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CHAPTER 4: IT IS ALL ABOUT DATA

1 Anintroduction to statistics
1.1 Different flavors of statistics
1.2 Trying to understand the true state of affairs
Parameters and statistics
Populations and samples
1.3 Truestate of affairs + Chance = Sample data
Random and independent samples
1.4 Sampling distributions
Formal definition of a statistics
Sample moments
Sampling from a finite population
Strategies for variance estimation - The Delta method
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1.5 The Standard Error of the Mean: A Measure of Sampling Error
1.6 Making formal inferences about populations: a preview to
hypothesis testing

2 Exploring data

2.1 Looking at data

2.2 Outlier detection and influential observations
2.3 Exploratory Data Analysis (EDA)

2.4 Box plots and violin plots

2.5 QQ plots
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2 Exploring data
2.1 Looking at data
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Scales of measurement

e The Celsius-scale is defined by the follow two points:
0 The triple point of water is defined as 0.01 °C.

0 One degree Celsius equals the change of temperature with one
degree on the ideal gas-scale.

The triple point is a theoretical point where the three phases of a matter
(for example water) come together. This means that liquid, solid and gas
phase from a matter appear at the same time. This is practically

impossible.

Set points Fahrenheit Celsius Kelvin
Water boils 212 100 373
Body temperature 98.6 37 310
Water freezes 32 0 273
Absolute zero -460 -273 0
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Metric variables: watch out for “allowable operations”

o Interval Scale. You are also allowed to quantify the difference between two interval scale
values but there is no natural zero. For example. temperature scales are interval data with 25C

warmer than 20C and a 5C difference has some physical meaning. Note that 0C 1s arbitrary, so
that it does not make sense to say that 20C 1s twice as hot as 10C.

e Ratio Scale. You are also allowed to take ratios among ratio scaled variables. Physical
measurements of height, weight, length are typically ratio variables. It 1s now meaningful to
say that 10 m 1s twice as long as 5 m. This ratio hold true regardless of which scale the abject
15 being measured in (e.g. meters or yards). This 1s because there 1s a natural zero.
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Non-metric variables: need for “coding” them

3 "dummy variables are

sufficient !!!
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Company A: Big
Company B: Small
Company C: Medium

Company A: 2
Company B: 0
Company C: 1
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Dummy variables

Xbrown Xblond Xblack Xred Xbrown/red | Xblond/red Xblack/red
Peter |0 0 1 0 0 0 1
Molly |0 1 0 0 0 1 0
Charles |1 0 0 0 1 0 0
Mindy |0 0 0 1 0 0 0

3 "dummy variables are

sufficient !!!
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Ways to chart categorical data

Because the variable is categorical, the data in the graph can be
ordered any way we want (alphabetical, by increasing value, by year,
by personal preference, etc.)

THY =

o Bar graphs
Each category is
represented by
a bar.

COURL M
= X = £ B E

Newer maeried Marvies Wickneed  Diwercasd
Marilal shabos

Married T .
N Nlever married

o Pie charts
The slices must
represent the parts of one whole.

Divorced

widowed
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Bar graphs: no meaningful ordering in the categories for categorical data!
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Pie charts: clearly define the “whole” pie
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Easy R code examples (http://www.harding.edu/fmccown/R/)

0 2 46 8
|

1

# Define the cars vector with 5 values
cars<-c¢(1, 3,6, 4,9)

# Graph cars
barplot(cars)

We

Tue

Mon
Thu

ri
# Define cars vector with 5 values
cars<-c¢(1, 3,6, 4,9)

# Create a pie chart with defined heading
and

# custom colors and labels

pie(cars, main="Cars",
col=rainbow(length(cars)),
labels=c("Mon","Tue","Wed","Thu","Fri"))
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R code examples (http://www.harding.edu/fmccown/R/)

Autos
# Graph autos (transposing the matrix) using

# heat colors, put 10% of the space between

-1 ®m mon # each bar, and make labels smaller with

e # horizontal y-axis labels

Thu barplot(t(autos_data), main="Autos",

" ylab="Total", col=heat.colors(3), space=0.1,
cex.axis=0.8, las=1,
names.arg=c("Mon","Tue","Wed","Thu","Fr

