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1 Estimation Methods
1.1 Introduction
Aims of biological research

» Describe patterns
— more species on bigger islands

» Develop predictive models, i.e.

prediction
— species number = « * (area)”’

+ Determine cause-effect
relationships, i.e. explanation

— does area cause species
number?

— other factors (perimeter, habitat
complexity)?

Number of species

1 2
Island area

3

(Quinn and Keough 2002)
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Relationships

» Measured statistically &
by correlations and £ 0
measures of association o) 0 e
— plant biomass in plots 1 o2 %
correlated with soill A | oo
nutrient levels .
— dispersal mechanism Nutrient level
associlated with mode
of regeneration for R .
olant species egeneration
Seed Veg
Dispersal

Ant 25
Vert 6 21

(Quinn and Keough 2002)
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Cause versus effect: an example

 There is a correlation between the number of roads built in Europe and the
number of children born in the United States.
O Does that mean that if we want fewer children in the U.S., we should
stop building so many roads in Europe?
0 Or, does it mean that if we don't have enough roads in Europe, we
should encourage U.S. citizens to have more babies?
0 Of course not. (At least, | hope not).
 While there is a relationship between the number of roads built and the
number of babies, we don't believe that the relationship is a causal one.
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Cause versus effect

e This leads to consideration of what is often termed the third variable
problem.

* |In the example above, it may be that there is a third variable that is causing
both the building of roads and the birthrate that is causing the correlation
we observe. [such a variable is called a confounding variable or a
confounder]

e For instance, perhaps the general world economy is responsible for both.
When the economy is good more roads are built in Europe and more
children are born in the U.S.

 The key lesson here is that you have to be careful when you interpret
correlations
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Cause versus effect

Likewise, if you observe a correlation between the number of hours
students use the computer to study and their grade point averages (with
high computer users getting higher grades), you cannot assume that the
relationship is causal: that computer use improves grades.

In this case, the third variable might be socioeconomic status -- richer
students who have greater resources at their disposal tend to both use
computers and do better in their grades.

It's the resources that drives both use and grades, not computer use that
causes the change in the grade point average.

This complicates making valid inferences ...!!!
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Types of relationships
* No relationship, positive relationship, negative relationship (see before)

 These are the simplest types of relationships we might typically estimate in
research.

e The pattern of a relationship can be more complex than this, and one can

III

try to find the most appropriate “model” to capture the observed pattern.

+

severity of illness

- dosage level +
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Natural experiments

« Use pre-existing or naturally occurring treatment
groups
— compare growth of species A in areas with and
without species B to test for competition

— compare photosynthesis of a species at extremes of
range to test climate effects

* Natural experiments cannot completely rule out alternative
explanations of the observed associations: confounding cannot
entirely be ruled out

(Quinn and Keough 2002)

* Do you know the difference between correlation and association?
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Manipulative experiments

« Controlled manipulation rules out some
alternative explanations (causes)

— appropriate controls, replication and randomisation
reduce likelihood of confounding

» Multiple possible causes and their interactions
can be investigated
— manipulate two or more factors

« Problems with manipulative experiments

— usually small spatial and temporal scales
(relevance?)

— controls for artefacts not always possible

(Quinn and Keough 2002)
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Statistical inference

« Uncertainty caused by

— sampling from populations

— measurement error
« Conclusions about causes based on data

— e.g. what causes variability in our data?

— e.g. what causes these two means to be different?
« Statistical inference

— probabilistic conclusions from our sample data
addressing question (hypothesis) of interest

(Quinn and Keough 2002)
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Estimating parameters

« Parameters of population

— mean, variance, regression slope, effects of
treatments etc.

« Use sample data to estimate most likely values
of those parameters
— sample statistics estimate population parameters

« Calculate confidence in those parameter

estimates
— standard errors and confidence intervals

(Quinn and Keough 2002)



CHAPTER 5: PARAMETER ESTIMATION

- 13

Estimating parameters

Parameters: pu, ¢, 62

POPULATION

Inferential
Statistics

Deductive

Inductive
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Using “statistics” (derived from samples) to do the job

Suppose that we have a random sample X;. Xs...., X,, from a distribution with mean u

and variance o 2.

