Probability and Statistics

Kristel Van Steen, PhD?

Montefiore Institute - Systems and Modeling
GIGA - Bioinformatics
ulLg

kristel.vansteen@ulg.ac.be



CHAPTER 1: PROBABILITY THEORY

CHAPTER 1: PROBABILITY THEORY
1 What’s in a name

1.1 Relevant questions in a probabilistic context
1.2 Relevant questions in a statistics context

2 Probability and statistics: two related disciplines
2.1 Probability

3 Different flavors of probability

3.1 Classical or a priori probability

3.2 Set theory

3.3 Sample space and probability measures



CHAPTER 1: PROBABILITY THEORY

3.4 A posteriori or frequency probability
4 Statistical independence and conditional probability
4.1 Independence
4.2 Conditional probability
Law of total probability
Bayes’ theorem
Bayesian odds
Principle of proportionality
5 In conclusion

5.1 Take-home messages

5.2 The birthday paradox



CHAPTER 1: PROBABILITY THEORY 1-

1 What’s in a name ...

If someone asks you what probability is, can
you point out a key question to him/her?
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(madamebutterflytoo.com)
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1.1 Relevant questions in a probabilistic context

The bear cubs problem

There are two bears - white and dark. We may reasonably ask several
guestions:

 What is the probability that both bears are male?
Writing 'm' for male and 'f' for female and counting the lighter bear first we
get four possible outcomes (ff, mf, fm, mm) of which only one should be
considered favorable. The answer, therefore, is 1/4.
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e Now assume | told you that one of the bears is male. What is the probability
that both are males?
Of the three possible outcomes (mf, fm, mm) only the last where both
bears are male is favorable. The answer is 1/3.
0 The sample space of the problem is actually (Mf, fM, Mm, mM) ... Isn’t
the answer 1/27
= Only the first bear is male. In this event, O prob that both are male.
Only the second bear is male. In this event, O prob that both are
male. Both bears are male. In this event, prob 1 that both are male.
0 Note that in general (mf,fm,mm,ff) are 4 equally likely events. Assuming
one of these events, the probability of (at least) one bear being male is
respectively 1, 1, 1, O. If one bear was found male, the probabilities of

the four possibilities change but the proportionality remains:
1/3,1/3,1/3,0.
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Note the different probability assessments: sample space????

Prob Prob
ff Ya mf 1/3
mf or fm Z fm 1/3
mm Y mm 1/3
Event: at least one bear is male
mm (1/4) mf (1/4)
fm (1/4) ff (1/4)
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| am telling you that the lighter bear is known to be male. What is now the
probability that both of them are males?
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O First solution: Since it's now given that the lighter bear is male there are
only two possible outcomes (mf, mm). Thus the probability that both
are male goes up to 1/2. Note how each additional piece of information
changed the number of possibilities and, hence, the probability of the
outcome.

0 Second solution: The sequence of three questions is supposed to lead
one on to wondering what difference it makes to specify that the white
bear is male. Since it's now known that the white bear is male, its sex is
removed from the realm of random. All that matters is the sex of the
dark bear who is believed to be male with the probability of 1/2.

= A short way to express the same idea is as follows:
P("both are male" | "white is male") = P("dark is male")

where P(A|B) means the (conditional) probability of A provided B is
known to take place.
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If someone asks you what statistics is, can you
point out a key question to him/her?
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1.2 Relevant questions in a statistics context

e Conceptual questions
0 What is the difference between a “statistic” and a “parameter”?

Statistic: characteristic of a sample
What 1s the average salary of 2000 people randomly sampled in Spain?

Parameter: characteristic of a population
What 1s the average salary of all Spaniards?
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0 What is the distribution of the statistic?
= Known

= Unknown but well-behaved mean (central limit theory)
0 Versatile use of the normal distribution?

Mode:
Most frequently cceurring
{-) Not unique {multimodal)

(=) representative of the most “typical” result
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O Are my data really independent?

Independence 1s different from mutual exclusion

In general, p(A~B)= p(4)p(B| A)
p(B|4)=0
| Knowing A does not
give any wloinalbon
Mutual exclusion 15 when two results are P( A~B)=0 about the next event

impossible to happen at the same time.

/

Independence 1s when the probability of an p(Ad~B)= p(A)p(B)

event does not depend on the results that we
have had previously.

Example: Sampling with and without replacement

What 15 th2 probability of taking a black ball as second draw, 1f the first draw 1s green”
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e Questions related to collecting data
O Basics of experimental design
0 What are controlling variables?
0 How many samples do | need for my test?
0 What if | cannot get more samples? [Resampling: Bootstrapping,
jackknife]

e Questions related to extracting information
0 Can | see any interesting association between two variables, or
between two populations?
0 Which models could have generated these data?
O How to estimate a parameter of a distribution?
0 What is my confidence in the results?

O What if my data are “contaminated”? [Robust statistics]
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e Questions related to hypothesis testing

0 How can | know if what | see is “true”?

0 What is a hypothesis test? What is the statistical power? What is a p-
value? How to use it? What is the relationship between sample size,
sampling error, effect size and power? What are the assumptions of
hypothesis testing?

O How to select the appropriate statistical test?

- Tests about a population central tendency
- Tests about a population variability
- Tests about a population distributions
O What are the dangers of testing multiple times?
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2 Probability and statistics: two related disciplines
2.1 Probability

* One of the fundamental tools of statistics is probability.

* Probability is derived from the verb to probe meaning to "find out" what is
not too easily accessible or understandable. The word "proof" has the same
origin that provides necessary details to understand what is claimed to be
true.

e Probability originated from the study of games of chance and gambling
during the 16th century.
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e Probability theory was a branch of mathematics studied by Blaise Pascal
and Pierre de Fermat in the seventeenth century. Currently in 21st century,
probabilistic modeling is used to control the flow of traffic through a
highway system, a telephone interchange, or a computer processor; find
the genetic makeup of individuals or populations; quality control;
insurance; investment; and other sectors of business and industry.