= - i"), cex=0.8)

cars trucks SLIVE

10
EEOON

Total

# Place the legend at (6,30) using heat colors

# Read values from tab-delimited autos.dat legend(6, 30, names(autos_data), cex=0.8,
autos_data <- read.table("C:/R/autos.dat", fill=heat.colors(3));

header=T, sep="\t")

# Expand right side of clipping rect to make
# room for the legend
par(xpd=T, mar=par()Smar+c(0,0,0,4))

# Restore default clipping rect
par(mar=c(5, 4, 4, 2) + 0.1)
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Ways to chart quantitative data: Line graphs

How you stretch the axes and chcose your
scales can give a different impression.

Death rates from cancer (UGS, 1845-35)
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thousand words,
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- Look at the scales.
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Ways to chart quantitative data: Histograms

o
'“" The height of this bar is 13
becausa "3 states had betweean
i 5.0 and 9.3% Hispanic
. residents
The range of values that & v /
variable can take is divided :E A _,/
into equal size intervals. 5w 7 New Mexico, 42. %
2 ¥ Hispanic, may 22 a
[ high outlier.
. 2 2 \
The histogram shows the \
humber of Individual data w - "I,lll
points that fall in each — \
interval. "0 5 10 15 20 25 30 35 40 45

Percent Hispanic

The first column represents all states with a Hispanic percent in their
population between 0% and 4.99%. The height of the column shows how
many states (27) have a percent in this range.

The last column represents all states with a Hispanic percent in their
population between 40% and 44 99%. There is only one such state: New
Mexico, at 42.1% Hispanics.
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How to create a histogram?

L i Same data set
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How to create a histogram?

It is an iterative process — try and try again.

What bin size should you use?

o Nottoo many bins with either O or 1 counts
o Not overly summarized that you loose all the information

o Not so detailed that it is no longer summary

= rule of thumb: start with 5 to 10 bins

Look at the distribution and refine your bins

(There isn't a unique or “perfect” solution)
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From histograms to probability distribution: “hanging rootograms”

* A hanging rootogram was suggested by Tukey in 1971, as a graphical
means to better compare an observed bar chart or histogram (with equal-
width categories) with a theoretical probability distribution.

library("vcd")
# create data -
madison=table(rep(0:6,c(156,63,29,8,4,1,1))

) i
# fit a poisson distribution 6 - X
madisonPoisson=goodfit(madison,"poisson N
ll) X
2 \Ak

Hcreate rootogram 0 E*

L]
rootogram(madisonPoisson)

0 1 2 3 4 5 6

sqri{Frequency)

Number of Occurrences
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e The comparison is made easier by

'hanging' the observed results
from the theoretical curve, so that =

the discrepancies are seen by \
comparison with the horizontal \

syt Fmquency)
~

axis rather than a sloping curve.
e The vertical axis is scaled to the

square-root of the frequencies so o

as to draw attention to ) e

discrepancies in the tails of the . e .
distribution.

Here: Observed frequencies clearly differ systematically from those
predicted under a Poisson model.
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The value of bar charts and histograms ... be observant

When describing the distribution of a quantitative variable, we look for the
overall pattern and for striking deviations from that pattern. We can describe

the overall pattern of a histogram by its shape, center, and spread.

N / xj
Histogram with a line connecting Histogram with a smoothed curve

each column =2 too detailed highlighting the overall pattern of
the distribution

/\
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2.2 Outlier detection and influential observations
Outlier detection and influential observations

e Definition of Hawkins [Hawkins 1980]:

“An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different
mechanism”

 Statistics-based intuition
0 “Normal data” objects follow a “generating mechanisms”, e.g. some
given statistical process
0 “Abnormal objects” deviate from this generating mechanism

