests of Hypotheses
Introduction

Consider the following problems;

(i) An engineer has to decide on the basis of sample data whether the true average
lifetime of a certain kind of tyre is at least 22000 kilometres.

(i) An agronomist has to decide on the basis of experiments whether fertilizer A produces
a higher vield of soybeans than fertilizer B.

(iii) A manufacturer of pharmaceutical products has to decide on the basis of samples
whether 90% of all patients given a new medication will recover from a certain disease.
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These problems can be translated into the language of statistical tests of hypotheses.

(1) The engineer has to test the assertion that if the lifetime of the tyre has pdf. f(z) =
ae~** x> 0, then the expected lifetime, 1/a;, is at least 22000.

(ii)) The agronomist has to decide whether u, > up where p,, pip are the means of 2
normal distributions.

(iii) The manufacturer has to decide whether p, the parameter of a binomial distribution
is equal to .9.
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In each case, it is assumed that the stated distribution correctly describes the exper-
imental conditions, and that the hypothesis concerns the parameter(s) of that distri-
bution. [A more general kind of hypothesis testing problem is where the form of the
distribution is unknown.]

In many ways, the formal procedure for hypothesis testing is similar to the scientific
method. The scientist formulates a theory, and then fests this theory against observation.
In our context, the scientist poses a theory concerning the value of a parameter. He then
samples the population and compares observation with theory. If the observations disagree
strongly enough with the theory the scientist would probably reject his hypothesis. If not,
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Before putting hypothesis testing on a more formal basis, let us consider the following
questions. What is the role of statistics in testing hypotheses? How do we decide whether
the sample value disagrees with the scientist’s hypothesis? When should we reject the
hypothesis and when should we withhold judgement? What is the probability that we
will make the wrong decision? What function of the sample measurements should be used
to reach a decision? Answers to these questions form the basis of a study of statistical
hypothesis testing.



CHAPTER 6: HYPOTHESIS TESTING 6-- 7

Terminology and notations

A statistical hypothesis is an assertion or conjecture about the distribution of a random
variable. We assume that the form of the distribution is known so the hypothesis is a
statement about the value of a parameter of a distribution.

Let X be a random variable with distribution function F'(z;6) where 6 € ). That is,
() is the set of all possible values # can take, and is called the parameter space. For
example, for the binomial distribution, 2 = {p : p € (0, 1)}. Let w be a subset of (2.
Then a statement such as “f# € w” is a statistical hypothesis and is denoted by Hp. Also,
the statement “60 € W 7 (where W is the complement of w with respect to 1) is called the
alternative to Hy and is denoted by H;. We write

Hy: 6w and Hy: 0 €W (or 0 ¢ w).
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Often hypotheses arise in the form of a claim that a new product, technique, etc. is
better than the existing one. In this context, H is a statement that nullifies the claim (or
represents the status quo) and is sometimes called a null hypothesis, but we will refer to
it as the hypothesis.

If w contains only one point, that is, if w = {# : 6 = 6y} then H, is called a simple
hypothesis. We may write Hy : 6 = fy. Otherwise it is called composite. The same
applies to alternatives.
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Tests of hypotheses

A test of a statistical hypothesis is a procedure for deciding whether to “accept” or “reject”
the hypothesis. If we use the term “accept” it is with reservation, because it implies stronger
action than is really warranted. Alternative phrases such as “reserve judgement”, “fail to
reject” perhaps convey the meaning better. A test is a rule, or decision function, based
on a sample from the given distribution which divides the sample space into 2 regions,
commonly called

(i) the rejection region (or critical region), denoted by R;

(ii) the acceptance region (or region of indecision), denoted by R (complement of R).

If we compare two different ways of partitioning the sample space then we say we are
comparing two tests (of the same hypothesis). For a sample of size n, the sample space is
of course n-dimensional and rather than consider R as a subset of n-space, it’s helpful to
realize that we'll condense the information in the sample by using a statistic (for example
7), and consider the rejection region in terms of the range space of the random variable X
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1.2 Size and Power of Tests

There are two types of errors that can occur. If we reject H when it is true, we commit
a Type I error. If we fail to reject H when it is false, we commit a Type II error. You
may like to think of this in tabular form.