Blaise Pascal Pierre de Fermat
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Example: coin tossing

Proportion of heads

1.0 1
0.9 1

0.8 1
0.7 1
0.6
0.5

/
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The result of any single coin toss is
random. But the result over many tosses
is predictable, as long as the trials are
independent (i.e., the outcome of a new
coin flip is not influenced by the result of
the previous flip).

The probability of
heads is 0.5 =
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e “Fair” in “flipping a fair coin” means, technically, that the probability of
heads on a given flip is 50%, and the probability of tails on a given flip is
50%.

e This doesn't mean that every other flip will give a head — after all, three
heads in a row is no surprise.

O Five heads in a row would be more surprising

0 When you've seen twenty heads in a row you're sure that something
fishy is going on.

 What the 50% probability of heads does mean is that, as the number of flips
increases, we expect the number of heads to approach half the number of
flips.

0 So even though the outcome of a particular trial (tossing a coin or
spinning a roulette wheel) may be uncertain, there is a predictable
long-term outcome

0 Seven heads on ten flips is no surprise; 700,000 heads on 1,000,000
tosses is highly unlikely (note the equal ratio!).
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* In probability, we start with a model describing what events we think are
going to occur, with what likelihoods.

 The events may be random, in the sense that we don't know for sure what
will happen next, but we do quantify our degree of surprise when various
things happen.

* In other words, the probabilist starts with a probability model (something
which assigns various percentage likelihoods of different things happening),
then tells us which things are more and less likely to occur.
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Key points about probability

1.Rules - data: Given the rules, describe the likelihoods of various events
occurring.

2.Probability is about prediction — looking forward.

3.Probability is mathematics.
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2.2 Statistics

* The original idea of statistics was the collection of information about and
for the "state". The word statistics derives directly, not from any classical
Greek or Latin roots, but from the Italian word for state.

e The birth of statistics occurred in mid-17th century. John Graunt, a native of
London, began reviewing a weekly church publication issued by the local
parish clerk that listed the number of births, christenings, and deaths in
each parish. These so called Bills of Mortality also listed the causes of
death. Graunt, who was a shopkeeper, organized these data in the form we
call descriptive statistics, which was published as Natural and Political
Observations Made upon the Bills of Mortality.

(http://www.statisticalforecasting.com/)
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OBSERVATIONS

Bkt wf Mol
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e With this in mind, statistics has to borrow some concepts from sociology,
such as the concept of population. It has been argued that since statistics
usually involves the study of human behavior, it cannot claim the precision
of the physical sciences.

e Although new and ever growing diverse fields of human activities are using
statistics, the field itself remains obscure to the larger public.
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During the 20th Century statistical thinking and methodology have become
the scientific framework for literally dozens of fields including education,
agriculture, economics, biology, and medicine, and with increasing influence
recently on the hard sciences such as astronomy, geology, and physics. In
other words, we have grown from a small obscure field into a big obscure
field.

(Professor Bradley Efron)



CHAPTER 1: PROBABILITY THEORY 1- 25

Example: coin tossing revisited

e Suppose you are given a list of heads and tails (= data). You, as the
statistician, are in the following situation:

O You do not know ahead of time that the coin is fair. Maybe you've been
hired to decide whether the coin is fair (or, more generally, whether a
gambling house is committing fraud).

0 You may not even know ahead of time whether the data come from a
coin-flipping experiment at all.

e Suppose the data are three heads out of 7.

O Your first guess might be that a fair coin is being flipped, and these data
don't contradict that hypothesis. Based on these data, you might
hypothesize that the rules governing the experiment are that of a fair
coin: your probability model for predicting the future is that heads and
tails each occur with 50% likelihood.
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e Suppose there are ten heads in a row, though, or twenty.

O You might start to reject the hypothesis of a fair coin and replace it with
the hypothesis that the coin has heads on both sides. Then you would
predict that the next toss will certainly be heads: your new probability
model for predicting the future is that heads occur with 100%
likelihood, and tails occur with 0% likelihood.

e Suppose the data are “heads, tails, heads, tails, heads, tails”.

O Again, your first fair-coin hypothesis seems plausible.

O If on the other hand you have heads alternating with tails not three
pairs but 50 pairs in a row, then you reject that model. It begins to
sound like the coin is not being flipped in the air, but rather is being
flipped with a spatula. Your new probability model is that if the
previous result was tails or heads, then the next result is heads or tails,
respectively, with 100% likelihood.
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In a sense, probability doesn't need statistics, but statistics uses probability.

Key points about statistics

1.Rules & data: Given only the data, try to guess what the rules were. That
is, some probability model controlled what data came out, and the best
we can do is guess — or approximate — what that model was. We might
guess wrong; we might refine our guess as we get more data.

2.Statistics is about looking backward.

3.Statistics is an art. It uses mathematical methods, but it is more than
maths.

4.0nce we make our best statistical guess about what the probability
model is (what the rules are), based on looking backward, we can then

use that probability model to predict the future 2
The purpose of statistics is to make inference about unknown quantities

from samples of data
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3 Different flavors of probability
3.1 Classical or a priori probability

e The classical definition of probability is prompted by the close association
between the theory of probability of the early ages and games of chance.

Classical probability: If a random experiment can result in n mutually
exclusive and equally likely outcomes and if n, of these outcomes have an
attribute A, then the probability of A is the fraction ny/ n.

* |n this context

An event: a possible outcome or set of possible outcomes of an experiment
or observation. Typically denoted by a capital letter (e.g., A = result of coin
toss) [Note: ALWAYS check the particular notations in text books]
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Geometric probability

e This is the study of the probabilities involved in geometric problems, e.g.,
the distributions of length, area, volume, etc. for geometric objects under

stated conditions.