Whether an occurrence is abnormal depends on different aspects like
frequency, spatial correlation, etc.
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Sample applications of outlier detection
* Fraud detection
O Purchasing behavior of a credit card owner usually changes when the
card is stolen
0 Abnormal buying patterns can characterize credit card abuse
 Medicine
0 Unusual symptoms or test results may indicate potential health
problems of a patient
0 Whether a particular test result is abnormal may depend on other
characteristics of the patients (e.g. gender, age, ...)
e Public health
O The occurrence of a particular disease, e.g. tetanus, scattered across
various hospitals of a city indicate problems with the corresponding
vaccination program in that city
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e Sports statistics
O In many sports, various parameters are recorded for players in order to
evaluate the players’ performances
0 Outstanding (in a positive as well as a negative sense) players may be
identified as having abnormal parameter values
0 Sometimes, players show abnormal values only on a subset or a special
combination of the recorded parameters
e Detecting measurement errors
0 Data derived from sensors (e.g. in a given scientific experiment) may
contain measurement errors
0 Abnormal values could provide an indication of a measurement error
0 Removing such errors can be important in other data mining and data
analysis tasks

“One person‘s noise could be another person’s signal.”
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Food for thought using a “basic model” for outlier detection

e Data is usually multivariate, i.e., multi-dimensional
0 basic model is univariate, i.e., 1-dimensional (see previous plot!!!)
e There is usually more than one generating mechanism/statistical process
underlying the “normal” data
0 basic model assumes only one “normal” generating mechanism
 Anomalies may represent a different class (generating mechanism) of
objects, so there may be a large class of similar objects that are the outliers
0 basic model assumes that outliers are rare observations
* A lot of models and approaches have evolved in the past years in order to
exceed these assumptions

III

* |t is not easy to keep track with this evolution: often involve typical,
sometimes new, though usually hidden assumptions and restrictions, which
should be verified for their validity
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2.3 Exploratory Data Analysis (EDA)

Introduction

 Three popular data analysis approaches are:
0 Classical
O Bayesian
O Exploratory (Exploratory Data Analysis)

 These three approaches are similar in that they all start with a general
science/engineering problem and all yield science/engineering conclusions.
The difference is the sequence and focus of the intermediate steps.
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O For classical analysis, the sequence is
Problem => Data => Model => Analysis => Conclusions

O For Bayesian, the sequence is
Problem => Data => Model => Prior Distribution
=> Analysis => Conclusions
O For EDA, the sequence is
Problem => Data => Analysis => Model => Conclusions
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Introduction

* For classical analysis, the data collection is followed by proposing a model
(normality, linearity, etc.) and the analysis, estimation, and testing that
follows are focused on the parameters of that model.

e For a Bayesian analysis, the analyst attempts to incorporate
scientific/engineering knowledge/expertise into the analysis by imposing a
data-independent distribution on the parameters of the selected model:
the analysis formally combines both the prior distribution on the
parameters and the collected data to jointly make inferences and/or test
assumptions about the model parameters.

e For EDA, the data collection is not followed by a model imposition: it is
followed immediately by analysis with a goal of inferring what model would
be appropriate.
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So what does EDA involve and what does it not involve?

e Exploratory Data Analysis (EDA) is an approach/philosophy for data analysis
that employs a variety of technigues (mostly graphical) to

O maximize insight into a data set;
O uncover underlying structure;

O extract important variables;

O detect outliers and anomalies;
O test underlying assumptions;

0 develop parsimonious models
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e Some common questions that exploratory data analysis is used to answer

are.

0 What is a typical value?

0 What is the uncertainty for a typical value?

0 What is a good distributional fit for a set of numbers?

0 What is a percentile?

0 Does an engineer modification have an effect?

0 Does a factor have an effect?

0 What are the most important factors?

0 Are measurements coming from different laboratories equivalent?

0 What is the best function for relating a response variable to a set of factor
variables?

0 What are the best settings for factors?

0 Can we separate signal from noise in time dependent data?

0 Can we extract any structure from multivariate data?

O Does the data have outliers?
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So what does EDA involve and what does it not involve?

 The EDA approach is precisely that - an approach/philosophy - . It is not just
a set of techniques or toolbox
e So also: EDA is not identical to statistical graphics (although the two terms
are used almost interchangeably) ... It is much more.
O Statistical graphics is a collection of graphically-based techniques. They
are all focusing on data characterization aspects.
0 EDA is an approach to data analysis that postpones the usual
assumptions about what kind of model the data follow with the more

direct approach of allowing the data itself to reveal its underlying
structure and model.

