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1 Random variables
1.1 Introduction

e We have introduced before the concept of a probability model to describe
random experiments.
* Such a model consists of
O a universal space of events ()

0 a sample space of events w: .S,

O a probability P
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1.2 Formal definition

So, thus far we have focused on probabilities of events.

For example, we computed the probability that you win the Monty Hall
game or that you have a rare medical condition given that you tested
positive.

But, in many cases we would like to know more.
0 For example, how many contestants must play the Monty Hall game
until one of them finally wins?
0 How long will this condition last?
0 How much will | lose gambling with strange dice all night?

* To answer such questions, we need to work with random variables
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Often random experiments have associated numerical values, 1.e. for each elementary event
(outcome) w there is a number X (w) = z.

Frample: Random draw of a playing card
Define the value function X by:

w= Ace — Xw)=1
w= King — X(w)=1
w= Queen — X(w)=3
w= Jack —~ X(w)=2
w= Ten — X(w)=10
w= Nine —~ X(w)=0
w= Six —~ X(w)=0
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Thus in the example above, X (-) is a function. In general we define:

A random variable X is a function:

A 1—R
w+— X(w)

The function X () is not random, but its argument w is.

 While it is rather unusual to denote a function by X (orY, Z, ...) we shall
see that random variables sometimes admit calculations like those with
ordinary variables such as X (or, Z,...).

e The outcomes of the random experiment (i.e., w) yield different possible
values of x = X (w): the value of x is a realization of the random variable
X. Thus a realization of a random variable is the result of a random
experiment (which may be described by a number)
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e We call a random variable discrete if its range W = W (the set of
potential values of X) is discrete, i.e. countable (its potential values can be
numbered).

oW ={0,1,...,10} is finite and thus discrete, while

oW ={0,1,2,3,...} (natural numbers including zero) is infinite but still
discrete, and while

O the set of real numbers is not discrete (but continuous)

* |In case of a sample space having an uncountably infinite number of
sample points, the associated random variable is called a continuous
random variable, with its values distributed over one or more continuous
intervals on the real line.

 We need to make this distinction because they require different
probability assignment considerations...
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A special random variable

An indicaror random variable is a random variable that maps every oulcome (o
either 0 or 1. Indicator random variables are also called Bernoulli variables.

Indicator random variables are closely related to events. In particular, an in-
dicator random variable partitions the sample space into those outcomes mapped
to 1 and those outcomes mapped to 0. For example, the indicator M partitions the
sample space into two blocks as follows:

HHH TTT HHT HTH HTT THH THT TTH.
M=1 M=0

In the same way, an event E partitions the sample space into those outcomes
in £ and those not in £. So E is naturally associated with an indicator random

variable, I . where I g(w) = 1 for outcomes w € E and Ig (w) = 0 for outcomes
w ¢ E. Thus. M = I g where E is the event that all three coins match.
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If | were to repeat an experiment

e Suppose M=1 when the result of me tossing a coin is head (a success);
suppose M=0 when the result is tails

0
o

dbinom(0:8, 6, 1/2)
0.15 020 0.25 03
l \ l

010
\

0.05
l

plot(0:6, dbinom(0:6, 6, 1/2))
(http://www.r-project.org/)
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1.3 The numbers game

Enough definitions —let’s play a game! We have two envelopes. Each contains
an integer in the range 0,1,...,100, and the numbers are distinct. To win the
game, you must determine which envelope contains the larger number. To give
you a fighting chance, we’ll let you peek at the number in one envelope selected
at random. Can you devise a strategy that gives you a better than 50% chance of
winning’

For example, you could just pick an envelope at random and guess that it contains
the larger number. But this strategy wins only 50% of the time. Your challenge is
to do better.

S50 you might try to be more clever. Suppose you peek in one envelope and see
the number 12. Since 12 i1s a small number, you might guess that the number in the
other envelope is larger. But perhaps we’ve been tricky and put small numbers in
both envelopes. Then your guess might not be so good!
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An important point here is that the numbers in the envelopes may not be random.
We're picking the numbers and we’re choosing them in a way that we think will
defeat your guessing strategy. We'll only use randomization to choose the numbers
if that serves our purpose, which is making you lose!

Intuition Behind the Winning Strategy

Amazingly. there 1s a strategy that wins more than 50% of the time. regardless of
what numbers we put in the envelopes!

Suppose that you somehow knew a number x that was in between the numbers
in the envelopes. Now you peek in one envelope and see a number. If it is bigger

than x, then you know you're peeking at the higher number. If it is smaller than x,
then you're peeking at the lower number. In other words, if you know a number x
between the numbers in the envelopes, then you are certain to win the game.

The only flaw with this brilliant strategy is that you do not know such an x. Oh
well.
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But what if you try to guess x? There is some probability that you guess cor-
rectly. In this case, you win 100% of the time. On the other hand, if you guess
incorrectly, then you're no worse off than before: your chance of winning is still
50%. Combining these two cases, your overall chance of winning is better than
50%!

Informal arguments about probability. like this one, often sound plausible, but
do not hold up under close scrutiny. In contrast, this argument sounds completely
implausible —but is actually correct!

Analysis of the Winning Strategy

For generality, suppose that we can choose numbers from the set {0, 1, ..., n}. Call
the lower number L and the higher number H .