If a circle with a radius of 10 cm is placed inside
a square with a length of 20 cm, what is the

probability that a dart thrown will land inside of

the circle? /

The formula for probability is

# of favorable outcomes - The area of the circle
# of total outcomes The area of the square
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S0, let's break this apart. First we will find the area inside the circle.

The radius of the circle 1s 10 cm.

The formula for area of a circleis: A=112
A=1r?
A=(3.14)(10 cm)y® Substitute 3 14 formand 10

forr.
A= 314 cm?

The number of favorable outcomes is 314 cm? because we want
to know the probability of a dart landing inside of the circle.

Now we need to find the number of total outcomes. Since the circle is
contained inside ofthe square, the total outcome would be anywhere
Inside ofthe square. Therefore, we needto findthe area ofthe
square.
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The length of a side of the squareis 20 cm.
The formula for area of a squareis: A =s?
A=g?

A = (20 cm)

A=400cm?

20 cm

The number of total outcomes is 400 cm? since the dart can land
anywhere within the square.’

Now all we needto do is divide.
# of favorable outcomes - 314 cm? = 785 or 78.5%

# of total outcomes 400 cm?

The probability of the dart landing inside of the circle is 78.5%

(www.algebra-class.com/)
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3.2 Set theory
Elements of set theory

 Understanding set theory helps people to ... see things in terms of systems,
organize things into groups, begin to understand logic

e Asetis a collection of objects possessing some common properties. These
objects are called elements of the set. Sets are denoted by capital letters
and elements usually by small letters:

A={1,2,3,4,5,6},
B={s, [}

* We use the convention a € A to mean “element a belongs to set A”



CHAPTER 1: PROBABILITY THEORY 1- 33

Important set definitions

e Sets containing a finite number of elements are called “finite sets”. Sets
containing an infinite number of elements are called “infinite sets”.

e Aninfinite set is called “enumerable” or “countable” if all of its elements
can be arranged in such a way that there is a one-to-one correspondence
between them and all positive integers.

0 WhatisC ={x : 2z > 0}7

e One particular set is called the “space” and often denoted by S, U or €). This

“largest” set contains all elements of all the sets under consideration
O In a deck of ordinary playing cards, each card is an element in the
universal set and some subsets are face cards, numbered cards, suits
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Important set definitions

Definition  Subset [f every element of a set A4 is also an element of a
set B, then A4 is defined to be a subset of B, and we shall write 4 = B or
B o A; read “A is contained in B” or *“ B contains A.” /]

Definition  Equivalent sets Two sets 4 and B are defined to be equiva-
lent, or equal, if A = B and Be A. This will be indicated by writing
A=B. I

Definition @ Empty set If a set 4 contains no points, it will be called
the null set, or empty set, and denoted by ¢. i

Definition  Complement The complement of a set A with respect to
the space €, denoted by A, 4¢, or Q — A, 1s the set of all points that are in
(2 but not in A. /1]
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 The power set is the set of all subsets that can be created from a given set

O The cardinality (size) of the power set is 2 to the power of the given
set’s cardinality

0 A power set is usually denoted by &
0 Example:

A={a, b, c} where |A| =3 (i.e., the cardinality is 3)

P(A) ={{a, b}, {a, c}, {b, c}, {a}, {b}, {c}, A, @}
and | (A)| =8

In general, if |A| =n, then | P(A) | =2"
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Set operations

Definition  Union lLet 4 and B be any two subsets of Q; then the
set that consists of all points that are in 4 or B or both 1s defined to be
the union of A and B and written A U B. [/

Definition  Intersection Let 4 and B be any two subsets of Q; then
the set tha onsists of all points that are in both 4 and B is defined to be

the interseciion of A and B and is writien 4 7 Bor AR, I/

Definition Set difference Let A and B be any two subsets of €. The
set of all points in A4 that are not in B will be denoted by A — B and is
defined as ser difference. 11/
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Set operations

 The aforementioned definitions of union and intersection can be directly
generalized to those involving any arbitrary number (finite or countable
infinite) of sets. In particular:

Definition Union and intersection of sets Let A be an index set and
{A,: Ae A} ={A,}, a collection of subsets of Q indexed by A. The set
of points that consists of all points that belong to 4, for at least one A is

called theunionof thesets {4,} and is denoted by | ) 4,. The set of points
LeA

that consists of all points that belong to A4, for every A is called the inter-

section of the sets {4,} and is denoted by () 4,. If Ais empty, then define

LEA

J4,=¢and () 4,=0Q. /1]

LEA AEA
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e Recall:

Definition Disjoint or mutually exclusive Subsets 4 and B of Q are
defined to be mutually exclusive or disjoint if A~ B=¢. Subsets
Ay, Ay, ... are defined to be mutually exclusive if A; A; = ¢ for every i #J.

e The symbol “+” is often reserved to denote the union of two sets which are
disjoint.
0 For example: AUB = AU (AB) = A+ (AB)
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e John Venn devised a simple way to diagram set operations (Venn Diagrams)

/
/

(): the universal space

Now reconsider: AUB = AU (AB) = A+ (AB)
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e Venn diagrams make it easy to verify that union and intersection operations
are associative, commutative and distributive:

(AUB)UC=AU(BUC)=AUBUC,)
AUB=BUA,

(AB)C = A(BC) = ABC, >
AB = BA,

A(BUC) = (AB)U (AC).

AUA=AA = A,
AUD = A,
AD = 0,
AUS =S, )
AS = A,
AU4:S

— /

e Also easily verified:
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e The second relation below gives the union of two sets in terms of the union
of two disjoint sets. This representation will turn out to be very useful in
probability calculations.

e The last two relations below are referred to as “DeMorgan’s Laws
AU(BC)=(AUB)(AUC), )
AUB=AU(AB) = A+ (AB),

(AUB)=A B
(AB)=AUB
n n >
( 4) A4,
j=1 j=1
( &)Z 4;.
J=1 j=1 )
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3.3 Sample space and probability measures

* |n probability theory we are concerned with an experiment with an
outcome depending on chance: a random experiment

e All possible distinct outcomes of a random experiment are assumed to be
known and are elements of a fundamental set known as the sample space
Each possible outcome is called a sample point.
As before, an event is a possible outcome or set of possible outcomes of an
experiment or observation.