The main role of EDA is to open-mindedly explore, and graphics gives the
analysts unparalleled power to do so
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Motivating example

e Given 4 data sets (actual data omitted), for which

N=11

Mean of X=9.0
Mean of Y=7.5
Intercept =3
Slope = 0.5

Residual standard deviation = 1.236
Correlation =0.816 (0.817 for data set 4)

e This implies that in some quantitative sense, all four of the data sets are
"equivalent".

* In fact, the four data sets are far from "equivalent"!

e A “scatter plot” of each data set (i.e., plotting Y values versus corresponding
X values in a plane), would be the first step of any EDA approach ... and
would immediately reveal non-equivalence!
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DATASET 1
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The role of graphics in EDA is ONE important component, indeed

e Statistics and data analysis procedures can broadly be split into two parts:
O Quantitative procedures
O Graphical procedures

 Quantitative techniques are the set of statistical procedures that yield
numeric or tabular output:
0 hypothesis testing (see next chapters)

0 analysis of variance (is there more variation within groups of
observations than between groups of observations?)

O point estimates and confidence intervals (see next chapters)

O least squares regression

These and similar techniques are all valuable and are mainstream in terms
of classical analysis.
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* The graphical techniques are for a large part employed in an EDA
framework. They are often quite simple:

0 plotting the raw data such as via histograms, probability plots

0 plotting simple statistics such as mean plots, standard deviation plots,
box plots, and main effects plots of the raw data.

0 positioning such plots so as to maximize our natural pattern-recognition
abilities (multiple plots, when grouped together, may give a more
complete picture of what is going on in the data — see later)
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Easy (see before) and more complicated graphical approaches for EDA

The R Project for Statistical Computing
PGA 5 vars )
princeemp = data, cor = cor} @ o i e
! &
SR CIN
Examlnam_n__. . ® ¥
— (1-3) 60% : ;. D s
(3)60% @ @ o .
l o0
[ [—— ®

Clustering 4 groups Factor 1 [41%)] Factor 3 [19%]

Groups ~

(http://www.r-project.org/)
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Assumptions of EDA

e Virtually any data analysis approach relies on assumptions that need to be
verified

e There are four assumptions that typically underlie all measurement
processes; namely, that the data from the process at hand "behave like":

O random drawings,

O from a fixed distribution,

0 with the distribution having fixed location and
0 with the distribution having fixed variation
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Assumptions of EDA

e The most common assumption is that the differences between the raw
response data and the predicted values from a fitted model (these are
called residuals) should themselves behave like a univariate process

e Under a univariate process we understand that the data following such a
process behaves like:

O random drawings,
O from a fixed distribution,

0 with fixed location (namely, O in the case of “residuals” above) and
0 with fixed variation.



CHAPTER 4: IT IS ALL ABOUT DATA 4b- 39

Assumptions of EDA

e |f the residuals from the fitted model do in fact behave like the ideal, then
testing of these underlying assumptions for univariate processes becomes a
tool for the validation and quality of fit of the chosen model.

e On the other hand, if the residuals from the chosen fitted model violate one
or more of the aforementioned univariate assumptions, then we can say
that the chosen fitted model is inadequate and an opportunity exists for
arriving at an improved model.
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Testing underlying assumptions using an EDA approach

 The following EDA techniques are simple, efficient, and powerful for the
routine testing of underlying assumptions:

O run sequence plot (Y; versus i) -- upper left on next slide
0 lag plot (Y; versus Y1) -- upper right on next slide
0 histogram (counts versus subgroups of Y) -- lower left
0 normal probability plot (ordered Y versus theoretical ordered Y) —
lower right on next slide
e Together they form what is often called a 4-plot of the data.
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Mormal Random Numbers: 4-Plot
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Interpretation of 4-plots

Randomness:

If the randomness assumption holds, then the lag plot (Y; versus Y1) will be
without any apparent structure and random.