Your goal is to guess a number x between L and H . To avoid confusing equality
cases, you select x at random from among the half-integers:

A ;
Sl PRl e
2" Z 2 2

But what probability distribution should you use?
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The uniform distribution turns out to be your best bet. An informal justification
is that if we figured out that you were unlikely to pick some number —say SD%
—then we’d always put 50 and 51 in the envelopes. Then you’d be unlikely to pick
an x between L and H and would have less chance of winnineg.

After you've selected the number x. you peek into an envelope and see some
number 7. If T > x, then you guess that you're looking at the larger number.
If T < x, then you guess that the other number is larger.

All that remains is to determine the probability that this strategy succeeds. We
can do this with the usual four step method and a tree diagram.
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Step 1: Find the sample space.
You either choose x too low (< L), too high (> H), or just right (L < x < H).
Then you either peek at the lower number (7" = L) or the higher number (T = H).
This gives a total of six possible outcomes

—

choices number result probability
ol x peeked al
Tji/]“{ 2 o lose L/2n

x too low
L/n

T:H\]/Z' win [./2n

T=L 12 o win (H—L)2n

x just right /
(H-Lyn
\ win  (H—L)/2n

T=H 12

(n—H)/n

x too high

T=L 12 o win (n—H)/2n

T=H 1)2 lose  (n—H)/2n



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2-16

Step 2: Define events of interest.
The four outcomes in the event that you win are marked in the tree diagram.

Step 3: Assign outcome probabilities.

First, we assign edge probabilities. Your guess x is too low with probability L /n.
too high with probability (n — H)/n. and just right with probability (H — L)/n.
Next, you peek at either the lower or higher number with equal probability. Multi-
plying along root-to-leaf paths gives the outcome probabilities.
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Step 4: Compute event probabilities.
The probability of the event that you win is the sum of the probabilities of the four
outcomes in that event:

L H—-L H-L n—H

Prlwin] = —
rwin] 2H+ 2n T 2n T 2n

1 H-L

The final inequality relies on the fact that the higher number H is at least 1 greater
than the lower number L since they are required to be distinct.

Sure enough, you win with this strategy more than half the time, regardless
of the numbers in the envelopes!

So choosing numbers in the range 0,...,100, will make you win with prob at least
1/2+41/200 = 50.5%. Even better, if you are allowed only numbers in the range 0,...,10,
then your probability of winning rises to 55%! Not bad he ....
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Randomized algorithms

The best strategy to win the numbers game is an example of a randomized algorithm
—it uses random numbers to influence decisions. Protocols and algorithms that
make use of random numbers are very important in computer science. There are
many problems for which the best known solutions are based on a random number
generator.

For example. the most commonly-used protocol for deciding when to send a
broadcast on a shared bus or Ethernet is a randomized algorithm known as expo-
nential backoff. One of the most commonly-used sorting algorithms used in prac-
tice, called gquicksort, uses random numbers. You'll see many more examples if
you take an algorithms course. In each case, randomness is used to improve the
probability that the algorithm runs quickly or otherwise performs well.
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2 Functions of one random variable
2.1 Probability distribution functions

e Given a random experiment with associated random variable X, and given a
real number x, the function

Fx(x)=P(X <)

is defined as the cumulative distribution function (CDF).

e As x increases, the value of the CDF will increase as well, until it reaches 1
(which explains its name)

* Note that F'y(x)is simply a P(A), the probability of an event A occurring, the
event here being X < x

e This function is sometimes referred to in the literature as a probability
distribution function (PDF) or a distribution function (omitting cumulative),
which may cause some confusion...
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plot(ecdf(rnorm(10)))
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ecdf(rnorm(1000))

plot(ecdf(rnorm(1000)))
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Properties of cumulative distribution functions

(2) Fx(—oc0) = lim Fyx(x)=0,
T—r—0OO
Fx(+o0) = xEI—EOO Fx(x)=1

(27) Fx(.)is a montone, nondecreasing function; that is,

Fx(a) < Fx(b)fora < b

(231) Fx(.)is continuous from the right; that is,
lim FX(ZE + h) = FX(£C>
0<h—0

e Actually, ANY function F(.) with domain the real line and counterdomain
[0,1] satisifying the above three properties is defined to be a cumulative
distribution function.
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2.2 The discrete case: probability mass functions

The random variable X takes its values (its potential realizations) with certain probabili-
ties. These are defined as follows:

Probability of X taking the value =
=PX =2) = P({w; X(w)=1})

= ) P

wi; X (w)=z

Ezxample (cont.): X = Value of a playing card drawn at random

Probability of 4 = P(X =4)
= P({w; w= aking})
P(King of diamonds) 4+ P(King of hearts) + P(King of clubs) 4+ P(King of spades)
= 4/36=1/9.
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The “list” of probabilities P(X = x) for all possible values of x is called the (discrete)
(probability) distribution of the (discrete) random variable X. Each random variable
X has a corresponding (probability) distribution, and vice versa:

Random variable X < (probability) distribution

Each (discrete) probability distribution satisfies the equality

¥ P(X =z)=1

all = possible

The function
px(z)=P(X =)

is called the probability mass function of the discrete random variable X, or
discrete density function or probability function of X, amongst others.
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Ezample (cont.): X = Value of a playing card drawn at random
The probability distribution of X is

PG =1 — 1

P(X=10) = 1/9
P(X=4) = 1/9
P(X=3) = 1/9
P(X=2) = 1/9
P(X =0) = 4/9
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Relation between density function and cumulative distribution function

 The cumulative distribution function and probability mass function of a
discrete random variable contain the same information; each is recoverable
from the other:

Px(z;) = Fx(x;) — Fx(x;_1),
1.0 <x

Fx(z) = Z Py (x;),

assuming that r; < a9 < ...