Our decision
do not reject Hy reject Hy
Actual H, is true correct decision Type I error
situation Hp is not true | Type Il ertor  correct decision

Probabilities associated with the two incorrect decisions are denoted by

ol P(Hj is rejected when it is true) = P(Type I error)
B = P(Hp is not rejected when it is false) = P(Type II error)

The probability a is sometimes referred to as the size of the critical region or the signifi-
cance level of the test, and the probability 1 — [ as the power of the test.
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Are the roles of the hypothesis and alternative hypothesis symmetric?

For example, suppose a pharmaceutical company is considering the marketing of a
newly developed drug for treatment of a disease for which the best available drug on the
market has a cure rate of 80%. On the basis of limited experimentation, the research
division claims that the new drug is more effective. If in fact it fails to be more effective,
or if it has harmful side-effects, the loss sustained by the company due to the existing drug
becoming obsolete, decline of the company’s image, etc., may be quite severe. On the other
hand, failure to market a better product may not be considered as severe a loss. In this
problem it would be appropriate to consider Hy : p = .8 and H; : p > .8. Note that Hp
is simple and H,; is composite.

Our decision
do not reject H, reject Hy
Actual H, is true correct decision Type I ertor
situation Hp is not true Tvpe II error correct decision
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Considerations when constructing a test

Ideally, when devising a test, we should look for a decision function which makes prob-
abilities of Type I and Type II errors as small as possible, but, as will be seen in a later
example, these depend on one another. For a given sample size, altering the decision rule
to decrease one error, results in the other being increased. So, recalling that the Type I
erTor is more serious, a possible procedure is to hold a fixed at a suitable level (say a = .05
or .01) and then look for a decision function which minimizes . The first solution for
this was given by Neyman and Pearson for a simple hypothesis versus a simple alternative.
It’s often referred to as the Neyman-Pearson fundamental lemma. While the formulation
of a general theory of hypothesis testing is beyond the scope of this unit, the following
examples illustrate the concepts introduced above.
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1.3 Examples

Example .1
Suppose that random variable X has a normal distribution with mean g and variance 4.

Test the hypothesis that ¢ = 1 against the alternative that g = 2, based on a sample of
size 25.

Solution: An unbiased estimate of p is X and we know that X is distributed normally
with mean p and variance o/n which in this example is 4/25. We note that values of T
close to 1 support H whereas values of T close to 2 support A. We could make up a decision

rule as follows:
7 > 1.6 claim that p = 2,

7 < 1.6 claim that p = 1.
The diagram in Figure fig. CRUpperTail shows the sample space of T partitioned into
(i) the critical region, R={Z : T > 1.6}
(ii) the acceptance region, R = {7 : T < 1.6}

Here, 1.6 is the critical value of 7.
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mean=1 mean=_

critical region

Fig: CRUpperTail
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We will find the probability of Type I and Type II error,

P(X>16lp=10= g) = .0668. ( pnorm(g=1.6,mean=1,sd=0.4,lower.tail=F))
This is
P(Hj is rejected|Hy is true) = P(Type I error) = o
Also
3 =P(Type Il error) = P(H, is not rejected| Hy is false)
= P(X<16jp=2,0= Ej

5
= .1587 (pnorm(g=1.6,mean=2,sd=0.4,lower.tail=T))
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To see how the decision rule could be altered so that a = .05, let the critical value be c.
We require

P(X »dp=1a=2) = 005

U] bo

= ¢ = 1658 (qnorm(p=0.05,mean=1,sd=0.4,lower.tail=T))

— 2
PX <clp=2,0= g) = 0.196 (pnorm(q=1.658,mean=2,sd=0.4,lower.tail=T))

This value of ¢ gives an a of 0.05 and a /3 of 0.196 illustrating that as one type of error
() decreases the other (/) increases.
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Example .2

Suppose we have a random sample of size n from a N(p.4) distribution and wish to test
Hy : p =10 against H; : p = 8. The decision rule is to reject Hp if T < ¢ . We wish to
find n and ¢ so that o = 0.05 and 3 ~ 1.