Fixed Distribution:

If the fixed distribution assumption holds, in particular if the fixed normal
distribution holds, then the histogram will be bell-shaped, and the normal
probability plot will be linear.

Fixed Location:

If the fixed location assumption holds, then the run sequence plot (Y; versus
i) will be flat and non-drifting.

Fixed Variation:

If the fixed variation assumption holds, then the vertical spread in the run
sequence plot (Y; versus i) will be the approximately the same over the
entire horizontal axis.
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Interpretation of 4-plots

Run Sequence Plot:

If the run sequence plot (Y; versus i) is flat and non-drifting, the fixed-
location assumption holds. If the run sequence plot has a vertical spread
that is about the same over the entire plot, then the fixed-variation
assumption holds.

Lag Plot:

If the lag plot is without structure, then the randomness assumption holds.
Histogram:

If the histogram is bell-shaped, the underlying distribution is symmetric and
perhaps approximately normal.

Normal Probability Plot:

If the normal probability plot is linear, the underlying distribution is
approximately normal.

If all 4 assumptions hold, then the process is said to be "in statistical control".
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Two examples of 4-plots

Normal Random Numbers: 4-Plot
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 The following example of a 4-plot reveals a process that has fixed location,

fixed variation, is random, apparently has a fixed approximately normal
distribution, and has no outliers.
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Beam Deflections: 4-Plot
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* This 4-plot reveals a process that has fixed location, fixed variation, is non-

random (oscillatory), has a non-normal, U-shaped distribution

e There seem to be several outliers
(interpretation = gcm material!!l)
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Consequences of non-randomness

e If the randomness assumption does not hold, then

0 All of the usual statistical tests are invalid.

O The calculated uncertainties for commonly used statistics become
meaningless.

O The calculated minimal sample size required for a pre-specified
tolerance becomes meaningless.

0 The simple model (linear regression line): y = constant + error becomes
invalid.

O The parameter estimates become suspect and non-supportable

O..

When violations cannot be “corrected” in some sense, usually a more
complicated analysis strategy needs to be adopted.
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2.4 Box plots

Introduction

 The box-plot, also known as the box and whisker plot, is a graphical method
of displaying 5 descriptive statistics:
O the median,
O the upper and lower quartiles (the lower quartile is the 25th percentile
and the upper quartile is the 75th percentile),
0 and the minimum and maximum data values.

e First created by John Tukey in a 1977 publication, box plots have evolved
into a familiar and useful standard in data interpretation.
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 The box plot identifies the middle 50% of the data, the median, and the

extreme points.

Maximum

[

Upper Quartile

Meadian

Lower Quartile

l

Minimum

d

a) The anatomy of a box plot.

| |
C d =

b-e) Variations of the Box Plot.
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Dissection of a classical box plot

Miles Per Gallon

30

25

20

1%

10

Car Milage Data

Mumber of Cylinders

0 A symbol is plotted at the
median (or a line is drawn) and
a box is drawn (hence the
name--box plot) between the
lower and upper quartiles; this
box represents the middle
50% of the data--the "body" of
the data.

O A line is drawn from the lower
quartile to the minimum point
and another line from the
upper quartile to the
maximum point
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Box plots, identifying outliers

 There is a useful variation of the box plot that more specifically identifies
outliers.

e To create this variation:
O Calculate the interquartile range (the difference between the upper and lower
quartile) and call it IQ.

O Calculate the following points: the lower (upper) quartile to the

smallest (largest) point that is
L1 = lower quartile - 1.5*IQ

L2 = lower quartile - 3.0*IQ
U1l = upper quartile + 1.5*1Q
U2 = upper quartile + 3.0*I1Q

greater (smaller) than L1 (U1).

O Points between L1 and L2 or
between U1l and U2 are drawn as
small circles. Points less than L2

0 The line from the lower (upper) or greater than U2 are drawn as
guartile to the minimum large circles.
(maximum) is now drawn from
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(interpretation = gcm material!!!)
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Uses of box plots, as they are most commonly used

* The strong point of the box plot is its ability to compare two populations
without knowing anything about the underlying statistical distributions of
those populations.