 The discrete random variable X is completely characterized by these
functions
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Simplified definition for discrete density functions

Any function f(-) with domain

the real line and counterdomain [0, 1] is defined to be a discrete density

JSunction if for some countable set x,, x,, ..., x,, ...,
(1) f(xp>0forj=1,2,....
() fx)=0forx#x;;j=12,....

(iii) ) f(x;) =1, where the summation is over the points X, X,, ...,

Aoy ivas ,-'II."rI."f,"r

e This definition allows us to speak about discrete density functions without

reference to some random variable.

 We can therefore talk about properties of discrete density functions
without referring to a random variable
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2.3 The binomial distribution

Regard the situation where the quantity of interest is the number of successes (or failures)
at something. Examples of this include qguality control, success or failure of (medical or

biological) treatments, or gambling,
FErample: Coin toss
A coin is tossed and randomly comes up heads (K) or tails (Z).

Regard the random variable X' with values in W = {0.1} describing the following:

X=0 if the outcome is tails,

X =1 if the outcome is heads.
The probability distribution of X can be described by a single parameter 7
HX=1)==n, PX=0)=1—g, 0<a<l.

A fair coin has the parameter m = 1/2.
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Bernoulli distribution

A random variable X with range W = {0, 1} has a Bernoulli(7) distribution if
PX=1)=x, P(X=0)=1—m, O=w<]l.

The Bernoulli distribution is a trivial mathematical description of the (non-)occurence of
an event.

FExrample (cont.): n-fold coin toss
Regard X = Number of heads from n independent coin tosses. Obviously the range of X

is the set W = {0.1,...,n}. X can also be written as the sum of independent Bernoulli-
distributed random variables:

X = ZX
=1

X 1 i-th toss comes up heads
’ 0 i-th toss comes up tails.



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2-29

) oooo binom <- function(n) {
© ° plot(0:n, dbinom(0:n, n,
° | ° o 1/2))

::' ° o ° Sys.sleep(0.1)

c I _

E, = o ] }

S ’ ° ignore <- sapply(1:100,
S © ° binom)

on
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Binomial distribution

A random variable X with range W = {0,1,...,n} has a Binomial(n, m) distribution if

T

P(X —=)~— ( )WT(I—W)TI_”‘", =i, cum

€xr

where 0 < 71 < 1 is the success rate associated to the distribution.

(Here (2) is the binomial coefficient, which denotes the number of possible arrangements

of x successes and n — x failures).

As in the previous example, X denotes the number of successes/failures (occurence of a
particular event) out of n independent experiments. The independence of these experi-

ments is crucial if the binomial distribution is to apply.
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Binomial probabilities P(X = x) as a function of x for various choices of n
and 7. On the left, n=100 and 7=0.1,0.5. On the right, 7=0.5 and n=25,150

i | b
ﬁ_ ﬁ_
.. .
s o
o= g
£ £
=+ ~
[ =g [ =g
[=] =]
2] . hh . | ‘ ‘ |
= ol L1 1t et m et et et m et e e e an e e e et et et e nen s A | [
e | T T T T T T T T T T = — T T T T T T T T T T T
1] 10 20 30 <40 50 & 7D 380 20 100 o 2 4 4 8 10 12 14 16 18 20 22 24 26
ol ol
t"‘.l_ t"‘.l_
& 8 _
= w2
- g H
[ =] [ =]
= T T T T T T T T T T = T T T T T T T
0 0 20 30 40 50 & T0O 80 90 100 1] 20 40 80 BD 100 120 140
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2.4 The continuous case: density functions

e For a continuous random variable X, the CDF F'x(.) is a continuous function
and the derivative

fx($> _ dF;iiU)j

exists for all x.

 The function fx(.)is called the density function of X or the probability
density function of X
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Relation between density function and cumulative distribution function

 The cumulative distribution function and probability mass function of a
continuous random variable contain the same information; each is
recoverable from the other:

fX(x) — dFde('%)’
Fy(x) = / ' frlu)du

e The continuous random variable X is completely characterized by these
functions
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Simplified definition for density functions

Any function f(-) with domain
the real line and counterdomain [0, w0) is defined to be 2 probability
density function if and only if

(1) f(x) =0 for all x.

(i) [ fG)de=1.

e With this definition, we can speak of density functions without reference
to random variables
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Density curves as a mathematical model of a distribution

Density curves come in any

imaginable shape.

. )

.,

Some are well known

mathematically and others aren't.
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2.5 The normal distribution

 In probability theory, the normal (or Gaussian) distribution is a continuous
probability distribution that is often used as a first approximation to
describe real-valued random variables that tend to cluster around a single
mean value.

e The graph of the associated probability density function is "bell"-shaped,
and is known as the Gaussian function or bell curve:

(o) = ™5
x(T)=—F——€
2mo?
where parameter u is the mean (location of the peak) and o’ is the
variance (the measure of the width of the distribution).

e The distribution with u =0 and o’ = 1is called the standard normal.
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e Density and cumulative distribution function for several normal
distributions. The red curve refers to the standard normal distribution.