Solution:. ~ ~the left curve is f(z|H;) and the right curve is f(z|Hy).
The critical region is {Z : T < ¢}, so a is the left shaded area and § is the right shaded
area.

mean== mean=10

6 8 10 12

critical region
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Now

We need to solve these

5= P(X <clu=10,0 =

— PX Zop=80=

)

S
Fan]

‘l\-.:l

T

simultaneously for n as shown in Figure
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Critical value

A sample size n = 9 and critical value ¢ = 8.9 gives a =~ 0.05 and 7 = 0.1.
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2 One-sided and Two-sided Tests
2.1 Introduction

Consider the problem where the random variable X has a binomial distribution with
P(Success)=p. How do we test the hypothesis p = 0.5. Firstly, note that we have an
experiment where the outcome on an individual trial is success or failure with probabili-
tites p and q respectively. Let us repeat the experiment n times and observe the number
of successes.

Before continuing with this example it is useful to note that in most hypothesis testing
problems we will deal with, Hy 1s simple, but H; on the other hand, is composite, indi-
cating that the parameter can assume a range of values. Examples 1 and 2 were more
straightforward in the sense that H; was simple also.
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If the range of possible parameter values lies entirely on the one side of the hypothesized
value, the aternative is said to be one-sided. For example, H; : p > .5 is one-sided but
Hy : p # .5 is two-sided. In a real-life problem, the decision of whether to make the
alternative one-sided or two-sided is not always clear cut. As a general rule-of-thumb, if
parameter values in only one direction are physically meaningful, or are the only ones that
are possible, the alternative should be one-sided. Otherwise, H; should be two-sided. Not
all statisticians would agree with this rule.

1he next question is what test statistic we use to base our decision on.
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Recall that,
the principle of hypothesis testing is that we will assume H, is correct, and our position will
change only if the data show beyond all reasonable doubt that H; is true. The problem
then is to define in quantitative terms what reasonable doubt means. Let us suppose that
n = 18 in our problem above. Then the range space for X is Rx = {0, 1, ..., 18} and
E(X)=np= 9 if Hy is true. If the observed number of successes is close to 9 we would be
obliged to think that H was true. On the other hand, if the observed value of X was 0
or 18 we would be fairly sure that Hy was not true. Now reasonable doubt does not
have to be as extreme as 18 cases out of 18. Somewhere between x-values of 9 and 18 (or
9 and 0), there is a point, ¢ say, when for all practical purposes the credulity of Hy ends
and reasonable doubt begins. This point is called the critical value and it completely
determines the decision-making process. We could make up a decision rule

Ifx = ¢, reject Hy
If # < ¢, conclude that Hy is probably correct.

In this case, {z : x > ¢} is the rejection region, R referred to in §2.2.



CHAPTER 6: HYPOTHESIS TESTING 6 -- 23

2.2 Case(a) Alternative is one-sided

In the above problem, suppose that the alternative is H; : p > .5. Only values of z much
larger than 9 would support this alternative |

The actual value of ¢ is chosen to make a, the size of the critical region, suitably
small. For example, if ¢ = 11, then P(X > 11) = .24 and this of course is too large. Clearly
we should look for a value closer to 18. If ¢ = 15, P(X = 15)=51" | (1%)(.5)18 = 0.004,
on calculation. We may now have gone too far in the other extreme. Requiring 15 or more
successes out of 18 before we reject Hy : p = 0.5 means that only 4 times in a thousand
would we reject Hy wrongly. Over the years, a reasonable consensus has been reached
as to how much evidence against Hp is enough evidence. In many situations we define
the beginning of reasonable doubt as the value of the test statistic that is equalled or
exceeded by chance 5% of the time when Hj is true. According to this criterion, ¢ should

be chosen so that P(X > ¢|Hpis true) = 0.05. That is ¢ should satisfy

i a

18
P(X = clp=05)=005=>) (18) (0.5)'8,
£

I=cC
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A little trial and error shows that ¢ = 13 is the appropriate value. Of course because of
the discrete nature of X it will not be possible to obtain an a of exactly 0.05.

Defining the critical region in terms of the x-value that is exceeded only 5% of the
time when Hj is true is the most common way to quantify reasonable doubt, but there are
others. The figure 1% is frequently used and if the critical value is exceeded only 1% of the
time we say there is strong evidence against Hy. If the critical value is only exceeded
1% of the time we may say that there is very strong evidence against Hj.