1. X =3""  X;/n is called the sample mean.
2. 82=" (X;—X)?/(n—1) is called the sample variance.

3. S = V/S2 is called the sample standard deviation.

4. M, =377, X[ /n is called the rth sample moment about the origin.
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Point and interval estimates

* Point estimate

— single value estimate of parameter, e.g. y is
point estimate of z, s is point estimate of o

* |Interval estimate

— range within which parameter lies known with
some degree of confidence, e.g. 95%
confidence interval is interval estimate of «

(Quinn and Keough 2002)
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Testing hypotheses — Chapter 6

« Specific research hypothesis

* Null hypothesis about population
parameters

— population parameter equals zero
— no effect of predictor/treatment/groups

« Some probability statement about truth or
otherwise of hypotheses

— evidence for or against null hypotheses

(Quinn and Keough 2002)

 |s it safe to say that you “accept” a null hypothesis?
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There are several inferential frameworks

e Each of these offer their own machinery and set of tools to make inferences
e Recall (Chapter 4):

O For classical (traditional) analysis, the sequence is

Problem => Data => Model => Analysis => Conclusions
o0-ForEDAthesegquenceis
O For Bayesian, the sequence is

Problem => Data => Model => Prior Distribution

=> Analysis => Conclusions
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Inferential framework 1: parametric (frequentist) analysis

“The data collection is followed by the imposition of a model (normality, linearity,
etc.) and the analysis, estimation, and testing that follows are focused on the

I”

parameters of that mode

Both systematic and random components are represented by a mathematical model and
the model is a function of parameters which are estimated from the data. For example

yi; = Bo+ Bz + € € ~ N(0,07)
is a parametric model where the parameters are
e the coefficients of the systematic model, 5,
e the variance of the random model, o2

A rough description of frequentist methods is that population values of the parameters
are unknown and based on a sample (z,y) we get estimates of the true, but unknown
values. These are denoted as 3;, 3, % in this case.
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Inferential framework 1: parametric (frequentist) analysis

« Traditional statistical analysis
« Estimation of parameters
— least squares or maximum likelihood

» Hypothesis testing

— based on P values
— null versus alternative hypotheses
— test statistic cf. theoretical distribution (e.g. t, F, ?)

* Assumes data follow specific distribution
— normal, log-normal, poisson efc.

* Frequentist interpretation of probability
(Quinn and Keough 2002)

How would you get an idea about which model(s) to impose?
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Inferential framework 1: Bayesian analysis

“For a Bayesian analysis, the analyst attempts to incorporate scientific/engineering
knowledge/expertise into the analysis by imposing a data-independent distribution
on the parameters of the selected model; the analysis thus consists of formally
combining both the prior distribution on the parameters and the collected data to
jointly make inferences and/or test assumptions about the model parameters.”

Or formulated differently (making links to “Bayesian theorem” and
conditionality)

Whereas in frequentist inference the data are considered a random sample and the param-
cters fixed, Bayesian statistics regards the data as fixed and the parameters as random
samples. The exercise is that given the data, what are the distributions of the parameters
such that the observed sample from those distributions could give rise to the observed data.
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Inferential framework 1: Bayesian analysis

* Treats parameters as random variables with probability
distributions

« Estimation of parameters
— based on posterior probability distributions
— usually relies on complex resampling procedures

« Hypothesis testing

— possible but often not used in Bayesian stats
« Subjective interpretation of probability
* Must specify distributions of parameters

* Inclusion of prior information about parameters
— prior probability distributions

(Quinn and Keough 2002)
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Inferential framework 3: non-parametric analysis and others

This philosophy does not assume that a mathematical form (with parameters) should be
llllpDSEtd on the data and the model is determined by the data themselves. The techniques

include

e premutation tests, bootstrap, Kolmogorov-Smirnov tests etc.

e Kernel density estimation, kernel regression, smoothing splines etc.

This seems a vood idea to not impose anv predetermined mathematical form on the
data. However, the “limitations” are

e the data are not summarized by parameters and so interpretation of the data requires
whole curves etc. There is not a ready formula to plug in values to derive estimates.

e Requires sound computing skills and numerical methods.

e The statistical method may be appropriate only when there is sufficient data to
reliably indicate associations etc. without the assistance of a parametric model.
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Bootstrapping Monte Carlo (resampling) analysis

« Randomly resample or reshuffle sample data
— ho comparison to theoretical distribution

* Estimation of parameters
— Jackknife, bootstrap

* Hypothesis testing
— randomisation test
— simply evaluates null

* Frequentist interpretation of probability
* Less restrictive assumptions cf. parametric

* Limited to relatively simple hypotheses
— simple univariate analyses

(Quinn and Keough 2002)
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1.2 Estimation by the Method of Moments
Recall that, for a random variable X, the rth moment about the origin is u. =E(X")

and that for a random sample X{, X5, ..., X,,, the rth sample moment about the origin is
defined by

M= Xim r=1,923, ..
1=1

and its observed value is denoted by

T
m, = E rt/n .
i—1

Note that the first sample moment is just the sample mean, X.

We will first prove a property of sample moments.
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Theorem

Let X, X,,...,X,, be a random sample of X. Then
EM)=g., r=1 2.3 ...