I I I I T ] 1 I 1 I I I I I 1 1 I 1 I I
- | |

N [=0, 02=0.2, ==
- PH=0, O?=1.0, m—| -
Ly [=0, G2=50, ==
- f=-2, 02=0.5, =—|
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1.0
| | =0, 0?=0.2, =——
L | 1=0, O2=1.0, m—
0Bl pu=0, 0%=5.0, =
| | U==2, G%=0.5, =
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2.6 The inverse cumulative distribution function (=quantile function)

If the CDF Fx(.)is strictly increasing and continuous then Fiy''(y),y € [0, 1]

is the unique real number x such that F'y(z) =y

* Unfortunately, the distribution does not, in general, have an inverse. One
may define, for y € |0, 1], the generalized inverse distribution function:

F'(y) = inf {Fx(z) > y}

(infimum = greatest lower bound)

e The inverse of the CDF is called the quantile function (evaluated at 0.5 it
gives rise to the median — see later).

 The inverse of the CDF can be used to translate results obtained for the
uniform distribution to other distributions (see later).
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This is how | generated the plots on the previous page in the free software
package R
(http://www.r-project.org/)
par(mfrow=c(1,2))
p <- seq(0,1,length=1000)
plot(p, gnorm(p, mean =0, sd = 1, lower.tail = TRUE, log.p = FALSE))
X <- rnorm(1000)
F<- ecdf(x)
points(F(sort(x)),sort(x),col="red")

plot(sort(x),F(sort(x)),xlab="x",ylab="p",col="red")
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1.0

Frix)
0.6

04

(v)

= inf {Fx(x) > y}

ecdf{rnorm(10))

0.2
|

0.0
|

0.0
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Some useful properties of the inverse CDF

e '~lis non-decreasing

e« I"YF(z)) <

* F(F~'y)) >y

e I"Yy) < zif and only ify < F(x)

e If Y has a uniform distribution on [0,1] then F'~1(Y) is distributed as F. This
is used in random number generation using what is called “the inverse
transform sampling method”
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Quantiles

* By a quantile, we mean the fraction (or percent) of points below the given
value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of
the data fall below and 70% fall above that value.

 More formally, the gth quantile of a random variable X or of its
corresponding distribution is defined as the smallest number x, satisfying
Fx(z4) > g

* The generalized inverse cumulative distribution function is always a well
defined function that gives the limiting value of the sample at gth quantile
of the distribution of X: F'y'(q) = ;Iel]fR{FX(x> > ¢}
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e Furthermore, if '"1(¢), and hence X, is a continuous function, then it can be
inverted to give us the cumulative distribution function for X (i.e., the
unique quantile at which a particular value of x would appear in an ordered
set of samples in the limit as N grows very large).

e Several approaches in statistics and visualization tools in statistics exist that
are based on quantiles: box plots, qg-plots, quantile regression, ... We refer
to more details about these in subsequent chapters.
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2.7 Mixed-type distributions

* There are situations in which one encounters a random variable that is
partially discrete and partially continuous

 Problem: Since it is more economical to limit long-distance telephone calls
to 3 minutes or less, the cumulative distribution of X —the duration in
minutes of long-distance calls — may be of the form

y

0, forxz < 0
_ —33/3 <
Fy(z) = 4 1 e_x/g, for0 < x <3
e
1 — : forx > 3.
\ 2

Determine the probability that X is (a) more than 2 minutes and (b)
between 2 and 6 minutes.
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A plot of the CDF is given below. Furthermore for part (a):
PX>2)=1-P(X<2)=1-Fy(2)

=1—(1—e27)=e23,

For part (b):
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The partial probability density function of X is given by

[0, for x <O

-y \ 1 3
N_dFx(x) ) -e™3, for0<x<3;
.'r_ﬁ!'ﬁ'l B L:l = 9 3
1x
l

e/, for x> 3.

|

\

Note that the area under fx(x)is no longer 1 but

; l
l—_{?-‘(S} =] _Tj".

Hence the partial probability mass function of X is given by

l
- —, at x=3;
py(x) =< 2¢

0. elsewhere:
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Px(x)
A

¥
1 )
28l — 3e

-
X

(@) (b)

To obtain P(X > 2) and P(2 < X <6), both the discrete and continuous
portions come into play, and we have, for part (a),

Px>2)= | " ) B (®)

1/3 +E:_""’f3cl*r:+1/0C e 3 dx + ;
= - ’ 3 — ) X e
3 2 6 3 2e

-2/3
= /
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In conclusion:

1 &
O

From top to bottom, the

cumulative distribution function of
a discrete probability distribution,

@
®e—O
1 : .
continuous probability
distribution,
-0

and a distribution which has both
a continuous part and a discrete

part.
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Even though the underlying model
that generated these date come
from a normal (hence non-discrete)
distribution, | only have a discrete nr
of possibilities because of the small
size (here: 10) of my sample.

e When drafting a cumulative
distribution function from the 10
generated sample points, the CDF
graph will look as if generated for
a discrete random variable.

Frfx)

1.0

0.8

086

04

0z

0.0

ecdf(rnorm(10))
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2.8 Comparing cumulative distribution functions

 |n statistics, the empirical distribution function, or empirical CDF, is the
cumulative distribution function associated with the empirical measure of
the sample at hand. This CDF is a step function that jumps for 1/n at each of
the n data points. The empirical distribution function estimates the true
underlying CDF of the points in the sample.

e The Kolmogorov—Smirnov (KS) test is based on quantifying a distance
between cumulative distribution functions and can be used to test to see
whether two empirical distributions are different or whether an empirical
distribution is different from an ideal distribution (i.e. a reference
distribution).