* These descriptions nicely fit into the framework of set theory. Therefore all
relations between outcomes or events in probability theory can be
described by sets and operations.



CHAPTER 1: PROBABILITY THEORY

- 43

 Note: For a given random experiment, the associated samples space is NOT

unique!

Sample spaces

It's the question that determines the sample space.

H - HHH
A. A basketball player shoots <

three free throws. What are H M - HHM
H S ={ HHH, HHM,
M

<H - HMH % HMH, HMM, MHH,

MHM, MMH, MMM }
M - HMM

the possible sequences of
hits (H) and misses (M)?

M... Note: 8 elements, 22

-/
B. A basketball player shoots
three free throws. What is the S={0,1,2 3}
number of baskets made?

C. A nutrition researcher feeds a new diet to a young male white rat. What
are the possible outcomes of weight gain (in grams)?

S =10, =[ = (all numbers = 0)
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 Note: Working with a wrong sample space can lead to strange results...

“Hi, I'm an amateur so I'm sorry if this is something well known and
uninteresting.Is 1+ 1 =1 in probability theory?:

Consider tossing a coin and throwing a dice. Let the set of all possible
outcomes for the coin be C. which implies p(C) = 1. Let the set of all possible
outcomes for the dice be D, which implies p(D) = 1. Now p(CUD) which is the
probability that either the events D or C occur is also 1.

Here's the interesting bit: C and D are disjoint sets and therefore p(CUD)=
p(C) + P(D) which implies 1 =1 + 1.

But then | started having doubts because | made some unproved assumptions
such as p(C) and p(D) and so on, are actually defined in such a situation as this
and whether C and D are truly disjoint.

Help! “
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The answer lies in a proper delineation of the sample space for this problem.
If you throw either dice or a coin but you do not know (or do not specify)
which, then the sample space is

{H,T,1,23,4,5, 6}

so that P(C) =1 and P(D) = 1 are both false.

If you throw both a dice and a coin then the sample space is
{H,T}x{1, 2, 3,4,5, 6}

in which case the events C and D are simply not defined.

If you just throw a coin then certainly P(C) = 1. If, in another experiment, you
throw a dice then, too, P(D) = 1. But in this case the event CUD is undefined
because the events C and D do not belong to the same space.

(http://www.cut-the-knot.org/)



CHAPTER 1: PROBABILITY THEORY

1- 46
Corresponding statements in set theory and probability
Set theory Probability theory
Space, S Sample space, sure event
Empty set, 0 Impossible event
Elements a, b, ... Sample points a, b, ... (or simple events)
Sets A, B, . .. Events A, B,...
A Event A occurs
A Event A does not occur
AUB At least one of 4 and B occurs
AB Both A4 and B occur
ACB A is a subevent of B (i.e. the occurrence of A necessarily implies
the occurrence of B)
AB = () A and B are mutually exclusive (i.e. they cannot occur

simultaneously)




CHAPTER 1: PROBABILITY THEORY 1- 47

The notion of probability revisited

e Given a random experiment, a finite number P(A) is assigned to every event
A in the sample space S of all possible events.
e The number P(A) is a function of set A and is assumed to be defined for all
setsin S. It is thus a set function
e P(A) is called the probability measure of A or simply the probability of A.
It adheres to the following axioms:
0 Axiom 1: P(A) > 0 (nonnegative)
0 Axiom 2: P(S) = 1 (normed)
0 Axiom 3: For a countable number of mutually exclusive events
Ay, As, ... inS,

P(A{UAU ) =P() Aj)=> P(A)) (additive)



CHAPTER 1: PROBABILITY THEORY 1- 48

A probability measure for finite samples spaces with equally likely points

Classical probability: If a random experiment can result in n mutually
exclusive and equally likely outcomes and if n, of these outcomes have an
attribute A, then the probability of A is the fraction ny/ n.
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A probability measure for finite samples spaces without equally likely points

For finite sample spaces without equally likely sample points, things are not
quite as simple, but we can completely define the values of P[A4] for each of the
2 events A by specifying the value of P[-] for each of the N = N(Q) elemen-
tary events. Let Q = {w,, ..., wy}, and assume p; =P[{w;}]for j=1,..., V.

Since

1 =P[Q]=P _L:!]{mj}] = ) Pl{w}],

i=1

For any event A4, define P[4] = Zp;, where the summation is over those w;

belonging to A. It can be shown that P[-] so defined satisfies the three axioms
and hence is a probability function.
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EXAMPLE Consider an experiment that has N outcomes, say w,, @, , ...,
wy, Where it is known that outcome @;; is twice as likely as outcome
w;j,wherej=1,..., N—1;thatis, p;,, = 2p;,where p; = P[{w;}]. Find
P[A,], where A, ={w,, ®,, ..., ). Since

.2:1%. B jilzj-lpl =p(1+2+2% 4= +2"" ) = p (2" - 1) =1,
1
i Y
and
hence s 2 o

k

k k 2
P[Ak]= Z Py = _;!zj_lf(zﬁ—”=2m_l- /1]]

Jji=1
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Axiomatic definition of probability: the formal way

e For .S, an algebra of events, a probability function P(.) is a set function with
domain S, and counterdomain the interval [0,1], which satisfies the
following axiom:

0 Axiom 1: P(A) > 0 (nonnegative), for every event A

0 Axiom 2: P(S,) = 1 (normed)

0 Axiom 3: For a countable number of mutually exclusive events
Ay, Ay, ...in S,, and if the union of these events is itself an event,

P(AyUAU..)=P(Y Aj)=> P(A)) (additive)
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e Why do we need this more general formulation?

O If the sample space is sufficiently large, not all subsets of the sample
space will be events ...