So far we have considered a one-sided alternative. Now we’ll consider the other case
where the alternative is two-sided.
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2.3 Case (b) Two-sided Alternative

Consider now the alternative Hy : p # 0.5. Values of x too large or too small would
support this alternative. In this case there are two critical regions (or more correctly, the
critical region consists of two disjoint sets), one in each ‘tail’ of the distribution of X. For
a 5% critical region, there would be two critical values ¢; and ¢ such that

P(X < ¢1|Hp is true) = 0.025 and P(X > c3|Hy is true) = 0.025.

This can be seen in Figure below, where the graph is of the distribution of X when Hj
is true. (It can be shown that ¢; = 4 and ¢; = 14 are the critical values in this case.)

Tests with a one-sided critical region are called one-tailed tests, whereas those with
a two-sided critical region are called two-tailed tests.
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Distribution of X when H 15 true
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0.15 — B

0.10 —

0.05 —

0.00 HEEEE , EEEH ,
cl c2
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2.4 Two Approaches to Hypothesis Testing

It is worthwhile considering a definite procedure for hypothesis testing problems. There
are two possible approaches.

(1)

(ii)

See how the observed value of the statistic compares with that expected if Hy is true.
Find the probability, assuming H, to be true, of this event or others more extreme,
that is, further still from the expected value. For a two-tailed test this will involve
considering extreme values in either direction. If this probability is small (say, <
0.05), the event is an unlikely one if Hj is true. So if such an event has occurred,
doubt would be cast on the hypothesis.

Make up a decision rule by partitioning the sample space of the statistic into a critical
region, R, and its complement R, choosing the critical value (or two critical values in
the case of a two- tailed test) ¢, in such a way that a = 0.05. We then note whether
or not the observed value lies in this critical region, and draw the corresponding
conclusion.
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Example 3

Suppose we want to know whether a given die is biased towards 5 or 6 or whether it is
“true”. To examine this problem the die is tossed 9000 times and it is observed that on
3164 occasions the outcome was 5 or 6.

Solution:Let X be the number of successes (5's or 6's) in 9000 trials. Then if p = P(S),
X is distributed bin(9000,p). As is usual in hypothesis testing problems, we set up Hj
as the hypothesis we wish to “disprove”. In this case, it is that the die is “true”, that is,
p = 1/3. If Hy is not true, the alternative we wish to claim is that the die is biased towards
5 or 6, that is p > 1/3. In practice, one decides on this alternative before the experiment
is carried out. We will consider the 2 approaches mentioned above.
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Approach (i), probabilities

If p=1/3 and N = 9000 then E(X) = np = 3000 and Var(X) = npg = 2000. The
observed number of successes, 3164, was greater than expected if H; were true. So,
assuming p = 1/3, the probability of the observed event together with others more ex-
treme (that is, further still from expectation) is

Pp(X > 3164|p = 1/3) = 0.0001 (pbinom(q=3164,s1ze=9000,prob=1/3 lower.tail=F)
This probability is small, so the event X > 3164 is an unlikely one if the assumption
we've made (p = 1/3) is correct. Only about 1 times in 10000 would we expect such an

occurrence. Hence, it such an event did occur, we'd doubt the hypothesis and conclude
that there is evidence that p > 1/3.
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Approach (i1), quantiles

Clearly, large values of X support H;, so we’d want a critical region of the form x > ¢
where ¢ is chosen to give the desired significance level, a. That is, for a = 0.05, say, the
upper tail 5% quantile of the binomial distribution with p = é and N = 9000 is 3074.
(gbinom(size=N,prob=px,p=0.05,lower.tail=F) )

The observed value 3164 exceeds this and thus lies in the critical region [c, oc]. So we
reject Hy at the 5% significance level. That is, we will come to the conclusion that
p > 1/3, but in so doing, we’ll recognize the fact that the probability could be as large as
0.05 that we've rejected Hy wrongly.
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The 2 methods are really the same thing. Figure A shows the distribution function
for Bin(9000, ) with the observed quantile 3164 and associated with it is P(X > 3164)
The dashed lines show the upper a = 0.05 probability and the quantile C'i_,. The event
that X > C'_, has a probability p < a.

The rejection region can be defined either by the probabilities or the quantiles.

Figure A . using either quantiles or probability to test the null hypothesis

g i & i

probability

“pprerememasnanannananas

1 1 1 1 1
2800 2900 3000 3100 2200

guantiles
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In doing this sort of problem it helps to draw a diagram, or at least try to visualize the
partitioning of the sample space as suggested in Figure

If € R it seems much more likely that the actual distribution of X is given by a curve
similar to the one on the right hand side, with mean somewhat greater than 3000.