 The 2-sample KS test is sensitive to differences in both location and shape
of the empirical cumulative distribution functions of the two samples.
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3 Two or more random variables

* In many cases it is more natural to describe the outcome of a random
experiment by two or more numerical numbers simultaneously, such as
when characterizing both weight and height in a given population

 When for instance two random variables X and Y are in play, we can also
consider these as components of a two-dimensional random vector, say Z

e Joint probability distributions, for X and Y jointly, are sometimes referred to
as bivariate distributions.

e Although most of the time we will give examples for two-variable scenarios,
the definitions, theorems and properties can easily be extended to
multivariate scenarios (dimensions > 2)
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3.1 Joint probability distribution functions
* The joint probability distribution function of random variables X and Y,

denoted by Fxy(z,y), is defined by
FXy(ZL',y) = P(X < :EﬂY S y),

forallx,y
e As before, some obvious properties follow from this definition of joint

cumulative distribution function:

b

Fyy(—00,—00) = Fyy(—00,y) = Fxy(x,—00) =0,
Fxy(+400,400) =1,
Fyy(x,+00) = Fy(x). (
Fyy(+o0,y) = Fy(y).

J

* [’x(z)and Fy(y)are called marginal distribution functions of X and Y, resp.
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* Also, it can be shown that the probability P(z; < X < axoNy <Y < 1) is
given in terms of Flyy(x,y) by
Fxy(z2,y2) — Fxy(21,v2) — Fxv(z2, y1) + Fxv(z1, y1),

indicating that all probability calculations involving random variables X and
Y can be made with the knowledge of their joint cumulative distribution
function

 The general shape of F'yy(x, y) can be visualized from the properties given

before:
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* |In case of X and Y being discrete, their joint probability distribution function
has the appearance of a corner of an irregular staircase, as shown below.

Fxylx.y)
A

Quadrant |

e |t rises from 0 to height 1 in moving from quadrant Il to quadrant |
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* In case of Xand Y being continuous, their joint probability distribution
function becomes a smooth surface with the same features as in the
discrete case:
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* Intuition behind the computation of P(a < X <bNc<Y <d)as
Fxy(b,d) — Fxy(a,d) — Fxy(b, ¢) + Fxy(a,c)

(b, d)

(b, ¢)
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Copulas

* |n probability theory and statistics, a copula can be used to describe the
dependence between random variables. Copulas derive their name from
linguistics.

e The cumulative distribution function of a random vector can be written in
terms of marginal distribution functions and a copula. The marginal
distribution functions describe the marginal distribution of each component
of the random vector and the copula describes the dependence structure
between the components.

e Copulas are popular in statistical applications as they allow one to easily
model and estimate the distribution of random vectors by estimating
marginals and copula separately. There are many parametric copula
families available, which usually have parameters that control the strength
of dependence
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* Consider a random vector (X7, X5) and suppose that its margins £ and F5
are continuous. By applying the probability integral transformation to each
component, the random vector

(U1, Ua) = (F1(Xy), F2(X3))

has uniform margins. The copula of (X, X5) is defined as the joint
cumulative distribution function of (U, Us):

Cluy,ug) = P(Up < up, Uy < ug)
 Note that it is also possible to write
(X1, Xy) = (FH(Uh), By (T)),

Where the inverse functions are unproblematic as the marginal distribution
functions were assumed to be continuous. The analogous identity for the
copula is

Cur,up) = P(X1 < Fy Ywr), Xo < Fy Hw))
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e Sklar's theorem provides the theoretical foundation for the application of
copulas. Sklar's theorem states that a multivariate cumulative distribution
function

F(zy,20) = P(X) < 21, Xo < 29)

of a random vector (1, x2) with margins F(x1) = Fx,(z1)and
Fy(x9) = Fy,(x2) can be written as F'(z1, x2) = C(Fi(x1), Fi(x2)), where C
is a copula.

* The theorem also states that given F'(x1, x2), the copula is unique on
Range(F) x Range(Fy), which is the Cartesian product of the ranges of the
marginal CDF’s.

* The converse is also true: given a copula C' : [0, 1]* — [0, 1] and margins F;(x)
then C(Fi(xy), F5(x2)) defines a 2-dimensional cumulative distribution
function.
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3.2 The discrete case: joint probability mass functions

e Let Xand Y be two discrete random variables that assume at most a
countable infinite number of value pairs (x;, y;), i,j = 1,2, ..., with nonzero
probabilities. Then the joint probability mass function of X and Y is defined
by

PXY(xay) :P(X:xmyzy>a
for all x and y. It is zero everywhere except at the points (z;, y;), i,j = 1,2, ...,

where it takes values equal to the joint probability P(X =x;NY = y;).
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e As a direct consequence of this definition:

b

0 < pyy (1';,_1-*;) = L

s o >
Z Pxy(Xi,¥) = py(y),
Z;”_r}'{-‘f-,‘-_';} = ,(?_1-(.1'].