Proof

(U)_—E(Z )ZHZEX?" —ﬂzﬁr_

=1 =1

This theorem provides the motivation for estimation by the method of moments (with the
estimator being referred to as the method of moments estimator or MME). The sample

moments, M;, M,, ..., are random variables whose means are pf, p5, .... Since the
population moments depend on the parameters of the distribution, estimating them by the
sample moments leads to estimation of the parameters.

We will consider this method of estimation by means of 2 examples, then state the
general procedure
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Example 1
Given Xy, Xs, ..., X, is a random sample from a U(0, #) distribution, find the method of
moments estimator (MME) of 6.

i
= HlX)] = /:ITX—dI
0 6

Using the Method of Moments we proceed to estimate p = #/2 by m,. Thus since m,
= T we have

and.

Then, 6 = 27 and the MME of 8 is 2 X.

i
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Example 2
In this example the distribution has two parameters.
viven X7, ..., X, is a random sample from the N(ju, %) distribution, find the method

of moments estimates of ;1 and 2.

Solution:
For the normal distribution, E(X) = p and E(X?) = 0 + p?
Using the Method of Moments:
Equate E(X) to m; and E(X?) to ms so that, i =T and d° 4 i* = mo.
That is, estimate p by T and estimate o? by my — T2. Then,
i 1 % 2

fi=7, and g% —=~— E5 —
n

The latter can also be written as 02 = Ly (@ —T)*
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General procedure

Let X, Xs,..., X, be a random sample from F(z : 6;,...,0;). That is, suppose that
there are k parameters to be estimated. Let y!, m, (r = 1,2,...,k) denote the first k
population and sample moments respectively, and suppose that each of these population
moments are certain known functions of the parameters. That is,

15 ga(by,...,0k)

!

e = gk(f1,...,0k) .
Solving simultaneously the set of equations,

#;:g"r(gl-.---wgk):?nra r=1,2,...,k

gives the required estimates, 6y, ....0;.
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1.2 Estimation by the Method of Maximum Likelihood

Likelihood of a sample

First the term likelihood of the sample must be defined. This has to be done separately
for discrete and continuous distributions.

Definition
Let @y, @9, ..., @, be sample observalions taken on the random variables
X1, Xs,...,X,,. Then the likelihood of the sample, L(f|z1, 25, ..., 2,), is de-
fined as:

(1) the joint probability of 1,25, ..., 2, 1If Xy, X9, ..., X, are discrete, and

(ii) the joint probability density function of X;. ..., X, evaluated at =y, x;,
..., &, if the random variables are continuous.
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Likelihood of a sample

In general the value of the likelihood depends not only on the (fixed) sample z,, xs,...,x
but on the value of the (unknown) parameter #. and can be thought of as a function of 8

The likelihood function for a set of n identically and independently distributed (iid)
random variables, X;, Xo.,.... X,,, can thus be written as:

1ig- ) P(Xy=x).P(Xy =x3)..P(X,, =x,) for X discrete
(9 @ynnsg i) = f(z1;0).f(z2;8)...f (2, 8) for X continuous.
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Likelihood of a sample

* Likelihood function
— based on sample data only

— likelihood of sample data for different values
of parameter or different hypotheses

* Proportional to P(data|parameter)

— sum of all likelihoods does not equal 1, so not
true probability

(Quinn and Keough 2002)
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-
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The likelihood function for estimating the probability of a coin landing heads-
up without prior knowledge after observing HH
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Likelihood

0.16

012

011+

0.08 -

0.06 |-

0.04 -

0.02

01

1
02

0.3

0.4

05
Pu

0.6

1
0.7

I
0.8

I
0.9

The likelihood function for estimating the probability of a coin landing heads-

up without prior knowledge after observing HHT
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Maximum likelihood estimators

L(f)=1In Hf (y:;0) =Zlﬂ[f (v,;6)]

possible parameter values

ML estimator

log-likelihood function

(less reliable for small sample sizes and unusual distributions)
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Maximum likelihood estimators

For the discrete case, L(#;z,....,x,) is the probability (or likelihood) of observing
(X: =2, Xo =T9,...,X,, = x,) It would then seem that a sensible approach to selecting
an estimate of # would be to find the value of # which maximizes the probability of observing
(X: =x1, Xa =&9,..., X, = ). (the event which occured).

1he maximum likelihood estimate (MLE) of ¢ is defined as that value of 6 which
maximizes the likelihood. To state it more mathematically, the MLE of € is that value of
A. sav A such that
L@;xy, ... 0,) > L0041, ..., 0,).

where @' is any other value of 6.

Before we consider particular examples of MLE’s, some comments about notation and
technique are needed.
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Maximum likelihood estimators: some remarks

L. It is customary to use § to denote both estimator (random variable) and estimate
(its observed value). Recall that we used 6 for the MME.

