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1 Discrete case

e This part deals with some distributions of random variables that are
important as models of scientific discrete phenomena.
 An understanding for the situations in which these random variables arise
enables us to choose an appropriate distribution for a scientific
phenomenon under consideration.
 Hence, in alignment with what we discussed in Chapter 1, we will dwell
upon “induction”: choosing a model on the basis of factual understanding
of the physical phenomenon under investigation
0 induction is reasoning from detailed facts to general principles and
0 deduction is reasoning from the general to the particular
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2.7 Bernoulli trials and binomial distributions

Suppose X represents a random variable representing the number of
successes S in a sequence of n Bernoulli trials, regardless of the order in
which they occur.
Then X is a discrete random variable
What is the probability mass function of X? Py (k) ="
Answer: Compute the total number of possible arrangements of outcomes
of the n Bernoulli trials that satisfy the property. In particular, count the
number of ways that k letters S can be placed in n boxes:

0 n choices for first S

0 n-1 choices for second S

O ..

O N-(k-1) choices for kth S
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Divide by the number of ways k S letters can be arranged in k boxes: k!

The number of ways k successes can happen in n trials is therefore:

l—1)~~-(n—k+1) n!
k! - kKl(n—k)!’

and the probability associated with each is p*¢"~*:

pylk) = (:)p‘e"q’;_“r". £=0,1,2,...,M,

(h‘" - !
k)"mm_ku

the binomial coefficient in the binomial theorem

n

(a+ b)" = Z (;?) aEpnk

=0
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* Binomial probabilities P(X = x) as a function of x for various choices of n
and 7. On the left, n=100 and 7=0.1,0.5. On the right, 7=0.5 and n=25,150
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* More insight into the behavior of Px (k) can be gained by taking the ratio:
Px(k)  (n—k+1)p m (n+1)p—k

Px(k—1) kq kq

* Hence,

0 Px(k) is greater than Pyx(k — 1)when k < (n + 1)p and is smaller
when k > (n+ 1)p.

o If we define anintegerk*as (n+1)p— 1 < k* < (n+ 1)p,
the value of Px(k)increases monotonically and attains its max value
at k = k*, then decreases monotonically

o0 If (n + 1)p happens to be an integer, the max value takes place at
both Px(k* — 1) and Px(k*)

0 The integer k™ is a mode of this distribution and often referred to as
the “most probable number of successes”
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* Binomial probabilities P(X = x) as a function of x for various choices of n
and 7. On the left, n=100 and 7=0.1,0.5. On the right, 7=0.5 and n=25,150
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Example

 What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., L,?
O New sequence Xy, ..., X:
X;=1 if Li=A and X;=0 else
O The number of times N that A appears is the sum
N=X{+...4+X,
O The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(X;=0)=P(L=CorGorT)=1-pa
e What is a “typical” value of N?
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Example

 What is the probability distribution of the number of times a given pattern
occurs in a random DNA sequence Ly, ..., L,?
O New sequence Xy, ..., X:
X;=1 if Li=A and X;=0 else
O The number of times N that A appears is the sum
N=X{+...4+X,
O The prob distr of each of the X;:
P(Xi=1) = P(Li=A)=pa
P(X;=0)=P(L=CorGorT)=1-pa
e What is a “typical” value of N?
O Depends on how the individual X; (for different i) are interrelated
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Exact computation via closed form of relevant distribution

e The formula for the binomial probability mass function is :

P(N =j) = (7}) p/(1—-p)*7,j=0,1, ..,n
and therefore
1000
P(N > 300) = z (1()].00) (1/4)7 (1 — 1/4)1000-J
j=300

= 0.00019359032194965841
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Approximate via Stirling’s formula

Factorials start off reasonably small, but by 10!, we are already in the
millions, and it doesn't take long until factorials “explode”. Unfortunately
there is no shortcut formula for n!, you have to do all of the multiplication.
On the other hand, there is a famous approximate formula, named after
the Scottish mathematician James Stirling (1692-1770), that gives a pretty

accurate idea about the size of nl:

Stirling’s formula n! ~ v27mn (g)"
n factorial involves nothing more sophisticated than ordinary multiplication
of whole numbers, which Stirling's formula relates to an expression
involving square roots, 7 (the area of a unit circle), and e (the base of the
natural logarithm).