= recall: event = set of sample points, hence subset of sample space

= recall: event space = class of all events associated with a given
experiment

= the class of all events can always be selected to be large enough
so as to include all those subsets (events) whose probability we
may want to talk about

* The triplet|(2,||S, | P(.)) is called a probability space
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e We are interested in events, mainly because we are interested in the
probability an event or multiple events occur
O So we are interested in an event space that includes the sure event
(i.e., sample space): {2 € S,
0 When we talk about the probability that an event occurs, we also
want to talk about the probability that an event does not occur: If
A€ S, then Ac S,
o Similarly, if A; and A, are events, then we also should A; U A, be an
event:If Ay € S,and A, € S, then AU A, € S,
e Any collection of events with the aforementioned 3 properties is a Boolean
algebra
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Interludium:

¢ Let X be some set, and 2 symbolically represent its power set. Then a
subset X C 2% is called a o-algebra if it satisfies the following three
properties:

1) 2 is non-empty

2) 2 is closed under complementation: If Ais in 2, then so is its complement

3) 2 is closed under countable unions: If A, Ay, A3, ... arein 2, then sois A =
AfLUA,UAs U ...

From these axioms, it follows that the o-algebra is also closed under
countable intersections (by applying De Morgan's laws).

For a o-algebra, the property “if A; and A, are events, then also the union is
an event” for algebra’s, is replaced by 3) above
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Rules of probability using set theory

1. Complement Rule

Denote *“all events that are not A” as A°. Since either A or not A must happen, P(A) + P(A%) = 1. Hence

P(Event happens) = 1 - P(Event doesn't happen)
or

P(A) = 1—-P(A°)

P(A°) = 1— P(A)

E.g. when throwing a fair die, P(not 6) = 1 —1/6 = 5/6.

@

@
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2. Addition Rule

For any two events 4 and B:

P(A or B) =P(4UB)

=P(4) + P(B) - P(4 and B)
=P(4) + P(B) - P(4 n B)

3

_|_

I/’_ (
\( ) )

4 Q N
I:. J:I
Y/

Note: “4 or B” = A U B includes the possibility that both 4 and B occur.

E.g. Throwing a fair die, let events be

A = get an odd number
B=getaSoro6

P(AorB) =P(AUB)=P(odd) + P(50r6)— P(5) =

This is consistent, since P(AU B) = P({1,3,5,6}) = % =3

2

o W
o Il
N =
I
o SN
W oo
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Alternative: Note that A N B¢ = (AU B)*

I I C
A€ B¢

A" N B

So we could also calculate P(A U B) using

P(AUB) = 1—P(A° nB°)

e

E.g. As before, throwing a fair die let results of interest be A = get an odd number, B = geta 5 or 6

Then A={2,4,6}, B ={1,2,3,4} so A° N B ={2 4} Hence

P(AorB)=1—P(A°NB°) = 1—P({24}) = 1_%=§

This alternative form has the advantage of generalizing easily to lots of possible events:

P(Ajord,or..ord,)=1—-P(A5Nn A5 N ..NAE)
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Special addition rule
 If (AN B) = (,the events are mutually exclusive, so
P(AorB)=P(AUB)=P(A)+ P(B)

 We will often consider mutually exclusive sets of outcomes, in which case
the addition rule is very simple to apply:

* In general, if several events A;, As, ..., A;. are mutually exclusive (i.e., at
most one of them can happen in a single experiment), then

P(Ajor Ayor ...or Ay) = P(AjUAU..UAL) = P(Ay)+..+P(Ap) = Y P(Ay)
k

e E.g., throwing a fair die,

P(getting 4,5 or 6) = P(4)+P(5)+P(6)=1/6+1/6+1/6=1/2
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Boole’s inequality for events Ay, Ao, ..., A,

P{A, U Ay U U A1 <P[A,]+ P[d,]+ -+ P[A].

PROOF P[4, v A,] = P[A,] + P[A4,] — P[A;4,] < P[A,] + P[A,].
The proofis completed using mathematical induction. ([
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3. Multiplication Rule

We can re-arrange the definition of the conditional probability

to obtain equivalent expressions for P(Aand B):

_ (P(AIB)P(B)
PANBE)= {p(giap(s
You can often think of P(A and B) as being the probability of first getting A with probability P(A),
and then getting B with probability P(B|A). This is the same as first getting B with probability P(B)
and then getting A with probability P(A|B).

E.g. Drawing two random cards from a pack without replacement, the probability of getting two hearts
is

P(first is a heart and second is a heart)
= P(firstis a heart) X P(second is a heart | first is a heart)

13 12 1 12 3
=—X—=—X—=—

52751 4751 1
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Special Mulriplication Riile

If two events 4 and B are independent then P(A| B) = P(A) and P(B| A) = P(B): knowing that 4 has
occurred does not affect the probability that B has occurred and vice versa. In that case

P(4 and B) = P(4 ~ B) = P(4) P(B)

Probabilities for any number of independent events can be multiplied to get the joint probability. For
example if you toss a fair coin twice, the outcome of the first throw shouldn’t affect the outcome of the

second throw, so the throws are independent.

E.g. A fair coin is tossed twice, the chance of getting a head and then a tail is

P(H, and T,) = P(H,)P(T,) = Y2 x %5 = Y.

E.g. A die is thrown 3 times. The probability of getting the first six on the last throw is
P(not 6)P(not 6)P(6) =5/6x 5/6x 1/6 =25/216 = 0.116..
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3.4 A posteriori or frequency probability

Assignment of probability

We have mentioned before that the axioms of probability define the
properties of a probability measure but do not give leads on what values
the probability function assigns to events: we will have to model our
random experiment in some way in order to obtain values for the
probability of events

However, with our first definition of probability ... :

Classical or “a priori” probability: If a random experiment can result in n
mutually exclusive and equally likely outcomes and if n, of these outcomes
have an attribute A, then the probability of A is the fraction ny/ n.
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Limitations of the classical definition

e Limitation 1: The definition of probability must be modified somehow when

the total number of possible outcomes is infinite

0 What is the probability that an integer drawn at random from the
positive integers be even? Start with the first 2N integers... Your answer

would be N/2N =%
0 Can you make this argument under all circumstances?