2. Since L(¢; @y, @9, ..., T,) is a product, and sums are usually more convenient to deal
with than produets, it is customary to maximize log L(#; z,, ..., 1,) )
- This has the same effect. Since log L is a strictly increasing

function of L, it will take on its maximum at the same point.

3. In some problems, # will be a vector in which case L(#) has to be maximized by
differentiating with respect to 2 (or more) variables and solving simuiltaneously 2 (or

more) equations.

4. The method of differentiation to find a maximum only works if the function concerned
actually has a turning point.



CHAPTER 5: PARAMETER ESTIMATION 5- 37

Example 1

Given X is distributed bin(1, p) where p € (0,1), and a random sample z,xs, ..., T,, find
the maximum likelihood estimate of p.

Solution: The likelihood is,

L{pygis@s;....%5) — BlXG = 5)P(Xs =2)...80X, —2,)
- 1 Ty o
= [[1 (-xi)p (1—p)
;= pzl+.r.3+---+1.'n(l _pJn—rl—xg—---—zn

— pz x;(l . p)ll—EIf

So
log L(p) = ) w;logp+ (n— Y ;) log(1 — p)
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Differentiating with respect to p, we have

dlogLlp) Ya: = n-Yu,
dp p l-p

This is equal to zero when " z;(1 —p) =p(n — > x;), that is, when p =" z;/n.

This estimate is denoted by p.

Thus, if the random variable X is distributed bin(1, p), the MLE of p derived from a sample

of size n is

p=X.
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Example 2
Given xq,x2,...,2, 18 a random sample from a N(pu, JZ) distribution, where both g and
o? are unknown, find the maximum likelihood estimates of p and o2.

Solution: Write the likelihood as:

i

L, % gy g i) = g J&E““‘“Fﬁgz
— b e~ Lizi(zi—p)?/20°
(2ma?)m/?
S0 .
log L(p, 0%) = —g log(2m) — glmg g% — Z(Ii — 1)?%/20?
- i=1

To maximize this w.r.t. g and o? we must solve simultaneously the two equations
dlog L(p,0%)/0p =0
dlog L(p, 0%)/0a* = 0.
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These equations become, respectively,
1 2 mn
5 (2 S - = (19
i=1
—n Yoy —p)®
SR o)
20 204

From (1.5) we obtain )", @; = ny, so that i = . Using this in equation (1.6), we obtain

i

o2 = Z(mi —7)%/n .

i=1

Thus, if X is distributed N(y, c?), the MLE’s of p and o2 derived from a sample of size n

are

mn

F=X and g2 = Z(Xi — X)?/n.

i=1

Note that these are the same estimators as obtained by the method of moments.
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Example 3

Given random variable X is distributed uniformly on [0, 8], find the MLE of # based on a

n. So the likelihood is

sample of size n.
Solution: Now f(z;;0) =1/6, z; €10,6], i =1,2,...,
L(0;xq, s, ..., T,) = H(l/ﬂ) —=1/6" .
i=1

L
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Example 3 — continued

When we come to find the maximum of this function we note that the slope is not zero

dL(6)  dlog L(6)

anvwhere, so there is no use finding or

! - > S8 a6
Note however that L(#) increases as # — 0. So L(#) is maximized by setting  equal to the
smallest value it can take. If the observed values are z,...,z, then # can be no smaller
than the largest of these. This is because z; € [0,6] for i = 1,...,n. That is, each z; < 8

or # > each ;.
Thus, if X is distributed U(0, #), the MLE of ¢ is
f§ = max(X,).
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Ordinary least squares estimators

e OLS estimators minimize the sum of squared deviations from the trendline
(hence between each observation and estimated value)

Oak Diameter vs. Age 1_,.2

15

(deviations from trendline)

(standard deviation of y data)

[
>
T T T T T T T T T T T T T T T 7T

DBH (inch)

(reliable for linear models with normal

§—||||I||||I|||

| |
0 20 40 60 80

Age (years) distributions)
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Example
Suppose X1, .... X}; are independent and identically distributed (1.1.d) random variables with expectation ¢
and variance o-. If the sample mean and uncorrected sample variance are defined as
T W I
——Z4¥;‘. S _EZ(XI_‘¥)1
1=1

ni=1

then S° is a biased estimator of 0'2 because

R =B [13 (% - (R

i=1

= t=1

=E % Y (Xi—p)?-2(X - #);}1- Y (Xi—p)+ (X - #)2]
o gl Ci=1

_E %Z(x,. e (f_ﬂ)zl — o — B [(X - )] <.
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Example

In other words. the expected value of the uncorrected sample variance does not equal the population

variance ¢~ . unless multiplied by a normalization factor. The sample mean. on the other hand, is an unbiased
estimator of the population mean .