What are the consequences of using this approximation?
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11=1 21 =2 31=6 41 = 24 bl =120
6! =720 7!=5040 8!=40320 9!= 362880 10! = 3628800

1!~ 0.92 2!~ 1.92 3! ~ 5.84 4! ~ 23.51 5! ~ 118.02
6! ~ 710.08 7!~ 4980.39 8!~ 39902.39 9!~ 359536.87 10!~ 3598695.62

e |In fact the approximation 1! =~ 0.92 is accurate to 0.08, while
10! &~ 3598695.62 is only accurate to about 30,000. [compute the
difference between the exact and approximated values]

* You can see that the larger n gets, the better the approximation
proportionally. The proportional error for 1! Is (1!-0.92)/1! — 0.0800
while for 10! It is (10! -3598695.62)/10! = 0.0083, ten times smaller.

e This is the correct way to understand Stirling’s formula:
as n gets large, the proportional error

(n! —v2mn (n/e)"]/nl

goes to zero.
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Approximate via Central Limit Theory

e The central limit theorem offers a 3" way to compute probabilities for a
binomial distribution

It applies to sums or averages of iid random variables

e Assuming that Xq, ..., X, are iid random variables with mean u and variance
a2, then we know that for the sample average

S 1
XTL — ; (Xl + ...+ Xn),

2

EX,=pand VarX,, = —

n
* Hence,

Xn— M\ _ Xn— _
(o) oo )=
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Approximate via Central Limit Theory
 The central limit theorem states that if the sample size n is large enough,

P(a < Btk o b) ~ ¢(b) — ¢(a),

N
with ¢ (.) the standard normal distribution defined as

b(2) = P(Z <7) = f b (x)dx



CHAPTER 3: SOME IMPORTANT DISTRIBUTIONS 3a- 16

Approximate via Central Limit Theory

04

0.3

Density
0.2
|

0.1

0.0

Sample size 25
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Approximate via Central Limit Theory
e Estimating the quantity P(N = 300) when N has a binomial distribution
with parameters n=1000 and p=0.25,
E(N) =nu =1000 x 0.25 = 250,

1 3

sd(N) = vno= [1000 X=X~ ~ 13.693
N 47 4

N—250 300 — 250)

13.693 ~ 13.693

P(N > 300) = p(

~ P(Z > 3.651501) = 0.0001303560

* Now consider all estimates of P(N = 300) and you will see that all of these
compare really well ...
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Approximate via Poisson distribution

 When n gets large, the computation of mass probabilities may become
cumbersome:
0 Use Stirling’s formula (see before)
0 Use the central limit theorem (see before)
0 Use Poisson’s approximation to the binomial distribution (see later)
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Sum of binomial distributed random variables

Problem: let X| and X, be two independent random variables,
both havmg binomial distributions with parameters (1, p) and (n,. p), respect-
ively, and let ¥ = X| + X,. Determine the distribution of random variable ¥.

Answer: the characteristic functions of X, and X, are,

ox, (1) = (pe’ + @)™, bx, (1) = (e + q)™.

the characteristic function of Y is simply the
product of ¢y, (7) and ¢y, (7). Thus,

oy (1) = ox, (1) dx, (1)
= (pej.r 4 q)m+n3‘
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B‘y ipspection, it is the characteristic function corresponding to a binomial
distribution with parameters (n; + n, p). Hence, we have

n +n ;
P}r(k) [ ( | k 2)p.ﬁ: H‘t'H'Ij—ﬂ‘r k =0’ l.l...jﬂ[ +”2.
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Recall:

e The characteristic function approach is particularly useful in analysis of
linear combinations of independent random variables

e The characteristic function provides an alternative way for describing a
random variable; it completely determines behavior and properties of the
probability distribution of the random variable X

e If a random variable admits a density function, then the characteristic
function is its dual, in the sense that each of them is a Fourier transform of
the other.