= Natural ordering: 1,2,3,4,5,6,... 2 1/2

= Different ordering 1,3, 2; 5,7, 4; 9,11, 6;... (first pair of odd
integers, first even, etc) 2 1/3

= Oscillating sequence of integers = never attains definite value
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e Limitation 2: Suppose that we toss a coin known to be biased in favor of

heads (it is bent so that a head is more likely to appear than a tail).

0 What is the probability of a head?
* The classical definition leaves us completely helpless...

e Limitation 3: Suppose notions of symmetry and equally likely do not apply?
0 What is the probability that a female will die before the age of 60?
0 What is the probability that a cookie bought at a certain bakery will

have less than 3 raisins in it?
0 What is the probability that my boy (girl-) friend truly loves me?
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A posteriori probabilities

We assume that a series of observations (or experiments) can be made under
quite uniform conditions:

 An observation of a random experiment is made

 Then the experiment is repeated under similar conditions, and another
observation is taken

e This is repeated many times, and while conditions are similar each time,
there is an uncontrollable variation which is haphazard or random so that
the observations are individually unpredictable.
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* In many cases the observations will fall into certain classes wherein the
relative frequencies are quite stable. [Under stable or statistical regularity
conditions, it is expected that this ratio will tend to a unique limit as the
number of experiments becomes large.]

e This suggests that we postulate a number p, called the probability of the
event, and approximate p by the relative frequency with which the
repeated observations satisfy the event.

Frequency probability: Assuming that a random experiment is performed a
large number of times, say n, then for any event A let n, be the number of
occurrences of A in the n trials and define the ratio ny/ n as the relative
frequency of A. The limiting value of the relative frequency is a probability
measure of A.
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Applet Probabilities
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Coin toss The result of any single coin toss is
random. But the result over many tosses
1.0 is predictable, as long as the trials are
' ! independent (i.e., the outcome of a new
0.9 7 31 s coin flip is not influenced by the result of
0.8 { the previous flip).
i
s 0.7 1 \
i) i -
¢ 06- i _ The probability of
= U W heads is 0.5 =
© 05 A B T e M e e the proportion of
.E 0.4 - times you get
| < heads in many
a 0.3 1 repeated trials.
£ 02-
- ««»+ First series of tosses
0.1 4 —— Second series
0.0 -
1 L] L] ] L I T 1
1 5 10 50 100 5001000 5000

Number of tosses

The long-run expected relative frequency of a balanced coin is 0.5
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4 Statistical independence and conditional probability revisited
4.1 Independence

Independence of events If P[4|B] does not depend on event B, that 1s,
P[A|B] = P[A], then it would seem natural to say that event A4 is independent
of event B. This is given in the following definition.

Definition ' Independent events For a given probability space
(€, o, P[*]), let 4 and B be two events in /. Events 4 and B are

defined to be independent if and only if any one of the following conditions
is satisfied:

(i) P[AB] = P[A]P[B].
(i) P[A|B]= P[A]if P[B] > 0.
(i) P[B|A] = P[B]if P[A] > 0. /1

Remark Some authors use “statistically independent,” or ‘“ stochasti-
cally independent,” instead of “independent.” /1]
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Definition . Independence of several events For a given probability
space (Q, &, P[-]), let 4y, 4,5, ..., 4, be n events in /. Events A4,,
A,, ..., A,are defined to be independent if and only if

P[A,A;] = P[A;]P[4;] for i #j
PA;A; A = PIAPIA;IP[4,]  fori#jj#ki#k

P [m] - I Pld.) i
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4.2 Conditional probability

Conditional probability: P{AB) means the probability of A given that B has happened or 1s true.
e.g. Presult of coin toss is heads | the coin is fair) —1/2

PiTomarrow is Tnesday | it is Monday) = 1

Pieard ds a heart | it is a red suif) = 12

Probabilities are always conditional on something, for example prior knowledge, but often this 1s lefi
unplicit when 1t 1s irrelevant or assumed to be obvious from the context.

In terms of P(B) and P(A and B) we have T

s
-~ .

P{ANB ; \

p(alB) = LANE) \

P(B) ! '.

A Ans B

P(B) guves the probability of an event in "-.5 '
the B set. Given that the event 1s in B, 4

P{A|B) 1s the probability of also being in .
A It 15 the fraction of the B outcomes that '
are also m A:
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Conditional probabilities can get complex, and it is often a good strategy
to build a probability tree that represents all possible outcomes

graphically and assigns conditional probabilities to subsets of events.

Age Chat? Probability

Tree diagram for chat room
£ 0.1253*

habits for three adult age
groups £ 0.1537
Internet & 0.
user
. 03713
€ 001687
P(chatting) |=0.136 + 0.099 + 0.017

About 25% of all adult Internet users visit chat rooms.
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The law of total probability: relating the prob of an event to cond probs

If 4, 45, ..., A; form a partition (a mutually exclusive list of all possible outcomes) and B is any event
then

P(B) = P(B|A)P(A;) + P(B|Ay)P(A;) + -+ P(B|Ag)P(Ay) = ZP(BIA;C)P(A;J
k
Proof: This follows since

P(B)=P(B| 4,)P(4,) +P(B| 4,)P(4,) +... +P(B| 4,)P(4;)
=P(B 4;) +P(Bn4,)+...+P(Bn4p)
=P(Bm Ayor B4, or.. +or B A4;)
=P(Bm (4y0r A, or 4;))
=P(B)
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Another example: breast cancer screening

If a woman in her 20s gets screened for breast cancer and receives a positive

test result, what is the probability that she does have breast cancer?

