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Abstract: With the decrease in sequencing costs, personalized genome sequencing will eventually become common in 
medical practice. We therefore write this series of three reviews to help non-geneticist clinicians to jump into the fast-
moving field of personalized medicine. In the first article of this series, we reviewed the fundamental concepts in 
molecular genetics. In this second article, we cover the key concepts and methods in genetic epidemiology including the 
classification of genetic disorders, study designs and their implementation, genetic marker selection, genotyping and 
sequencing technologies, gene identification strategies, data analyses and data interpretation. This review will help the 
reader critically appraise a genetic association study. In the next article, we will discuss the clinical applications of genetic 
epidemiology in the personalized medicine area. 
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WHAT IS GENETIC EPIDEMIOLOGY? 

 Genetic epidemiology emerged in the 1960s at the 
crossroads of multiple disciplines such as molecular genetics, 
epidemiology and biostatistics. Genetic epidemiology studies 
the role of genetic factors in determining health and disease 
in families and in populations, as well as the interplay of 
genetic determinants with specific environmental exposures. 
Morton elegantly defined genetic epidemiology as "a science 
which deals with the etiology, distribution, and control of 
disease in groups of relatives and with inherited causes of 
disease in populations" [1]. In this article, we aim to 
illustrate how to identify genetic variants associated with a 
disease including the relevant concepts, study designs and 
statistical analyses classically used in genetic epidemiology. 
Due to the complexity of the steps needed to explore genetic 
variation in common diseases, we provide a diagram which 
outlines how this paper is structured (Fig. 1). The questions 
illustrate the step by step procedures to conduct genetic 
epidemiology research; the methods show the parameters 
which are measured, and the third column lists the study 
designs most commonly used in genetic epidemiology. 

PHENOTYPE 

 A phenotype represents the observable physical or 
biochemical characteristics of an individual or a group of 
organisms, as determined by both genetic make-up and 
environmental influences. In human genetics, phenotypes  
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refer to traits as diverse as diseases, biochemical measurements 
or the levels of expression of a gene transcript. A phenotype 
can be binary (e.g. presence or absence of schizophrenia), 
categorical (e.g. personality disorders) or quantitative (e.g. 
hippocampal volume [2]). The ideal phenotype should be 
clinically and biologically relevant, not too rare, and 
inexpensive, thus allowing large-scale discovery and 
replication studies feasible. It should be well defined so that 
measurement errors, misclassification and heterogeneity can 
be minimized [3].  

MODES OF INHERITANCE  

 There are five basic patterns of Mendelian inheritances 
(Fig. 2). Punnett squares which are used to predict the 
chance of genetic disease in children for parents with an 
increased risk are presented in Fig. 3. First, autosomal 
dominant inheritance explains more than 50% of Mendelian 
diseases. One deleterious copy of the gene is sufficient to 
confer the disease. Both males and females have 50% risk of 
being affected and the disease occurs in every generation. 
Huntington’s disease follows an autosomal dominant mode 
of inheritance [4]. If each copy of the gene contributes to  
the trait and the heterozygote generates an intermediate 
phenotype, this is called co-dominant (e.g. ABO blood type) 
or additive inheritance (e.g. genetic effects from most risk 
alleles). Generally speaking, the concept of co-dominant 
includes additive models. If the trait is quantitative, when the 
heterozygotes have a mean level which is the average of two 
types of homozygotes means it is an additive model. An 
autosomal recessive disease only occurs when an individual 
harbors two deleterious copies at the locus. In most cases, 
both parents of the affected person are healthy heterozygous 
carriers of risk allele [5]. In accordance with Mendel’s Laws, 
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every offspring has a 25% probability of developing the 
disease. Offspring of consanguineous marriages are more 
likely to develop autosomal recessive disorders because 
consanguinity increases the risk to inherit two identical 
mutations [5]. Sometimes, individuals develop autosomal 
recessive disorders in non-consanguineous pedigrees because 
they carry two mutant alleles for the same gene, but with 
those two alleles being different from each other (for 
example, two mutant alleles are at different loci). This 
phenomenon is called compound heterozygosity. Compound 
heterozygotes usually get ill later in life with less severe 
symptoms. Phenylketonuria, an inherited disorder that is 
characterized by seizures, delayed development, behavioral 
problems and psychiatric disorders, follows an autosomal 
recessive pattern of inheritance [6]. The fourth mode is X-
linked recessive inheritance. A mutation in a gene located on 
the X chromosome causes a disease in males who are also 
called hemizygous (the gene mutation only occurs on the X 
chromosome) and in females who carry the mutant on each 
of the X chromosome. Thus, X-linked recessive diseases, 
such as X-linked mental retardation [7], affect more males 

than females. On the other hand, if only the father is 
affected, none of his sons will develop the disease, whereas 
all his daughters will carry the mutant allele. Fifth, X-linked 
dominant disorders are less common compared with X-
linked recessive type. All the offspring of affected females 
have a 50% chance that they will inherit such a disease 
whereas all the daughters of an affected male will develop it. 
Usually, males are affected more severely than females as 
observed in Fragile X syndrome [5]. However, more female 
patients with X-linked dominant disorders are sometimes 
observed. In the Rett syndrome for instance, 50% of the 
males with the mutant allele miscarry before birth [8].  
 Departure from classical Mendelian patterns of 
inheritance often occurs and can be explained by different 
mechanisms that include incomplete penetrance, variable 
expressivity, genomic imprinting effects, mosaicism, 
mitochondrial inheritance, de novo mutations, overdominance 
or digenic inheritance. Incomplete penetrance refers to a 
situation in which the occurrence of the disease in individuals 
who harbour the same disease-causing allele is less than 
100%. Although the mutant allele does not inevitably cause 