e If a random variable has a moment-generating function, then the domain of
the characteristic function can be extended to the complex plane, and
ox(—it) = Mx(t)

e The characteristic function of a distribution always exists, even when the
probability density function or moment-generating function do not.
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The conditional probability mass function of a binomial random variable X,
conditional on a given sum m for X+Y (Y an independent from X binomial
random variable)

X ~ Bln(n1,p> aﬂd Y ~ Bin<n27p>7
X+Y=m0<m<n+no

a) Box = total possibilities (n;+n,)
b)Blue = those having the property
(n1)

Solution: c) Red = selection (k out of m selected

Fork < mmmh m), have the property)
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P{XZ!.{I'-‘]}+ F:n;/‘]
PX+Y=m)
PX=kNY=m=k) :P{X =K)P(Y =m-k)
PX+Y=m) P(X+Y =m)
A1\ & m —k n m—k ) —m-+
()P a=p (™ Yprk(y — pynmsk

m—k

II'T] + ”2 m M hy=h
( - );J (1 -p)

= ('1') (m”j k)/(m :; ”1)? k=0,1,...,min(n;,m),

having used the result that X+Y is binomially distributed with parameters

PIIX IJ{.‘X—}— Y =m) =

(nl + n27p)

e This distribution is known as the hypergeometric distribution.
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Example: over-representation of terms

 Gene Ontology (GO) is a collection of controlled vocabularies describing the
biology of a gene product in any organism
 There are 3 independent sets of vocabularies, or so-called “ontologies”:

0 Molecular Function (MF)
0 Cellular Component (CC)
O Biological Process (BP)

e Question: In a given list of genes of interest (eg. Differentially Expressed), is
there a Gene Ontology term that is more represented than what it would
be expected by chance only?
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Molecular function
... activities or jobs of a gene product

Insglin

Insulin §
Receptor &

N

(e.g., insulin binding or receptor activity)
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Cellular component

e ...where a gene product acts

Inner
Membrane

Outer
Membrane
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Biological processes

e A set of gene product functions make up a biological process, such as in
courtship behavior
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Gene ontology analysis makes life
easier for the researcher: it allows
making inferences across large
numbers of genes without
researching each one individually
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genome and protein
databases

associated genes
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e Solution:

0 Most GO tools work in a similar way:
— input a gene list and a subset of ‘interesting’ genes

— tool shows which GO categories have most interesting genes
associated with them i.e. which categories are ‘enriched’ for
interesting genes

— tool provides a statistical measure to determine whether enrichment
is significant ... and here the geometric distribution comes around
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e This can be seen in the following way:

The hypergeometric distribution naturally arises from sampling from a fixed
population of balls .

20 white balls ~O~0
out of — '?I'HO" ’..
100 balls ~ (O @ 10 balls

Here, a typical problem of interest is to to calculate the probability for
drawing 7 or more white balls out of 10 balls given the distribution of balls
in the urn = hypergeometric test = p-value (see later).

 Now the “property” is not the color of a ball, but whether a gene can be
linked to a GO term or group of interest.
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Gene 1 p-value
0.7

Gene 2 = Group member 1 (t=2;z=1)
Gene 3 = Group member2 (t=3;z=2)

Gene 4 = Group member3 (t=4;z=3)

Gene 5
Gene 6

Gene 7 = Groupmember 4 (t =7;z =4)

Gene 8

1 2 3 4 5
Gene 9 z (position)

Gene 10
minimum determines cutoff

Gene 11

Gene 12

Gene 13 = Group member5 (t =13;z=5) n=14;x=5

Gene 14

Increasing fold-change —
CeO0O000L0e0O0,0000