/

Here, Py (x)and Py (y) are called marginal probability mass functions.
e Also,

i< JYi<y

Fyy(z,y)= Y Y  Pxy(zi,y))

=1 =1
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A two-dimensional simplified random walk

e |t has been proven that on a two-dimensional lattice, a random walk like

this has unity probability of reaching any point (including the starting point)
as the number of steps approaches infinity.
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e Now, we imagine a particle that moves in a plane in unit steps starting from
the origin. Each step is one unit in the positive direction, with probability p
along the x axis and probability g (p+g=1) along the y axis. We assume that
each step is taken independently of the others.

e Question: What is the probability distribution of the position of this particle
after 5 steps?

* Answer: We are interested in Pyy (x, y) with the random variable X
representing the x coordinate and the random variable Y representing the
y-coordinate of the particle position after 5 steps.

0 Clearly, Pxy(z,y) = 0exceptatx +y =5andx,y > 0
0 Because of the independence assumption Pyy(5,0) = p
o Similarly, Pxy(4,1) = 5pq

5
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O In all other settings:

10p°¢*, for (x,y) = (3,2);

10p%g>, for (x,y) = (
;J‘g-'y‘:.'f, I') - 4 |
SpqT,

for (x,y) = (I
g, for (x,y)=(0,5).

V|
0.4 4 i

e
:f:}///% ,,

Check whether the sum over all x, y equals 1 (as should be!)




CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS

* From this, the marginal probability mass functions can be derived:

rg®, forx=0;
5pq®, for x = 1;

10p*q®, for x = 2:
i £ i o — Pvv (X, Vi) = T 9
px(X) E;f-”( Bj) =3 100, for x=3;
5ptq, for x =4;

. ;?5._ for =5
4 Pﬁe
5ptq, for y=1;
10p°q*, fory
10p°q>, fory
5pq*, for y=4;
. ¢°, fory=>5.

for y = 0;

I
W

py(¥) =) Pxy(xi,3) = 4
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* The joint probability distribution function can also be derived using the
formulae seen before (example shown for p=0.4 and g=0.6):

vri<a JYi<y

FXy(l' y S‘ S‘ PXY xuyj)

Z_

Fxvlx.y)

Zero

- W 1
__7___?,” 2’5//5‘“A31?44
4 2 s 2 ,Zem?___ 0.08920

27 A1024

Zero
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3.3 The continuous case: joint probability density functions

 The joint probability density function fxy(x, y) of 2 continuous random
variables X and Y is defined by the partial derivative

O*Fxy(z,y)
Ox0y

fxv(z,y) =

e Since I'xv(Z,Y) is monotone non-decreasing in both x and y, the associated
joint probability density function is nonnegative for all x and y.
e As a direct consequence:

/ / I yy(x,y)dxdy = 1,

i "‘-'
/ f.l'} ["l.lld'l = fk l".]
J —oc¢

" (X

/ frr(x,)dx = 4 (»).

! =0

where fx(x)and fy(y)are now called the
marginal density functions of X and Y respectively
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o Also, Fxy(z,y) = P(X <znNY <y) = goo [* Fxy(u,v)dudv
and P(x1 < X <xzonNy <Y < y2) = ;f fff fxy(x,y)dzdy for

r1 < roandy; < ys

y
fxy(X, Y) /
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Meeting times

A boyand a girl plan to meet at a certain place between 9am and 10am,
each not wanting to wait more than 10 minutes for the other. If all times of
arrival within the hour are equally likely for each person, and if their times
of arrival are independent, find the probability that they will meet.

 Answer: for a single continuous random variable X that takes all values over
an interval a to b with equal likelihood, the distribution is called a uniform
distribution and its density function has the form

L fora<z<b

fx(@) = { =

0 , otherwise

fx(x)

-

i
(4i]
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fXY{x!.V) y

r /

The joint density function of two
independent uniformly distributed

random variables is a flat surface
within prescribed bounds. The
volume under the surface is unity.

60

10
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P(they will meet) = P(|X — Y| < 10)
11

36

= [2(5)(10) + 10v/2(50v/2)] /3600 =

e We can derive from the joint probability, the joint probability distribution
function, as usual

— \ 0, for (x,y) < (0,0);
Fyy(x,y) = e | i
1, for (x,y) > (60,60).

- Vpx o i
Fyy(x,y) = Ixdy = —=2_
PR /n /u (?»ﬁnn)" Y= 3600

 From this we can again derive the marginal probability density functions,
which clearly satisfy the earlier definition for 2 random variables that are
uniformly distributed over the interval [0,60]
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4 Conditional distribution and independence

* The concepts of conditional probability and independence introduced
before also play an important role in the context of random variables

* The conditional distribution of a random variable X, given that another
random variable Y has taken a value vy, is defined by

Fyy(zly) = P(X < z|Y =y)

e When a random variable X is discrete, the definition of conditional mass
function of X given Y=y is

pxy(zly) = P(X =x|Y =y)
e For a continuous random variable X, the conditional density function of X
given Y=y is

fry (wly) = S



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS

-75

* In the discrete case, using the definition of conditional probability, we
have

PLY =% Y =})

des o P Y == 36l ¥ ) == 15
PyylX|y) = PlLX = _‘nl} y) P(Y = I}

- OBV i, sus 3
Pxy\X|y) = p'}: ) if py(y) #0,
Y

an expression which is very useful in practice when wishing to derive joint

probability mass functions ...

e Using the definition of independent events in probability theory, when
the random variables X and Y are assumed to be independent,