The reason that S is biased stems from the fact that the sample mean is an ordinary least squares (OLS)

. . 2 . .
estimator for z: It 1s such a number that makes the sum X(Y; — /)" as small as possible. That 1s. when any
other number 1s plugged mnto this sum, the sum can only mcrease. In particular, the choice m = i gives, first

(or most outcomes)

—Z . T Z ; = 1)

! 1=1 ! =1

and then

ES?|=E |- ) (X;-X)?| <E lZ(X,-~p.)2 = o2.
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2 Properties of Estimators

2.1 Introduction

Using different methods of estimation can lead to different estimators. Criteria for deciding
which are good estimators are required. Before listing the qualities of a good estimator, it
is important to understand that they are random variables.

The
behaviour of an estimator for different random samples will be described by a probability
distribution. The actual distribution of the estimator is not a concern here and only its
mean and variance will be considered. As a first condition it seems reasonable to ask that
the distribution of the estimator be centered around the parameter it is estimating. If not
it will tend to overestimate or underestimate . A second property an estimator should
possess is_precision. An estimator is precise if the dispersion of its distribution is small.
These two concepts are incorporated in the definitions of unbiasedness and efficiency below.
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2.2 Unbiased

In the following, X, X5,..., X, is a random sample from the distribution /'(z;#) and
H(Xq,...,X,) = 6 will denote an estimator of # (not necessarily the MLE).

Definition

An estimator 6 of 6 is unbiased if

E(6) =6 for all 6.
If an estimator 6 is biased, the bias is given by
b= FE(0)—9 .

There may be large number of unbiased estimators of a parameter for any given distri-
bution and a further criterion for choosing between all the unbiased estimators is needed.
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2.3 Efficiency

Definition Efficiency

Let 6; and 6, be 2 unhlased estimators of # with variances ‘ua,r(ffi) Var (6'3)
respectively, We say that 6’1 is more efficient than ﬁ'a if

ar(f;) < Var(fs) .

That is, £ is more efficient than  if it has a smaller variance.

Definition Relative Efficiency

The relative efficiency of 8, with respect to 6, is defined as

efficiency = \?ar(él) / Var(é’g) ;
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Practical

Generate 100 random samples of size 10 from a U(0,10] distribution. [‘or each of the 100
samples generated calculate the MME and MLE for p and graph the results.

0.6 -

05 - ' « The MMEs give unbiased

04 — rj * o estimates which may or may not
03 ' : be in the range space.

e The MLEs are all less than 10 and
0.2 -

| '/ ! \ hence biased.
0.1 - ) A N « What if the sample size is
| | | | |

S increased? (think about CLT)
|

4 6 8 10 12 14

-
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2.4 Consistency

It will now be useful to indicate that the estimator is based on a sample of size n by

denoting it by 6,.

Definition Consistency f,, is a consistent estimator of ¢ if

lim P(|f, —0] >¢)=0forall e >0 .

nn— 00
We then say that g, converges in probability to 6 as n — oc. Equivalently,
lim P(|f, — 0] <€e)=1.

TL— 00

This is a large-sample or asympiotic property. Consistency has to do only with the limiting
behaviour of an estimator as the sample size increases without limit and does not imply

that the observed value of # is necessarily close to # for any specific size of sample n. If
only a relatively small sample is available, it would seem immaterial whether a consistent

estimator is used or not.
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Estimator Property
Unbiased Efficient Consistent Invariant
MLE They become | They become
minimum minimum
variance variance
unbiased unbiased © ©

estimators as
the sample size
increases

estimators as
the sample size
increases

 MLEs are invariant with respect to reparametrisations :
if you have found the MLE for a parameter 6, then you have found one for

g(0), namely the g(MLE), where g is an invertible function

 MLEs have approximate normal distributions and approximate sample
variances that can be used to generate confidence bounds and hypothesis

tests for the parameters.
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3 Confidence intervals

3.1 Introduction — understanding the concept
From point estimators to interval estimators

In the earlier part of this chapter we have been considering point estimators of a param-
eter. By point estimator we are referring to the fact that, after the sampling has been done
and the observed value of the estimator computed, our end-product is the single number
which is hopefully a good approximation for the unknown true value of the parameter. If
the estimator is good according to some criteria, then the estimate should be reasonably
close to the unknown true value. But the single number itself does not include any indi-
cation of how high the probability might be that the estimator has taken on a value close
to the true unknown value. The method of confidence intervals gives both an idea of
the actual numerical value of the parameter, by giving it a range of possible values, and a
measure of how confident we are that the true value of the parameter is in that range. To
pursue this idea further consider the following example.
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Example

Comnsider a random sample of size n for a normal distribution with mean g (unknown) and
known variance o2, Find a 95% confidence interval for the unknown mean, .