Disease
incidence

0.0004 Cancer -

Mammography

=

0.9996

SN

Mo cancer

Incidence of breast
cancer among
women ages 20-30

She could either have a positive test and have breast cancer or have a positive
test but not have cancer (false positive).
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Disease
incidence |
' Cancer
Mammography j\
0.99496
Mo carcer
Incidence of breast ==

cancer among
women ages 20-30

Possible outcomes given the positive diagnosis: positive test and breast cancer

or positive test but no cancer (false positive).
P(cancer and pos)

P(cancer and pos) - P(nocancer and pos)

e
_ 0.0004*0.8 - 0.3%
0.0004*0.84+0.9996%0.1

P(cancer| pos) —

This value is called the positive predictive value, or PV+. It is an important piece

of infarmation but, unfortunately, is rarely communicated to patients.
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Example: two-stage binary channel system

e Suppose the outcome at the second stage is dependent only on what
happened at the first stage and not on outcomes at stages prior to the first:

P(C|BA) = P(C|B), P(C|BA) = P(C|B), ...

0.95

0.9

9]
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P(ABC) = P(A)P(B|A)P(C|BA)
= P(A)P(B|4)P(C|B)
— 0.4(0.95)(0.95) = 0.361.

P(C) = P(ABC) + P(ABC) + P(ABC) + P(A BC)
— 0.95(0.95)(0.4) + 0.1(0.05)(0.4) + 0.95(0.1)(0.6) + 0.1 (0.9)(0.6)

= 0.472.
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Bayes’ Theorem

The multiplication rule gives P(A N B) = P(A|B)P(B) = P(B|A)P(A).
Bayes’ theorem follows by diving through by P(B) (assuming P(B) > 0):

P(B|A)P(A)
P(B)

P(A|B) =

This 1s an incredibly sumple, usetul and unportant result. If you have a model that tells you how likely
Xisgiven Y, Bayes’ theorem allows vou to calculate the probability of Y if you ebserve X. This 1s the
key ta learning about your model from statistical data.

Notc: often the Total Probability rule 1s often uscd to cvaluate P(B):

P(B|A)P(4)
2k P(BIA )P (A)

P(A|R) =
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Principle of proportionality

e This is an immediate consequence of Bayes' Theorem.

 |If various alternatives are equally likely, and then some event is observed,
the updated probabilities for the alternatives are proportional to the
probabilities that the observed event would have occurred under those
alternatives.

The formal derivation is simple. Assume

(*) P(A;) = P(A;) =...=P(A,) >0 and P(B) > 0.

Then P(A,|B) =K P(B|A,), forallm=1, 2, ..., n, where K > 0 does not depend
on m.
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Indeed, by Bayes' theorem,
P(An|B)=P(An 1 B) / P(B)
= P(Am) P(B|An) / P(B)

= (P(Am) / P(B)) P(B|Am).

The assertion holds, with K = P(A,) / P(B) - constant from (*) before.



CHAPTER 1: PROBABILITY THEORY 1- 81

The Bear cubs problem revisited

There are two bears - white and dark. Assume it is known that one of the
bears is male. What is the probability that both are males?

Solution: With the common assumption that sexes are evenly distributed
among the bears as among the humans, at the outset, there are four equally
probable variants: A; = (female/female), A, = (female/male), Az =
(male/female), A, = (male/male). Event B is the acknowledgement that one of
the bears is male. Conditional probabilities of B assuming one of the A's are as
follows:

P(B|A;) =0, P(B|A,) =1, P(B|As) =1, P(B|As) = 1.

The conditional probabilities of A's assuming B are proportional to the above
but must add to 1. So they are 0, 1/3, 1/3, 1/3. Only in the last event the

second bear happens to be male, thus the probability of the latter happening
is1/3. (http://www.cut-the-knot.org/)
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Breast cancer screening example: application of Bayes’ theorem

If a woman in her 20s gets screened for breast cancer and receives a positive test

result, what is the

- Disease
probability that iRGidene | .
she does have ' Cancer
0.0004%
breast cancer?
Mammograpny

0.9995™

Incidence of breast
cancer amonyg
women ages 20-30

[ Mo cancer

P(C| AvRAN

This time, we use Bayes's rule:  A41 0= prranRa T ACT AR&) + -+ AADACT A

A1 is cancer, A2 is no cancer, Cis a positive test result.

P(pos | cancer)P(cancer)
P(pos | cancer)P(cancer)+ P( pos | nocancer)P(nocancer)

*
_ 0.8%0.0004 ~0.3%
0.8%0.0004 +0.1%0.9996

P(cancer| pos)=
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Bayesian odds

 On occasion when there are two events, say A and B, whose comparative
posterior probabilities are of interest, it may be more advantageous to
consider the ratios, i.e.:

pAIC) _ p(ClA) p(A)

p(BIC) ~ p(C|B) p(B)

e Ward Edwards gives a simple example where the latter formula comes in
handy:
There are two bags, one containing 700 red and 300 blue chips, the other
containing 300 red and 700 blue chips. Flip a fair coin to determine which
one of the bags to use. Chips are drawn with replacement. In 12 samples, 8
red and 4 blue chips showed up. What is the probability that it was the
predominantly red bag?
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Solution:

Author Edwards writes
Clearly the sought probability is higher than 0.5.
Is it?

Let A be the event of selecting the first bag. Let B be the event of selecting
the second bag. Finally, let C be the result of the experiment, i.e., drawing 8
red and 4 blue chips from the selected bag. Clearly,

p(ClA) = (

p(C|B) = (

(C1A) _ (1\* o
sothat ey = (3) =~ 20.642,

wol
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Now, p(A)=p(B)=0.5, implying that

p(AlC) _p(Cla)
p(BICO) ~ peB) T

From p(A|C)+p(B|C)=1, it then follows that

p(A|C) .
= 29.642 [this is an odds!!!]
1 —p(A|C)
and
29.642 29.642
p(A|C) = —— =~ 0.967

T 1429642 30.642

(http://www.cut-the-knot.org/)
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Odds

* Note that by our assumption of equal probabilities for the events A and B,

p(AlC) _ p(A[C)

p(BIC)  1-p(A|C)

and is therefore a genuine odds.