Figure " One Sided Alternative — Binomial.

1.0 —

0.8 —

0.6 -

probability

0.4 —

0.2 -

| | | | | | | |
2800 3000 3200 3400

quantiles
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3 Connection between Hypothesis testing and Cl’s
3.1 Two faces of the same coin

Consider the problem where we have a sample of size n from a N(yu, 0?) distribution where
o* is known and p is unknown. An unbiased estimator of p is T =Y, z;/n. We can use
this information either
(a) to test the hypothesis Hy : pt = py; or
(b) to find a CI for u and see if the value p is in it or not.

We will show that testing Hy at the 5% significance level (that is, with a = .05) against
a 2-sided alternative is the same as finding out whether or not g lies in the 95% confidence
interval.
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(a) For Hy: p# po we reject Hy at the 5% significance level if

T — g

e R

< —1.96.

That is, if
T — pol

o/\/n
Or, using the “P-value”, if ¥ > pp we calculate the probability of a value as extreme or
more extreme than this, in either direction. That is, calculate

> 1.96.

P=2xP(X >T)=2x Py (Z}m_“”).

If P < .05 the result is significant at the 5% level.
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http://www.statsoft.com/textbook/distribution-tables/

0.4

0.3

Bl 34.1%| 34.1%

0.2

0.1

0.0

Dark blue is less than one standard deviation from the mean. For the normal distribution, this

accounts for about 68% of the set, while two standard deviations from the mean (medium and
dark blue) account for about 95%, and three standard deviations (light, medium, and dark blue)
account for about 99.7%.
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(b) A symmetric 95% confidence interval for p is 7==1.960 /\/n which arose from considering
the inequality

T — [
—1.96 < < 1.96
o/Jn

So, to reject Hy at the 5% significance level is equivalent to saying that “the hypoth-
esized value is not in the 95% CI”. Likewise, to reject Hy at the 1% significance level is
equivalent to saying that “the hypothesized value is not in the 99% CI”, which is equivalent
to saying that “the P-value is less than 1%7.

If 1% < P < 5% the hypothesized value of g will not be within the 95% CI but it will
lie in the 99% CI.
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The vertical line segments represent 50 realizations
of a confidence interval for u.
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Test significant at 5% level. 95% confidence
mterval doesn't mclude hypothesised mean.

Critical value Observed value

e

95% C1

If 1% < P < 5% the hypothesized value of p will not be within the 95% CI but it will
lie in the 99% CI.
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3.2 The concept of a p-value

e The statistical significance of a result is the probability that the observed
relationship (e.g., between variables) or a difference (e.g., between means)
in a sample occurred by pure chance ("luck of the draw"), and that in the
population from which the sample was drawn, no such relationship or
differences exist.

e Using less technical terms, we could say that the statistical significance of a
result tells us something about the degree to which the result is "true" (in
the sense of being "representative of the population").

 More technically, the value of the p-value represents a decreasing index of
the reliability of a result (see Brownlee, 1960).

O The higher the p-value, the less we can believe that the observed
relation between variables in the sample is a reliable indicator of the
relation between the respective variables in the population.
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» Specifically, the p-value represents the probability of error that is involved
in accepting our observed result as valid, that is, as "representative of the
population.”

O If the P value is 0.03, that means that there is a 3% chance of observing
a difference as large as you observed even if the two population means
are identical.

O It is tempting to conclude, therefore, that there is a 97% chance that
the difference you observed reflects a real difference between
populations and a 3% chance that the difference is due to chance.
Wrong.

0 What you can say is that random sampling from identical populations
would lead to a difference smaller than you observed in 97% of
experiments and larger than you observed in 3% of experiments.

e When there IS a relationship between the variables in the population, the
probability of replicating the study and finding that relationship is related to
the statistical power of the design.
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3.3 Three approaches for hypothesis testing

Hypothesis testing 1s a scientific process to examune if a hypothesis 1s plausible or not. In
general. hypothesis testing follows next five steps.
1) State a null and alternative hypothesis clearly (one-tailed or two-tailed test)

2

3

)
)

4)

5

)

Determine a fest size (significance level). Pay attention to whether a test 1s one-tailed or
two-tailed to get the right critical value and rejection region.