Solution: We know that the best estimator of x is X and the sampling distribution of X
2
. W a-
is N(z, —). Then from the standard normal,
n

X — pf _
P(—O’/\/-T_L < 1.96 ] = .95 .

X —u

The event —————— < 1.96 i1s equivalent to the event
o/n :
1.960 — 1.960
j— — < X < U + ;

Vn vV

which is equivalent to the event

a

X — 1.96 Nk

a

\/ﬁ{;i.{:}f+1.96
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Hence
_ o — o
The two statistics X — l.Qﬁi? e 1.96-2— are the endpoints of a 95% confidence interval
NG /n
for p. This is reported as
The 95% CI for p is (E = 1.96%, X 1.96%)

Definition
An interval, at least one of whose endpoints is a random variable is called a
random interval.
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With

- (T - 7
PlX —-1966— X +196— | = .95
( Jm S HESAT \F)
, WE are say mg that the probability is 0.95 that the random interval
X4 L 96—) contains p. A confidence interval (CI) has to be interpreted

Vi vn

carefully. For a particular sample, where T is the observed value of X, a 95% CI for p is

T T
T—196— . T4+196— | .
(r Jr § ﬁ)

o o
T—1.96— < u < 1.96—
NLD N&D
is either true or false. The parameter u is a constant and either the interval contains it in
which case the statement is true, or it does not contain it. in which case the statement is

(X — 1.96-2

but the statement

false.
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Correct interpretation of “probabilities associated to intervals”

How then is the probability 0.95 to be interpreted? It must be considered in terms
of the relative frequency with which the indicated event will occur “in the long run” of
similar sampling experiments.

Each time we take a sample of size n, a different 7, and hence a different interval

a g
T— 19—, T+ 1.96—
(I vn T M/-ﬁ)

would be obtained. Some of these intervals will contain p as claimed, and some will not. In
fact, if we did this many times, we’'d expect that 95 times out of 100 the interval obtained
would contain . The measure of our confidence is then 0.95 because before a sample
1s drawn there is a probability of 0.95 that the confidence interval to be constructed will
cover the true mean.
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The vertical line segments represent 50 realizations of a confidence interval
for .

A statement such as P(3.5 < p < 4.9) = 0.95 is incorrect and should be replaced by :
A 95% confidence interval for u is (3.5, 4.9).
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We can generalize the above as follows: Let z,/; be defined by
B(2ap)=1 — (a/2).

That is, the area under the normal curve above z,/; is /2. Then

X—p
Pl =z = oo | = 1=m
( TN '*’) ’

So a 100(1 — a)% CI for p is

(_ o _ i o

L — 2449 y oL L2 —F— .

A Fi —
v I AL

Commonly used values of a are 0.1, 0.05, 0.01.
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Confidence intervals are not unique

Confidence intervals for a given parameter are not unique. For example, we have
considered a symmetric, two—sided interval, but

= a — a
(ﬂ‘- - z'szaﬁ , Tt 2&;’3%)
is also a 100(1 — a)% CI for p. Likewise, we could have one-sided CI's for p. For example,

T4 a . (T
—00; T+ 24— ] OF |T— 24—, OC
| Vn NG

X —u
% | =1l=—a.
ST <) =1ma

The second of these arises from considering P (
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3.2 Finding confidence intervals in practice

e A pivotal quantity or pivot is generally defined as a function of
observations and unobservable parameters whose probability distribution
does not depend on unknown parameters

e Can we use pivots in constructing confidence intervals?
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The pivotal method

We will describe a general method of finding a confidence interval for # from a random
sample of size n. It is known as the pivotal method as it depends on finding a pivotal
quantity that has 2 characteristics:

(i) It is a function of the sample observations and the unknown parameter ¢, say
H(X;, Xy, ..., X,;0) where § is the only unknown quantity,

(ii) It has a probability distribution that does not depend on 6.
Any probability statement of the form
Pla < H(Xy, Xg,..., X;:0) < b)=1—«

will give rise to a probability statement about #.
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Example
Given X1, Xo,...,X,, from N(u1,0%) and Y1,Y5,..., Y,., from N(pa, 03) where o2, 02 are

“= } 3 3

known, find a symmetric 95% CI for p; — po.

Solution: Consider y1; — pi5 (= 6, say) as a single parameter. Then X is distributed N(p,,
o?/n;) and Y is distributed N(pso, 05 /ns) and further, X and Y are independent. It follows
that X — Y is normally distributed, and writing it in standardized form,

XY — (p1— )
V(03 /1) + (03 /ns)

5o we have found the pivotal quantity which is a function of p; — pe but whose distribution
does not depend on pi; — p2. A 95% CI for 8 = pq — ps is found by considering

is distributed as N(0, 1) .