O Note that the distribution that defines a population also determines the
type of statistical analyses that can be properly applied, so the box plot
actually allows you to compare "apples and oranges" graphically that
might not be directly comparable statistically.

* The box plot can provide answers to the following questions:
O Is a factor significant?
0 Does the location differ between subgroups?
0 Does the variation differ between subgroups?
O Are there any outliers?
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Extensions to the classical box plots — 1 (no exam material)

One of the most common types of information added to the box plot is a
description of the distribution of the data values. The box plot summarizes
the distribution using only 5 values, but this overview may hide important
characteristics.

For instance, the modality (or number of most often occurring data values)
of a distribution is hidden by the box plot, and distinctive distributions with
varying modality may be encoded using similar looking box plots.

One solution to these types of problems is to add into the box plot
indications of the density of underlying distribution.

Or sometimes, you simply like to have a better grip on the number of
contributing observations..

For all of these extra pieces of information, an extension of the classical box
plot exists.
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Examples of methods for adding density to the box plot. The a) histplot, b)
vaseplot, c) box-percentile plot, and d) violin plot (a combination of a
boxplot and a kernel density plot).
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2.5QQ plots

Percentiles and quantiles revisited

The k-th percentile of a set of values divides them so that £ %
of the values lie below and (100 — %)% of the values lie above.

e The 25th percentile is known as the lower quartile.
e The 50th percentile is known as the median.
e The 75th percentile is known as the upper quartile.

It 1s more common in statistics to refer to guantiles. These are
the same as percentiles, but are indexed by sample fractions
rather than by sample percentages.
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The previous definition of quantiles and percentiles 1s not
completely satisfactory. For example, consider the six values:

30 27 33 1.3 22 31
What is the lower quartile of these values?

There is no value which has 25% of these numbers below it
and 75% above.

To overcome this difficulty we will use a definition of
percentile which is in the spirit of the above statements, but
which (necessarily) makes them hold only approximately.
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We define the quantiles for the set of values:
3.7 27 33 1.3 22 3.1
as follows.
First sort the values into order:
1.3 22 24 31 38 3.F

Associate the ordered values with sample fractions equally
spaced from zero to one.

Sample fraction | 0 | .2 | 4 | .6 | .8 1
Quantile [.3122127]3.1]33]3.7
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The other quantiles of

]

1.3 222 27 8.1 33 3.7
can be obtained by linear interpolation between the values of
the table.

The median corresponds to a sample fraction of .5. This lies
half way between 0.4 and 0.6. The median must thus be
SK T 5 31=29

The lower quartile corresponds to a sample fraction of .25.
This lies one quarter of the way between .2 and .4. The lower
quartile must then be .75 x 2.2 + .25 x 2.7 = 2.325.
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Computing the Median and Quartiles

Quantile

o0 01 02 03 04 05 06 07y 08 08 10

Sample Fraction

0.05 =25% (0.4-0.2)
25%(2.7-2.2) + 2.2 = targeted value

4b -

60
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The general case: deriving quantiles from your data
(compare with theoretical quantile function)

Given a set of values x1. x9.....x,, we can define the
quantiles for any fraction p as follows.

Sort the values in order

Teyy X Tppy Koo v K Iy

>~ L(n)-

The values x(y), .. . ,: r(n) are called the order statistics of the
original sample.

Take the order statistics to be the quantiles which correspond
to the fractions:
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The quantile function

In general, to define the quantile which corresponds to the
fraction p, use linear interpolation between the two nearest p,.