Compute a test statistic and p-value or construct the confidence interval, depending on
testing approach.

Decision-making: reject or do not reject the null hypothesis by comparing the subjective
criterion 1n 2) and the objective test statistic or p-value calculated 1n 3)

Draw a conclusion and interpret substantively.



CHAPTER 6: HYPOTHESIS TESTING

Quantile (TS) Probability Confidence Interval (Cl)
State H; and H, State Hy and H, State Hy and H,
2 Determine test size o and Determine test size o Determine test size o or 1- o, and
find the critical value a hypothesized value
3 Compute a test statistic Compute a test statistic and  Construct the (1- 0)100%

1ls p-value

confidence interval

4 Reject Hyif TS > CV

Reject Hy if p-value < o

Reject Hy if a hypothesized value
does not existin C1

5 Substantive interpretation

Substantive interpretation

Substantive interpretation

® TS (test statistic). C'V (critical value). and CI (confidence interval)

Do nor reject Hy

Reject Hy

H, is true Correct Decision
1-o: Confidence level

Type I Error
a: Size of a test (Significance level)

Hj1s false Tvpe II Ermror
p

Correct Decision
I-p: Power of a test
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Test Size and Critical Value in the Standard Normal Distribution

test size = .10 = .05 + .05

test size = .05 = .25 + .025
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Type II Error and Statistical Power of a Test

AL Probability Distribution under HO, N({4,1)

0 1 204 3 4 5 506 7 8

robability Distribution under Ha, N(7,
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Components of a statistical power analysis

Standardized

Effect
Size

Positive (+)—
Positive (+)
\ Positive (+)
Sample " Power
+
Size Positive (*) 1-beta
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A note about effect sizes

The effect size encodes the selected research findings on a numeric scale

 There are many different types of effect size measures (OR, difference in
means, correlations, ...), each suited to different research situations

Each effect size type may also have multiple methods of computation
 An example of a standardized effect size ES is:

ES = Xo—Xg S oed = \/Slz(nl _1)"'322(”2 _1)
n+n,—2
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4 One-sample problems
4.1 Testing hypotheses about /

MNull Hypotesis

Alternative Hypotesis

Critical Region

W=k K=y 7 o
- T2, +u x—
0 o jn
b=y i %< =
SP.o-u X—
0 o
|~L=|-'L|:| l-'L#U'u TP +u X )
A 1R

2

s 0or
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Think about the 3 ways te perform statistical hypothesis testing ...
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Recall

Population o’

Estimation of 1

Test statistic and
distribution

Case (') o? Known

X=1/n " =

A

N
= =L ~ N(0,1)

o%/n

Case (ii) o Unknown

X=1/n " =

g
T

5;{\/— ~ tp_1.

= = sd(X),

S2 unbiased for o2
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Unknown mean
According to the table, the crucial distribution is now a t-distribution
Given X;, Xs...., X, is a random sample from N(u, 02) where both parameters are un-

known, we wish to test the hypothesis, H : pu = pq.

(a) for the alternative, H; : u # po, values of T ‘close’ to g support the hypothesis
being true while if [T — pg| is too large there is evidence the hypothesis may be
incorrect. That is, reject Hy at the 100a% significance level if

T — ol
— > ir/r::r'-

(b) For Hy : p > pg, only large values of (T — pg) tend to caste doubt on the hypothesis.
That is, reject Hy at the 100a% significance level if
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Rejection Region: [t | =t
) glon: [t >t

v,ol2 tu,n:ﬂ

An alternative H; : p < py, would be treated similarly to (b) but with lower critical
value —¢, ..
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4.2 Testing hypotheses about o

Population |L Estimation of &2 Qést Statistic & I]ish'ihutll)l>
2
1 oy 2 ns
. f=1 T [z -u) 2
Case (i) i=1 G
1L Known s
2
1 2y 2 | (n-1s
=—— T [x -p [ 5 . g8
n_1i=1' 1 5 1
1 0 .. 2
» = T [x -7 -1
Case (ii) ni=1 ' — oo As
ik Unknown )
1l 2 2
52= 1 % (x %] (n—1s ”12
ﬂ—1i=] / gE fn—1

Again the cases (i) g unknown; and (ii)u known are considered separately.
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Case (ii)

Let X{, X5, ..., X,, be arandom sample from a N(u, 0?) distribution where p is unknown,
and suppose we wish to test the hypothesis

R g oy 2
H:0° =05 against A:o0° # oy.