X_-Y_-4¢
V(07 /n1) + (03 /n,)

S (—1.96 < < 1.96) = .95,

which, on rearrangement, gives the appropriate CI for p; — ps. That is,

2 2 2 2
] . (T (T
T—9—1.96¢/ L+ —2 , B—+ 1964/ —+—2

mnq g T 19
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3.3 One-sample problem

Confidence Intervals for o*

(memorize)

Case (i)

Case (ii)

Population |L Estimation of &2 Test Statistic & Distribution
I M
1L Known
2
1 By |2 n—1s
n=1;_q' o n
1 0 _.|2 HSE 5
IS TE T e
ik Unknown
1 n o . 2 _ 2
= 3 l:{l—?{ll lzﬂ Us ,-.-12
1 — 1 — -l gE fn—1
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Case (i)

Suppose now that X;, Xs,...,X,, is a random sample from N(u, o?) where p is known
and we wish to find a CI for the unknown o2. Recall that the
maximum likelihood estimator of o2 (which we’ll denote by S*?) is

S*2 = Z(Xt- — p)*/n.
i=1
We can easily show that this is unbiased.

n Y
E(5*) = Z B b noi? =

n 'L
i=1

The distribution of S*? is found by noting that nS*?/o? = S"" (X, — p)?/0? is the sum
of squares of n independent N(0,1) variates and is therefore distributed as y?2
Proceeding in the same way as in Case (i) we find

*2 +2
A 100(1 — @)% CT for 0* when p is known is ( bie s )

wn.a,’? : Wpia— (cx/2)
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Case (ii)

S?=1/(n—1) XL (2 — @)

Let X;. X,,..., X, be arandom sample from N(u, 0®) where both p and o2 are unknown.
It has been shown that S? is an unbiased estimate of o? we can find
a confidence interval for o2 using the y? distribution. Recall that W = v5?/a? ~ y2. By
way of notation, let w, , be defined by P(W > w,,) =a, where W ~ y2.

Jw)

W
W
v, ]—(ﬁfl} W v. o2
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The event wy,: a2y < W < w,ﬂ /2 occurs if and only if the events
UE < 1’52}#“7;:,1—{&,’2]1 ETE = HSEJ,"'!H?L,,QXQ
occur. So
P (wy1(af2) < W < Wyap2) — P (V5% [ty 072 < 02 < 8% [w,1_(ap7))

and thus
A 100(1 — )% CI for 07 is (vs”[wy a9, VS [We1_(a/2)
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Confidence Intervals for ;1 (memorize)

Population o’

Estimation of 1

Test statistic and
distribution

Case (i)

02 Known

X=1/n " =

Z:%NN(OJ)

Case (ii)

)
0~ Unknown

X=1/n " =

X -l
:{ ~ Tp_1.

S/\/n

T =

= = sd(X),

S2 unbiased for o2

Definition

A random variable has a t-distribution on v degrees of freedom (or with pa-

rameter v) if it can be expressed as the ratio of Z to /W /v where Z ~ N(0, 1)
and W (independent of Z) ~ y2.
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Note

X —
7=2_F
Vo2 /n
W=(n-1)5"/0 5*=1/(n-1)) (X;-X)
i=1
For Z and W defined as above, Z~ N(0,1) and W ~ 2 _..
So according to the definition of a t-distribution:
Z
~t(n—1)
W/ —1)

Z

— — M
VW/(n=1)  S/y/(n)

Now,
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Case (ii)

diven X1, Xs, ..., X, is a random sample from a N(pu, ?) distribution where g2 is unknown
, then
—_— !'_L
= e B 3.
S/\/n "

Then defining ¢, ,, as
P(T > t,,)=a where T ~t,,

we have

That is,
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Now rearrange the terms

5 y o)
— Xfa < —p < —-X+—xit,1_a
n 2 vn
e § s . . .
= Pl X —— % type > g > X ——Xt,1_ 2 inequality directions not conventional
s Vi s
-~ S - O , o .
= Pl X ——e ¥ lut_e < < KR e o inequality directions conventional
Vn : vno 2

A 100(1 — )% confidence interval for p is

Al S _ S
&L — t'y!]__ﬂ— 4 S ty‘E— .
2\/n 2N
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Remark
. & s
£r o — ﬁv,l—%ﬁ s L — fu,% =&
By the symmetry of the t-distribution, ¢, 2 = —t,;_2 and the lower tail quantile is a

negative number, the upper tail quantile is the same magnitude but positive. So you would
get the same result if you calculated

S _ S
(I B - R t"*l‘g‘ﬁ)
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Case (i)

A symmetric 95% confidence interval for p is T+1.960 //n which arose from considering
the inequality

106« 22 106

R y N
il /%
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3.4 Two-sample problems
2/ 2
Confidence Interval for 71/ (note that nothing is said about the means)

. i i . . | ¥ . -
Given s?, s3 are unbiased estimates of 07, 03 derived from samples of size nl n 5 respectively,
from two normal populations, find a (1 — a%) confidence interval for o2/02.