 The experts on this issue live just south of here in a town called Peculiar,
Missouri. The sign just outside city limits reads "Welcome to Peculiar,
where the odds are with you." © © ©

e Odds are just an alternative way of expressing the likelihood of an event
such as catching the flu. Probability is the expected number of flu patients
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divided by the total number of patients. Odds would be the expected
number of flu patients divided by the expected number of non-flu patients.

e During the flu season, you might see ten patients in a day. One would have
the flu and the other nine would have something else.

0 So the probability of the flu in your patient pool would be one out of
ten.

O The odds would be one to nine.
 |t's easy to convert a probability into an odds. Simply take the probability
and divide it by one minus the probability:

odds = probability / (1-probability)

* If you know the odds in favor of an event, the probability is just the odds
divided by one plus the odds.

probability = odds / (1+odds)



CHAPTER 1: PROBABILITY THEORY 1-

88

e You should get comfortable with converting probabilities to odds and vice
versa. Both are useful depending on the situation.
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5 In conclusion

5.1 Take-home messages

We have introduced an axiomatic definition of probability and have offered
a guideline on how to associate probabilities to an event.
We have derived several useful properties to compute the probability of a
set of events
We have encountered two main widely application interpretations of a
probability:

0 as the idealized value of a relative frequency from many independent

repetitions of the same thing (frequentist)

O as a measure of the belief that an event will occur (Bayesian)

Whereas the first involves a so-called frequentist view, the second involves

a so-called Bayesian view and is the subject of a more advanced course in
statistics.
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5.2 The birthday paradox

Suppose that there are 100 students in a lecture hall. There arc 365 possible birthdays,
ignoring February 29. What is the probability that two students have the same birthday?
50%? 90%? 99%? Let's make some modeling assumptions:

* For each student, all possible birthdays are equally likely. The idea underlying this
assumption is that each student’s birthday is determined by a random process in-
volving parents, fate, and, um, some issues that we discussed earlier in the context
of graph theory. Our assumption is not completely accurate, however; a dispropor-
tionate number of babies are born in August and September, for example. (Counting
back nine months explains the reason why!)

e Birthdays are mutually independent. This isn't perfectly accurate either. For exam-
ple, if there are twins in the lecture hall, then their birthdays are surely not indepen-
dent.
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The four-step method

Let us switch from specific numbers to variables. Let m be the number of
people in the room and let N be the number of days in a year.

Step 1: Find the sample space

[When the sample space is not too large, it is feasible to use tree diagrams, as
in the breast cancer example, to capture the sample space]

Let’s number the people in the room from 1 to m. An outcome of the experiment is a
scquence (b, ..., b ) where b, is the birthday of the ith person. The sample space is the

set of all such sequences:

8§ —{(by....,b,) | s € {1,...,N}]
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Step 2: Define events of interest

Our goal is to determine the probability of the event A, in which some two people have
the same birthday. This event is a little awkward to study directly, however. So we'll use

a common trick, which is to analyze the complementary event A, in which all m people
have different birthdays:

A={(bi,...,by) €8 |allb; are distinct]

If we can compute Pr (A4), then we can compute what we really want, Pr(A), using the
relation:

Pr(A) + Pr(4) =1
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Step 3: Assign outcome probabilities

We need to compute the probability that m people have a particular combination of birth-
days (by,...,b,,). There are N possible birthdays and all of them are equally likely for
each student. Therefore, the probability that the ith person was born on day b; is 1/N.
Since we're assuming that birthdays are mutually independent, we can multiply prob-
abilities. Therefore, the probability that the first person was born on day #;, the second
on day bs, and so forthis (1/N)™. This is the probability of every outcome in the sample
Spacc.
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Step 4: Compute event probabilities

Now we're interested in the probability of event A in which everyone has a different
birthday:
A= {(by,...,by) € 5| all b; are distinct}

This is a gigantic set. In fact, there are N choices for by, N — 1 choices for by, and so forth.
Theretore, by the Generalized Product Rule:

A = NN —1)(N—2)...(N—m+1)

The probability of the event A is the sum of the probabilities of all these outcomes. Hap-
pily, this sum is easy to compute, owing to the fact that every outcome has the same
probability:

Pr(A4) = Z Pr (w)
weA
_ 1A
Nm
NIN-1)(N-2)...(N—m+1)

Nm
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An alternative approach

The probability theorems and formulas we've developed provide some other ways to
solve probability problems. Let’s demonstrate this by solving the birthday problem using
a different approach— which had better give the same answer! As before, there are m

people and N days in a year. Number the people from 1 to m, and let £; be the event that
the ith person has a birthday different from the preceding i — | people. In these terms, we
have:

Pr (all m birthdays different)

— Pr(EyNEN...NEy)
= Pr(E;)-Pr(Ey | By)-Pr(Es | E\NEy) - Pr(Ep | B N...0 Ep_y)

On the second line, we're using the Product Rule for probabilities. The nasty-looking
conditional probabilities aren't really so bad. The first person has a birthday different
from all predecessors, because there are no predecessors:

Pr(E) =1
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We're assuming that birthdates are equally probable and birthdays are independent, so
the probability that the second person has the same birthday as the firstis only 1/N. Thus:

|
JI‘ETT

Given that the first two people have different birthdays, the third person shares a birthday
with one or the other with probability 2/N, so:

Pr{Es | Ej) =1-—

acd

Pr(Es | EyNEy)=1— =

-
]

=

Extending this reasoning gives:

1 2 ~1
Pr (all m birthdays different) = (1 - -xr) (1 L M) (1 — )

We're done— again! This 1s our previous answer written in a different way.



