Probability and Statistics

$$
\text { Kristel Van Steen, PhD }{ }^{2}
$$

Montefiore Institute - Systems and Modeling GIGA - Bioinformatics
ULg

kristel.vansteen@ulg.ac.be

CHAPTER 3: SOME IMPORTANT DISTRIBUTIONS

1 Discrete case
1.1 Bernoulli trials

Binomial distribution - sums of binomial random variables
Hypergeometric distribution
Geometric distribution
Memoryless distributions
Negative binomial distribution
1.2 Multinomial distribution
1.3 Poisson distribution

Sums of Poisson random variables
1.4 Summary

2 Continuous case

2.1 Uniform distribution
2.2 Normal distribution

Probability tabulations
Multivariate normality
Sums of normal random variables
2.3 Lognormal distribution

Probability tabulations
2.4 Gamma and related distributions

Exponential distribution
Chi-squared distribution
2.5 Where discrete and continuous distributions meet
2.6 Summary

1 Discrete case

- This part deals with some distributions of random variables that are important as models of scientific discrete phenomena.
- An understanding for the situations in which these random variables arise enables us to choose an appropriate distribution for a scientific phenomenon under consideration.
- Hence, in alignment with what we discussed in Chapter 1, we will dwell upon "induction": choosing a model on the basis of factual understanding of the physical phenomenon under investigation
o induction is reasoning from detailed facts to general principles and
o deduction is reasoning from the general to the particular

2.7 Bernoulli trials and binomial distributions

- Suppose X represents a random variable representing the number of successes S in a sequence of n Bernoulli trials, regardless of the order in which they occur.
- Then X is a discrete random variable
- What is the probability mass function of X ? $P_{X}(k)=$?
- Answer: Compute the total number of possible arrangements of outcomes of the n Bernoulli trials that satisfy the property. In particular, count the number of ways that k letters S can be placed in n boxes:
o n choices for first S
- n-1 choices for second S

○ ...

- N-(k-1) choices for kth S

Divide by the number of ways $\mathrm{k} S$ letters can be arranged in k boxes: k !
The number of ways k successes can happen in n trials is therefore:

$$
\frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!},
$$

and the probability associated with each is $p^{k} q^{n-k}$:

$$
\begin{gathered}
p_{X}(k)=\binom{n}{k} p^{k} q^{n-k}, \quad k=0,1,2, \ldots, n, \\
\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{gathered}
$$

the binomial coefficient in the binomial theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

- Binomial probabilities $P(X=x)$ as a function of x for various choices of n and π. On the left, $\mathrm{n}=100$ and $\pi=0.1,0.5$. On the right, $\pi=0.5$ and $\mathrm{n}=25,150$

- More insight into the behavior of $P_{X}(k)$ can be gained by taking the ratio:

$$
\frac{P_{X}(k)}{P_{X}(k-1)}=\frac{(n-k+1) p}{k q}=1+\frac{(n+1) p-k}{k q}
$$

- Hence,
- $P_{X}(k)$ is greater than $P_{X}(k-1)$ when $k<(n+1) p$ and is smaller when $k>(n+1) p$.
- If we define an integer k^{\star} as $(n+1) p-1<k^{\star} \leq(n+1) p$, the value of $P_{X}(k)$ increases monotonically and attains its max value at $k=k^{\star}$, then decreases monotonically
- If $(n+1) p$ happens to be an integer, the max value takes place at both $P_{X}\left(k^{\star}-1\right)$ and $P_{X}\left(k^{\star}\right)$
- The integer k^{\star} is a mode of this distribution and often referred to as the "most probable number of successes"
- Binomial probabilities $P(X=x)$ as a function of x for various choices of n and π. On the left, $\mathrm{n}=100$ and $\pi=0.1,0.5$. On the right, $\pi=0.5$ and $\mathrm{n}=25,150$

Example

- What is the probability distribution of the number of times a given pattern occurs in a random DNA sequence L_{1}, \ldots, L_{n} ?
- New sequence X_{1}, \ldots, X_{n} :

$$
\mathrm{X}_{\mathrm{i}}=1 \text { if } \mathrm{L}_{\mathrm{i}}=\mathrm{A} \text { and } \mathrm{X}_{\mathrm{i}}=0 \text { else }
$$

- The number of times N that A appears is the sum

$$
N=X_{1}+\ldots+X_{n}
$$

- The prob distr of each of the X_{i} :

$$
\begin{gathered}
P\left(X_{i}=1\right)=P\left(L_{i}=A\right)=p_{A} \\
P\left(X_{i}=0\right)=P\left(L_{i}=C \text { or } G \text { or } T\right)=1-p_{A}
\end{gathered}
$$

- What is a "typical" value of N ?