Pxy(xly) = Px()
so that Pxy(z,y) = Px(z)Py(y)
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e The definition of a conditional density function for a random continuous
variable X, given Y=y, entirely agrees with intuition ...:

Pxi<X<xxnNpyi<Y <y

Plxy < X < X <Y <py= Py, < Y < )
¥ = J2

In terms of jpdf f yy(x, y), it is given by

Pxi<X<xy<Y<y / / ,le'ld‘td]// [ S yy(x,y)dxdy
- / /"_;-ﬂ;(x._r)dxd_r/ "'_f'}.(r)dl

By setting vy = —o00, x2 = x,y1 =y, y2 = y + Ay and by taking the limit

/ fyy(u,y)du
f’ XY 1|
Ay — 0, this reduced to ) “provided fy(y) #0
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From

dFxy(x|y)
dx

fxy(zly) =

and

Fyy(x|y) =

/. fyy(u,y)du
Fyy) ’
we can derive that

| dFrrlel)  Fovlod .
o) =SB0 _Lorlsn) g

a form that is identical to the discrete case. But note that

Fyy(x|y) #
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e When random variables X and Y are independent, however,
Fxy(z|y) = Fx(x) (using the definition for Fiyy(x|y)) and (using the

expression

. porex Sy (xly)  Far(ay)
fxy(xly) = dx AT fy(y) #0,
it follows that

Sfxr(xly) = fx(x),
Sxy(x,p) =fx(x)f y(¥),
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e Finally, when random variables X and Y are discrete,
[:X;<X
Fxy(xly) = Z Pyy (Xily),
i=1
and in the case of a continuous random variable,

Fyxy(x|ly) = / I yy(uly)du.

b4

Note that these are very similar to those relating the distribution and
density functions in the univariate case.

e Generalization to more than two variables should now be
straightforward, starting from the probability expression

P(ABC) = P(A|BC)P(B|C)P(C)
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Resistor problem

e Resistors are designed to have a
resistance of R of 50 + 2().
Owing to some imprecision in
the manufacturing process, the
actual density function of R has
the form shown (right), by the
solid curve.

e Determine the density function
of R after screening (that is:
after all the resistors with
resistances beyond the 48-52 ()
range are rejected.

e Answer: we are interested in the
conditional density function
fr(r|A)where A is the event

{48 < R < 52}
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We start by consi

FR(I|A) =

However,

dering

P(R<rN48 < R< 52)
P(48 < R < 52)

P(R<rl48 <R<52) =

(0, for r < 48:

RErNAB<R<2=(48<R<r ford48<r<52

Hence,

Frirld) = ¢

48 < R<52. forr> 52,

r (), forr < 48:

PAR<R<r) fd.-fﬂ’:‘"}d”

P(48 < R < 52) ¢

v 1,  for r> 52;

- =28 , for 48 < r < 52:
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Where

52

c = fr(r)dr
48

IS @ constant.

The desired function is then obtained by differentiation. We thus obtain

dFp(r|A) _ { Ir(r) g1 48 <r <52

fulr]4) = =1 c

0 otherwise

Now, look again at a graphical representation of this function. What do you
observe?
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Answer:

The effect of screening is essentially a truncation of the tails of the
distribution beyond the allowable limits. This is accompanied by an
adjustment within the limits by a multiplicative factor 1/c so that the area
under the curve is again equal to 1.

a
s
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5 Expectations and moments
5.1 Mean, median and mode

Expectations

e Let g(X) be a real-valued function of a random variable X. The mathematical

expectation or simply expectation of g(X) is denoted by E(g(X)) and defined
as

E(g(X)) = Z g(x;) Px(x;)

if X is discrete where x1, x9, ...are possible values assumed by X.

e When the range of i extends from 1 to infinity, the sum above exists if it

0@
converges absolutely; that is, Z lg(z;)| Px(x;) < o0
i=1
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e |f the random variable X is continuous, then

E(g(X)) = / " g(a)fx(x)da.

oo

if the improper integral is absolutely convergent, that is,

[mmmnmm<w

0.0

then this number will exist.
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e Basic properties of the expectation operator E(.), for any constant c and
any functions g(X) and h(X) for which expectations exist include:

E{c} =c¢, :
E{cg(X)} = cE{g(X)},

E{g(X)+h(X)} = E{g(X)} + E{h(X)},

E{g(X)} < E{h(X )}, if g(X) < h(X) for all values of X. J

. d . .
Proofs are easy. For example, in the 3" scenario and continuous case :

* O

E{g(}{’)—i—h(X)}:/ 8(x) + A(x)]f v (x)dx

o — 00

= [ e a(vax+ [ heore(ax

5 of — ()

= E{g(X)} + E{h(X)},
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Moments of a single random variable

e Let g(X) = X",n=1,2,..; the expectation £(X")), when it exists, is called
the nth moment of X and denoted by ! :

E{X"} = X;pv(x;), for X discrete:

j" | T = . ¥ ' SN = w F .
B} = / X' f y(x)dx, for X continuous.

e The first moment of X is also called the mean, expectation, average value
of X and is a measure of centrality
 Two other measures of centrality of a random variable:
0 A median of X is any point that divides the mass of its distribution into
two equal parts = think about our quantile discussion
0 A mode is any value of X corresponding to a peak in its mass function or
density function
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fx(xl 4 fx{x) f