Now 115%/0? and 1552 /0% are distributed as independent )LE,L., Y2 variates, and
5"22 /'{ a E I"i-rrg / 1) .

~ ; o - ~ F{VE-,VI)-
oty / f H 1 / 24

=»  F -distribution
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S;_%_ / a g‘ Irg / L'y
Sf/ﬂ"l‘}‘ W]/vl

F(Ug, Iz‘])

2 2
5301
)
5‘!1 a5

P (Fl_%(ug, V) < @ F%(y%ul)) = [

That is o , o
1 oy 1 .
P (S—%Fl_%(lfgrffl) < g—% & 5—,515’%(1;2,1;1)) =1

Thus a 100(1 — )% confidence interval for o2 /0% is
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Confidence intervals for means in different populations (memorize)

Setting Fstimate Standard Error Confidence Interval Test Statistic [Distribution

Population Mean

a known T “'-‘Ii = V—,_ Tz C-l[: z= —S—[{—l Normal{0, 1)
g unknown T SE = == T+ t*SE = L0 t(n — 1)
v SE

Difference Between
Population Means

g = Mg =X~y —pa) Norm 1'“] ‘JJ

a1 and g2 known T1 — Ta Fy — 9t 2"SE

a1 = a2 unknown F1 — To F1 — T2 £ 1*SE Pl o pe
SE

a1 7 o2 unknown T — Ts Ty — T2 1°SE = 21Tl aa)
SE
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Pooling variances

Given 2 unbiased estimates of 0%, s7 and s3, it is often useful to be able to combine them
to obtain a single unbiased estimate. Assume the new estimator, S?, is linear combination
of s? and s3 so that S? has the smallest variance of all such linear, unbiased estimates (that
is it is said to have minimum variance). Let

5% = a5} + ayS3, where a;,ay are positive constants.

Firstly, to be unbiased,
E(S*) = a1E(S}) + a2 E(S3) = o*(a1 + az) = o

which implies that
@ + Ay = i
Secondly, if it is assumed that S? and S7 are independent then
Var(S%) = a2Var(S?) + a2Var(S?)
= a*Var(S?) + (1— ay)*Var(S?)
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The variance of S? is minimised when, (writing V'(.) for Var(.)),

(G2
il . 2a; V(8%) — 2(1 —a1)V(S3) =0.
dﬂ-i -
That is when, |
R AC) __ V(S)
A1 = 77 a2 o 32 = e 3
V(57) + V(53) V(51) +V(53)
In the case where the X; are normally distributed, @ ( S_f) = 20*/(n; — 1" Do you know
Then the pooled sample variance is why ?
(ny —1)s?  (ny —1)s2
P P 204 204
' ﬂ-l—l_'_?l-g—l
204 204

V187 + 1982
V1 + Vo

where 1y =n; — 1, vy, = ny — 1.
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Confidence Interval for 11y = 1o (known variances) (memorize)

Given independent random samples X;, Xs,..., X;,, from a normal population with un-
known mean j; and known variance o? and Y3,Y5,...,Y,,, from a normal population with
unknown mean g, and known variance o3, derive a test for the hypothesis H: pu; = po
against one-sided and two-sided alternatives.

Solution: Note that the hypothesis can be written as H : p; — pp = 0. An unbiased
estimator of pg; — po is X — Y so this will be used as the test statistic. Its distribution is
given by

2 2
o a o
X =Y N | p1—ps, ——+-2
('[ o 3 ¥ '?1--2)
or, in standardized form. if Hy is true
XY
~ N(0, 1).

V(01/n1) + (03/n2)
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Confidence Interval for 11y — 1o (unknown variances)

e Either the population variances are unequal
e Either the population variances are equal
O If it is reasonable to assume that 0,=0,, we can estimate the standard
error more efficiently by combining the sample.
0 Assume equal variances when S, /5:< 2

O If you are unsure, the unequal variance formula will be the conservative
choice (less power, but less likely to be incorrect).
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With the pooled variance, the key expression to remember is

(X —Y) — (1 — po)
V(1)1 +1/ng)st,

with s° the pooled variance as described on the previous slide, naturally

_toz/2 < /2

leading to a (1 — «) percent confidence interval.
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Main reference:

STAT261 Statistical inference notes — School of mathematics, statistics and
computer science. University of New England, Oct 4, 2007