Example

- What is the probability distribution of the number of times a given pattern occurs in a random DNA sequence L_{1}, \ldots, L_{n} ?
- New sequence X_{1}, \ldots, X_{n} :

$$
\mathrm{X}_{\mathrm{i}}=1 \text { if } \mathrm{L}_{\mathrm{i}}=\mathrm{A} \text { and } \mathrm{X}_{\mathrm{i}}=0 \text { else }
$$

- The number of times N that A appears is the sum

$$
N=X_{1}+\ldots+X_{n}
$$

- The prob distr of each of the X_{i} :

$$
\begin{gathered}
P\left(X_{i}=1\right)=P\left(L_{i}=A\right)=p_{A} \\
P\left(X_{i}=0\right)=P\left(L_{i}=C \text { or } G \text { or } T\right)=1-p_{A}
\end{gathered}
$$

- What is a "typical" value of N ?
- Depends on how the individual X_{i} (for different i) are interrelated

Exact computation via closed form of relevant distribution

- The formula for the binomial probability mass function is :

$$
P(N=j)=\binom{n}{j} p^{j}(1-p)^{n-j}, \mathrm{j}=0,1, \ldots, \mathrm{n}
$$

and therefore

$$
\begin{aligned}
P(N \geq 300) & =\sum_{j=300}^{1000}\binom{1000}{j}(1 / 4)^{j}(1-1 / 4)^{1000-j} \\
& =0.00019359032194965841
\end{aligned}
$$

Approximate via Stirling's formula

- Factorials start off reasonably small, but by 10 !, we are already in the millions, and it doesn't take long until factorials "explode". Unfortunately there is no shortcut formula for $n!$, you have to do all of the multiplication.
- On the other hand, there is a famous approximate formula, named after the Scottish mathematician James Stirling (1692-1770), that gives a pretty accurate idea about the size of n !:

$$
\text { Stirling's formula } n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

- n factorial involves nothing more sophisticated than ordinary multiplication of whole numbers, which Stirling's formula relates to an expression involving square roots, π (the area of a unit circle), and e (the base of the natural logarithm).
- What are the consequences of using this approximation?

$$
\begin{array}{llllc}
1!=1 & 2!=2 & 3!=6 & 4!=24 & 5!=120 \\
6!=720 & 7!=5040 & 8!=40320 & 9!=362880 & 10!=3628800
\end{array}
$$

```
1! \approx0.92 2! \approx 1.92 3! \approx5.84 4! \approx 23.51 5! \approx 118.02
6!\approx710.08 7! \approx4980.39 8! \approx39902.39 9! \approx359536.87 10! \approx3598695.62
```

- In fact the approximation 1 ! ≈ 0.92 is accurate to 0.08 , while 10 ! ≈ 3598695.62 is only accurate to about 30,000 . [compute the difference between the exact and approximated values]
- You can see that the larger n gets, the better the approximation proportionally. The proportional error for 1! Is (1!-0.92)/1! - 0.0800 while for 10 ! It is $(10!-3598695.62) / 10!=0.0083$, ten times smaller.
- This is the correct way to understand Stirling's formula:
as n gets large, the proportional error

$$
\left[n!-\sqrt{2 \pi n}(n / e)^{n}\right] / n!
$$

goes to zero.

Approximate via Central Limit Theory

- The central limit theorem offers a $3^{\text {rd }}$ way to compute probabilities for a binomial distribution
- It applies to sums or averages of iid random variables
- Assuming that X_{1}, \ldots, X_{n} are iid random variables with mean μ and variance σ^{2}, then we know that for the sample average

$$
\begin{aligned}
& \bar{X}_{n}=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right), \\
& \mathrm{E} \bar{X}_{n}=\mu \text { and } \operatorname{Var} \bar{X}_{n}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

- Hence,

$$
E\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right)=0, \operatorname{Var}\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}\right)=1
$$

Approximate via Central Limit Theory

- The central limit theorem states that if the sample size n is large enough,

$$
P\left(a \leq \frac{\bar{X}_{n}-\mu}{\frac{\sigma}{\sqrt{n}}} \leq b\right) \approx \phi(b)-\phi(a)
$$

with $\phi($.$) the standard normal distribution defined as$

$$
\phi(z)=P(Z \leq z)=\int_{-\infty}^{z} \phi(x) d x
$$

Approximate via Central Limit Theory

Approximate via Central Limit Theory

- Estimating the quantity $P(N \geq 300)$ when N has a binomial distribution with parameters $\mathrm{n}=1000$ and $\mathrm{p}=0.25$,

$$
\begin{gathered}
E(N)=n \mu=1000 \times 0.25=250 \\
\operatorname{sd}(N)=\sqrt{n} \sigma=\sqrt{1000 \times \frac{1}{4} \times \frac{3}{4}} \approx 13.693 \\
P(N \geq 300)=P\left(\frac{N-250}{13.693}>\frac{300-250}{13.693}\right) \\
\approx P(Z>3.651501)=0.0001303560
\end{gathered}
$$

- Now consider all estimates of $P(N \geq 300)$ and you will see that all of these compare really well ...