(a) Mode —~ “~Mean h (c) Mean—" ™ Mode
Median Median
fx(x) 4
From left to right: positively skewed,

|| negatively skewed, symmetrical
f distributions
I

(b) Mode

Median
Mean



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2-89

Time between emissions of particles
e Let T be the time between emissions of particles by a radio-active atom. It is
well-established that T is a random variable and that it obeys what is called
an exponential distribution (A a positive constant):
—\t
e fort >0
f7<t> — { -

0 otherwise

e The random variable T is called the lifetime of the atom, and a common
average measure of this lifetime is called the half-life which is defined as
the median of T. Thus the half-life, 7 is found from

/T fr(t)dt =1/2, or7 =1In(2/X)

* The mean life time E(T) is given by E(T) = [~ tf;(t)dt = 1/X
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A one-dimensional random walk

* An elementary example of a random walk is the random walk on the
integer number line, which starts at 0 and at each step moves +1 or -1 with
equal probability.

e This walk can be illustrated as follows: A marker is placed at zero on the
number line and a fair coin is flipped. If it lands on heads, the marker is
moved one unit to the right. If it lands on tails, the marker is moved one
unit to the left. After five flips, it is possible to have landed on 1, -1, 3, -3,
5, or -5. With five flips, three heads and two tails, in any order, will land on
1. There are 10 ways of landing on 1 or -1 (by flipping three tails and two
heads), 5 ways of landing on 3 (by flipping four heads and one tail), 5 ways
of landing on -3 (by flipping four tails and one head), 1 way of landing on 5
(by flipping five heads), and 1 way of landing on -5 (by flipping five tails).



CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2-

25 L] I I L] 1 I I 1 []

Aa b o

A8 i

_EE [ ] 1 1 [ | 1 1 1 1 |
0 10 20 30 40 0 ED 70 a0 €0 100

e Example of eight random walks in one dimension starting at 0. The plot
shows the current position on the line (vertical axis) versus the time steps
(horizontal axis).
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e See the figure below for an illustration of the possible outcomes of 5 flips.

Rirst flap e T

sced i e TR i SR,

Third flip v o T ' ) - o

Four th fl. -*"“f N 7 N\ fffl.[\“x ﬁ"f H‘x i N Y ,f”f % i N

wthrap T H T |-| : H '|'IL H H ] H i
l_"l HI.".I ll"\ ll.'.l \.". I."I Y \ ". l_"r.E‘ H."'.l I,l'lll.[\',' ,|'ll ll",' ,l'lr ".\ ..r I ll"'. lll'll R. I,"I ."',I I,l'l .[l",l ll.'lll 1'\.. ll.'ll "ll.

F1fth 'th H T |-| T H |-| ) T |-| T H T H T H T H T H T H T H T H T
T NERRERERRRRERE
i E E i E E i E E E . E E i E E i E E Tk E E Tk E E

utcome I I I I
HIIII IR

Lands on 7 3 1 1 1 1 311 11 -1 -1 -3 i1 1-11 1131 -1-1-3-1 -3 -3 .5

 To define this walk formerly, take independent random variables 21, 2>, ...
where each variable is either 1 or -1 with a 50% probability for either value,
andset Sp = 0and 5, = Z?ZI Zj. The series is called the simple random

walk on Z . This series of 1’s and -1’s gives the distance walked, if each part
of the walk is of length 1.
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 The expectation E(S,,) of S, is 0. That is, the mean of all coin flips
approaches zero as the number of flips increase. This also follows by the
finite additivity property of expectations:

E(S,) = Z E(Z;) =0.

e A similar calculation, using independence of random variables and the fact
that E(Z?) = 1, shows that

E(52) = Z BE(Z?) =n.

e This hints that £(|S,|), the expected translation distance after n steps,
should be of the order of y/n.
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Random Walk Process for Bernoulli sample point HTTTHHTHH

ft)

fime

e Suppose we draw a line some distance from the origin of the walk. How
many times will the random walk cross the line?
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e The following, perhaps surprising, theorem is the answer: for any random
walk in one dimension, every point in the domain will almost surely be
crossed an infinite number of times. [In two dimensions, this is equivalent
to the statement that any line will be crossed an infinite number of
times.] This problem has many names: the level-crossing problem, the
recurrence problem or the gambler's ruin problem.

 The source of the last name is as follows: if you are a gambler with a finite
amount of money playing a fair game against a bank with an infinite
amount of money, you will surely lose. The amount of money you have
will perform a random walk, and it will almost surely, at some time, reach
0 and the game will be over.
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e At zero flips, the only possibility will be to remain at zero. At one turn,
you can move either to the left or the right of zero: there is one chance of
landing on -1 or one chance of landing on 1. At two turns, you examine
the turns from before. If you had been at 1, you could move to 2 or back
to zero. If you had been at -1, you could move to -2 or back to zero. So, f.i.
there are two chances of landing on zero, and one chance of landing on 2.

If you continue the analysis of probabilities, you can see Pascal’s triangle

n -5 4 -3 -2 -1 1] 1 2 3 4
P[Sy = K] 1
2P[S1 = k] 1 1
22P[S, = K] 1 2 1 P[S — k] L L( n )
n n
23P[S3 = 4] 1 3 3 1 2" \(ntk)/2
24P[S4= K] 1 4 6 4 1

25P[Ss=4] 1 5 10 10 5