Under H, vS?/0¢ ~ 2 and values of vs%/o2 too large or too small would support A. For
a = .05, say, and equal-tail probabilities we have as critical region

). VS  vs
R=1{8":! —5 > 1w, OI 5 < Wy, 075 ¢ -
g 0y

0.05

Jow)

W "
v, 0.025 - M. 0975
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Consider now a one-sided alternative. Suppose we wish to test
H:o*=o0] against A:0°> a;.

Large values of s would support this alternative. That is, for a = .05, use as critical
region

{32 : 1132/03 > Wy, .05}
Similarly, for the alternative A: 0% < 02, a critical region is

{SE : 1;52/03 < W, o5}
Case (i)

Let Xy, X5,..., X, be a random sample from N(u, 0?) where u is known, and suppose
we wish to test H: 0? = 02. Again we use the fact that if H is true, nS**/o5 ~ \? where

S* =Y (Xi — p)?/n, and the rejection region for a size-a 2-tailed test, for example,

would be

o NS ns*?
T Wil OF —5° € Wi (i
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5 Two-Sample Problems
5.1 Testing equality of sample variances

0 2 . [ Sy
Let S7 and S5 be the sample variances of 2 samples of sizes n; and ns drawn from normal
i 2

populations with variances o2 and 02. Recall that | it is only if 02 = o2
(= o2, say) that S?/S2 has an F distribution. This fact can be used to test the hypothesis
H: o7 — o5

If the hypothesis H is frue then,
Sf/Sg ~ F(v1, 1) where vy =ny — 1, vo =ng — 1.

For the alternative
Azl o

only large values of the ratio s%/s2 would tend to support it, so a rejection region |F :
F > Fpip} is used
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g(F)

Pr100

F F.-{?I P

Since only the right hand tail areas of the distribution are tabulated it is convenient to
always use s?/ 5? > 1. That is, always put the larger sample variance in the numerator.
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Reciprocal of an F-variate

Let the random variable F' ~ F(vq,15) and let Y = 1/F. Then Y has p.d.f.

fly) = }

Byl /2) 2Ry (vitee) /2 g

B(%L"le %”2)(“23} +vy)rr)/2 2
A e

B ;3 E |0, o8).
B(%”:Z-aﬁl"l)[l‘l—kuzy) )2 I 0, o)

Thus if F' ~ F(vi,1n) and Y = 1/F then Y ~ F(1y,14).
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One-sided test

If the alternative is o7 # o2, then both tails of the distribution could be used for
rejection regions, so it may be necessary to find the lower critical value. Let F' ~ F(vq. 15).
That is we want find a value F) so that

Fy
/ g(F)dF = a/2.
Jo
Put Y = 1/F so that 'Y ~ F(vs,11). Then
Fy
f g(F)dF = P(F < F}) = P(Y > 1/F}) = P(Y > F;), say.
0

Thus to find the lower %% critical value, Fj, first find the upper %”’u critical value, F5
from tables of F(1s, 1), and then calculate Fy as Fy =1/F,.

—
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1”2

o2

g(F)

F =1/F
1 2 : . . : :
To find the lower «/2% point ::fan F distribution with parameters

1, 12, take the reciprocal of the upper a/2% point of an F
distribution with parameters 15, 1.
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g(F)

o2
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5.2 Testing equality of normal means

Given X, Xs,..., X, and ¥1,Y5,...,Y,, are independent random samples from N(p;, Hf)
and N(pq,03) respectively, we may wish to test H : y, — pio = dg, say. | We can
see that, under Hy,

X -Y -4

: . - tn[—l—ﬂz—?-
S\ s

So Hp can be tested against one- or two-sided alternatives.
Note however, that we have assumed that both populations have the same variance

o?, and this in general is not known. More generally, let X;, X,,...,X,, be a random
sample from N(pq, 0%) and Yy, Ys,...,Y,, be an independent random sample from N(o,
03) where gy, o, 07, 05 are unknown, and suppose we wish to test H : i — fty = dp. From

the samples of sizes ny, ny we can determine T, 7, s3, s3. We first test the preliminary

hypothesis that ¢ = o3 and if evidence supports this, then we regard the populations as
having a common variance ¢%. So the procedure is:
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(i) Test Hy : 0? = 03(= ¢?) against H, : o} # o3, using the fact that under Hy, 52/57 ~
F,, .- [This is often referred to as testing sample variances for compatibility.] A two-
sided alternative and a two-tailed test is always appropriate here. We don’t have any
prior information about the variances. If this test is “survived” (that is, if Hj is not
rejected), proceed to (ii).