Approximate via Poisson distribution

- When n gets large, the computation of mass probabilities may become cumbersome:
- Use Stirling's formula (see before)
- Use the central limit theorem (see before)
- Use Poisson's approximation to the binomial distribution (see later)

Sum of binomial distributed random variables

Problem: let X_{1} and X_{2} be two independent random variables, both having binomial distributions with parameters $\left(n_{1}, p\right)$ and $\left(n_{2}, p\right)$, respectively, and let $Y=X_{1}+X_{2}$. Determine the distribution of random variable Y.

Answer: the characteristic functions of X_{1} and X_{2} are,

$$
\phi_{X_{1}}(t)=\left(p \mathrm{e}^{\mathrm{j} t}+q\right)^{n_{1}}, \phi_{X_{2}}(t)=\left(p \mathrm{e}^{\mathrm{j} t}+q\right)^{n_{2}} .
$$

the characteristic function of Y is simply the product of $\phi_{X_{1}}(t)$ and $\phi_{X_{2}}(t)$. Thus,

$$
\begin{aligned}
\phi_{Y}(t) & =\phi_{X_{1}}(t) \phi_{X_{2}}(t) \\
& =\left(p \mathrm{e}^{\mathrm{j} t}+q\right)^{n_{1}+n_{2}} .
\end{aligned}
$$

By inspection, it is the characteristic function corresponding to a binomial distribution with parameters $\left(n_{1}+n_{2}, p\right)$. Hence, we have

$$
p_{Y}(k)=\binom{n_{1}+n_{2}}{k} p^{k} q^{n_{1}+n_{2}-k}, \quad k=0,1, \ldots, n_{1}+n_{2}
$$

Recall:

- The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables
- The characteristic function provides an alternative way for describing a random variable; it completely determines behavior and properties of the probability distribution of the random variable X
- If a random variable admits a density function, then the characteristic function is its dual, in the sense that each of them is a Fourier transform of the other.
- If a random variable has a moment-generating function, then the domain of the characteristic function can be extended to the complex plane, and $\phi_{X}(-i t)=M_{X}(t)$
- The characteristic function of a distribution always exists, even when the probability density function or moment-generating function do not.

The conditional probability mass function of a binomial random variable X, conditional on a given sum m for $X+Y(Y$ an independent from X binomial random variable)
$X \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $Y \sim \operatorname{Bin}\left(n_{2}, p\right)$,

$$
X+Y=m, 0 \leq m \leq n_{1}+n_{2}
$$

a) Box $=$ total possibilities $\left(n_{1}+n_{2}\right)$
b) Blue $=$ those having the property $\left(\mathrm{n}_{1}\right)$
Solution:
For $k \leq \min \left(n_{1}, m\right)$,
c) Red $=$ selection (k out of m selected have the property)

$$
\begin{aligned}
P(X=k \mid X+Y=m) & =\frac{P(X=k \cap X+Y=m)}{P(X+Y=m)} \\
& =\frac{P(X=k \cap Y=m-k)}{P(X+Y=m)}=\frac{P(X=k) P(Y=m-k)}{P(X+Y=m)} \\
& =\frac{\binom{n_{1}}{k} p^{k}(1-p)^{n_{1}-k}\binom{n_{2}}{m-k} p^{m-k}(1-p)^{n_{2}-m+k}}{\binom{n_{1}+n_{2}}{m} p^{m}(1-p)^{n_{1}+n_{2}-m}} \\
& =\binom{n_{1}}{k}\binom{n_{2}}{m-k} /\binom{n_{1}+n_{2}}{m}, \quad k=0,1, \ldots, \min \left(n_{1}, m\right)
\end{aligned}
$$

having used the result that $\mathrm{X}+\mathrm{Y}$ is binomially distributed with parameters

$$
\left(n_{1}+n_{2}, p\right)
$$

- This distribution is known as the hypergeometric distribution.

Example: over-representation of terms

- Gene Ontology (GO) is a collection of controlled vocabularies describing the biology of a gene product in any organism
- There are 3 independent sets of vocabularies, or so-called "ontologies":
- Molecular Function (MF)
- Cellular Component (CC)
- Biological Process (BP)
- Question: In a given list of genes of interest (eg. Differentially Expressed), is there a Gene Ontology term that is more represented than what it would be expected by chance only?

Molecular function

- ... activities or jobs of a gene product

Cellular component

- ... where a gene product acts

Biological processes

- A set of gene product functions make up a biological process, such as in courtship behavior

Gene ontology analysis makes life easier for the researcher: it allows making inferences across large numbers of genes without researching each one individually

- Solution:
- Most GO tools work in a similar way:
- input a gene list and a subset of 'interesting' genes
- tool shows which GO categories have most interesting genes associated with them i.e. which categories are 'enriched' for interesting genes
- tool provides a statistical measure to determine whether enrichment is significant ... and here the geometric distribution comes around
- This can be seen in the following way:

The hypergeometric distribution naturally arises from sampling from a fixed population of balls .

Here, a typical problem of interest is to to calculate the probability for drawing 7 or more white balls out of 10 balls given the distribution of balls in the urn \rightarrow hypergeometric test $\rightarrow p$-value (see later).

- Now the "property" is not the color of a ball, but whether a gene can be linked to a GO term or group of interest.