If p lies a fraction f of the way from p; to p,.1 define the pth
quantile to be:

Qp) =1 - 1)Qpi) + fQ(pis1)
As special cases, define the median and quartiles by:

Median: Q(.5)
Lower Quartile: ()(.25)
Upper Quartile: Q)(.75)

The function () defined in this way is called the Quantile
Function.
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Important note

 We defined the quantile function before: the quantile function of a
probability distribution is the inverse of its cumulative distribution function
(cdf) F

e Now we have seen how to derive the quantile function from the data.

e So, if we consider this to be an estimate (derived from our data) for the
truth (at population level), the quantile function estimated from the data
will learn us something about the underlying true distribution of the data

e Quantile plots:

O The sample quantiles are

plotted against the fraction of /
the sample they correspond to
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Important note

e If we assume a particular “model” or mechanism that could have generated
the data, we can compare the quantile function corresponding to this
“theoretically proposed distribution” to the quantile function
corresponding to our observed data

e Such a plot, comparing observed versus theoretical quantiles, goes further
than a simple boxplot (also using quantiles), since it gives a clue about the
validity of a proposed model for the data or data generation mechanism.
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Quantile-quantile (Q-Q) plots

In general, QQ plots allow us to compare the quantiles of two sets of
numbers
This kind of comparison is much more detailed than a simple comparison of
means or medians
There is a cost associated with this extra detail. We need more observations
than for simple comparisons.
Important remark:
O A P-P plot compares the empirical cumulative distribution function of a
data set with a specified theoretical cumulative distribution function.
0 A Q-Q plot compares the quantiles of a data distribution with the
quantiles of a standardized theoretical distribution from a specified

family of distributions
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The many uses of Q-Q plots

e The most common form of a Q-Q-plot is the normal Q-Q plot, which
represents an informal graphical test of the hypothesis that a data
sequence is normally distributed.

e Thatis, if the points on a normal Q-Q plot are reasonably well
approximated by a straight line, the popular Gaussian data hypothesis is
plausible, while marked deviations from linearity provide evidence against
this hypothesis.

e The utility of normal Q-Q plots goes well beyond this informal hypothesis
test. In particular, the shape of a normal Q-Q plot can be extremely useful
in highlighting distributional asymmetry, heavy tails, outliers, multi-
modality, or other data anomalies.
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Quantile-quantile plot diagnostics

Description of Point Pattern Possible Interpretation
all but a few points fall on a line outliers in the data

left end of pattern 1s below the line; nght end of pattern is above the line long tails at both ends of the data distribution
left end of pattern is above the line; nght end of pattern is below the line short tails at both ends of the data distributiop

curved pattern with slope increasing from left to nght data distnbution is skewed to the nght
curved pattern with slope decreasing from left to nght data distribution is skewed to the left
staircase pattern (plateaus and gaps) data have been rounded or are discrete
Old Faithful Geyser
Eruption Durations
g
“
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g 2
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Moemd Ouantides
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Quantile-quantile plot diagnostics

Description of Point Pattern Possible Interpretation

all but a few points fall on a line outhers n the data

left end of pattern 1s below the line; nght end of pattern is above the line long tails at both ends of the data distribution
left end of pattern is above the line; right end of pattern is below the line short tails at both ends of the data distribution

curved pattern with slope increasing from left to nght data distnbution is skewed to the nght
curved pattern with slope decreasing from left to nght data distribution is skewed to the left
staircase pattern (plateaus and gaps) data have been rounded or are discrete
Pima Indians Data
Diastolic Blood Pressure
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Quantile-quantile plot diagnostics

Description of Point Pattern Possible Interpretation
all but a few points fall on a line outhiers in the data

left end of pattern is below the line; right end of pattern is above the line long tails at both ends of the data distribution
left end of pattern is above the line; right end of pattern is below the line short tails at both ends of the data distribution

curved pattern with slope increasing from left to nght data distnbution is skewed to the nght
curved pattern with slope decreasing from left to nght data distribution is skewed to the left
staircase pattern (plateaus and gaps) data have been rounded or are discrete

Deaths per 10,000 Drivers,
by State or District
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Quantile-quantile plot diagnostics

Description of Point Pattern Possible Interpretation

all but a few points fall on a line outliers in the data

left end of pattern is below the line; right end of pattern is above the line long tails at both ends of the data distribution
left end of pattern is above the line; right end of pattern is below the line short tails at both ends of the data distribution

curved pattern with slope increasing from left to nght data distribution is skewed to the nght
curved pattern with slope decreasing from left to nght data distribution is skewed to the left
staircase pattern (plateaus and gaps) data have been rounded or are discrete
Drivers by State or District,
Tens of Thousands
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