2 _ 1187 +1ras;
T pits

o 9 i
(ii) Pool s? and s3 using s
degrees of freedom.

which is now an estimate of o2 based on 1 + 14

(iii) Test Hy : puy — po = &y against the appropriate alternative using the fact that, under
Ho, _
—Y —

0wt

1] +15 ¢

I.Sl.._,

i
2



CHAPTER 6: HYPOTHESIS TESTING 6 - 66

Comment

When the population variances are unequal and unknown, the methods above for find-
ing confidence intervals for pu; — p9 or for testing hypotheses concerning 1, — fto are not
appropriate. The problem of unequal variances is known as the Behrens-Fisher prob-

lem, and various approximate solutions have been given but are beyond the scope of this
course.,
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Recall

Setting Estimate Standard Error Confidence Interval Test Statistic Distribution

Difference Between
Population Means

] ]
— — o o — — - (mq—mxar—| — i T
a1 and g2 known F1 — To SE = \/ﬂ—' + 2 T1 — T+ 2"SE z = & ”SH':“' B2 Normal(0, 1)
1 = a2 unknown Iy — T2 SE = Sp % + % T1 — T2+ t"SE t= k=1!|—=r--z;_—lzp|—.u-z; t(ﬂ.l + 10 — 'z;l
I 2 SE
. 2 2 .
r = & & =z - [ R P p— — g )
. i - - _ s sy = * _ (ma—wal—(py—pa)

a1 # a2 unknown T1— T SE -+ 1 o+ t°SE t S t( f)

SE
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6 Course concluding remarks

Fallacies of Statistical Testing

1. Failure to reject the null hypothesis leads to its acceptance. (WRONG!
Failure ro reject the null hypothesis implies insufficient evidence for its
rejection.)

2. The p value is the probability that the null hypothesis is incorrect.
(WRONG! The p value is the probability of the current data or data that
is more extreme assuming HO is true.)

3. a=.05is a standard with an objective basis. (WRONG! a= .05 is merely a
convention that has taken on unwise mechanical use.)
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Fallacies of Statistical Testing (continued)

4. Small p values indicate large effects. (WRONG! p values tell you next to
nothing about the size of a difference.)

5. Data show a theory to be true or false. (WRONG! Data can at best serve
to bolster or refute a theory or claim.)

6. Statistical significance implies importance. (WRONG! WRONG! WRONG!
Statistical significance says very little about the importance of a relation.)
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The importance of the normal distribution

~ Central Limit Theorem

set.seed(7)

norml <- rnorm(1000)

norm2 <- rnorm(2000,mean=3)
mixnorm <- c(norm1,norm2)

mixnorm <-
garetin data.frame(cbind(mixnorm,c(rep(0,1000),rep

- (1,2000))))
names(mixnorm) <- c("Y","Population")

density

library(ggplot2)
gplot(Y, colour=Population, data=mixnorm,
geom="density")
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density

Mixing 2 normal distributions
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Sample distributions for the mean of the 3 considered

populations

mi
040 000 010

m2
3.00

2490

ma
184 200 206

2000 3000 4000 5000

Index

DDD
T T T
2000

|
=

3000 4000

Index

2000

3000 4000 5000

Index

Density

Density

Density

10

Lo

density.default{x = m1)

-0.10

T T T T T
-0.03 000 005 010

MW =5000 Bandwidth = 0.005215

density.default|x = m2)

2.

o —

0

T
3.00 3.05

T
2.85

MW =5000 Bandwidth = 0.003561

density.default{x = m3)

3.10

T
1.85 2.05

2.00

MW =5000 Bandwidth = 0.002554



CHAPTER 6: HYPOTHESIS TESTING 6 --

73

Main reference:

STAT261 Statistical inference notes — School of mathematics, statistics and
computer science. University of New England, Oct 4, 2007