 

Fig. (1). Framework outlining the procedures, methods and study designs to identify the genetic determinants of common diseases. 
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the disease, it is still passed to the offspring. On the other 
hand, individuals who inherit the same mutant allele may 
experience a different level of severity of the disease. This 
phenomenon is called variable expressivity. Incomplete 
penetrance and variable expressivity are commonly observed 
in autosomal dominant and X-linked recessive disorders and  
can be explained by the effect of modifying genes or by 
differential regulation of gene expression [9]. For instance, 
microdeletion of 15q13.3 shows incomplete penetrance of 
autism and a wide spectrum of mental retardation [10, 11]. 
Genomic imprinting is a phenomenon by which imprinted 
alleles are silenced such that the genes are expressed in a 
parent-of-origin-specific and mono-allelic manner [12]. In 
other words, the genes are expressed only from the non-
imprinted allele inherited from the mother (maternal imprinting) 
or from the father (paternal imprinting). Imprinting is an 
epigenetic process that involves DNA methylation or histone 

methylation mechanisms with no alteration of the genetic 
sequence [12]. These epigenetic marks are established in the 
germline cells and are maintained throughout all somatic 
cells of an organism. Genomic imprinting has an important 
role in fetal and placental growth and development [13, 14]. 
Angelman or Prader–Willi syndromes are classical examples 
of genetic defects in genes submitted to parental imprinting 
[15]. When the paternal copy is imprinted and silenced, a 
deletion of 15q12 inherited from the mother causes Angelman 
syndrome. On the other contrary, if the maternal copy is 
imprinted and silenced, the deletion inherited from the father 
leads to Prader-Willi syndrome. Genomic DNA in every 
single cell of an individual is the same. But, if a mutation 
occurs during mitotic cell divisions of the developing fetus, 
it can give rise to mosaicism of at least two populations of 
cells (somatic or germline) that are genetically different. 
Mosaicism may explain a substantial fraction of unusual 

 

Fig. (2). Modes of inheritance. Pedigrees with autosomal dominant inheritance (A), autosomal recessive inheritance (B), autosomal co-
dominant inheritance (C), X-linked dominant inheritance (D), X-linked recessive inheritance (E). 
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clinical observations, for example, mosaic structural variations 
are two-fold more frequent in schizophrenic cases than in 
controls [16]. A very small but functionally important portion 
of genomic DNA resides in the cytoplasm of mitochondria. 
Mitochondrial DNA can only be inherited from the mother, 
because mitochondria present in sperm are eliminated from 
the embryo. Another unique feature of mitochondrial DNA is 
that it is randomly distributed into daughter cells during 
mitosis and meiosis, leading to remarkably variable expressivity 
in mitochondrial diseases. Schizophrenia and bipolar disease 
have been reported to present excessive maternal inheritance, 
and mutations in mitochondrial DNA are also related to these 
disorders [17-19]. There is a probability of 10-6 to have a  
de novo mutation in any types of inheritance modes. The  
de novo mutations in autosomal recessive diseases are more 
frequent than autosomal dominant and X-linked disorders. 

The over-dominant mode of inheritance is rarely observed in 
humans [20]. In that model, the mean of the heterozygotes is 
higher than the mean of two types of homozygotes. 
Sometimes, a disease occurs only if two mutations in two 
different genes are present in the same individual which 
belongs to a digenic mode of inheritance [21]. Digenic 
inheritance has been reported in severe familial forms of 
insulin resistance [22]. Most of the time, non-Mendelian 
modes of inheritance observed in human diseases result from 
polygenic genetic architectures (see the section below). 

FAMILIAL AGGREGATION, HERITABILITY AND 
SEGREGATION ANALYSES 

 Clinicians are used to collecting family history 
information related to a particular disease in order to assess 

 

Fig. (3). Punnett squares of inherited traits. Punnett squares are used to predict the chance of genetic disease in children for parents with 
an increased risk. The disease-causing mutation is denoted by A and the normal gene is denoted by a. A) Autosomal dominant inheritance: A 
mother with an autosomal dominant mutation has children with a father who is normal. They have 50% chance with each pregnancy of 
having a child (boy or girl) affected by the disease and a 50% chance having a child (boy or girl) unaffected. B) Autosomal recessive 
inheritance: A mother with an autosomal mutation has children with a father who also has the same autosomal mutation. They have 25% 
chance with each pregnancy of having a child (boy or girl) affected, a 50% of chance having a child unaffected but with the same mutation 
(carriers), and 25% chance having a child unaffected with normal genotypes. C) X-linked dominant inheritance: A mother with an X-linked 
mutation has children with a father who is normal. They have 25% chance with each pregnancy of having a girl affected by the disease and a 
25% chance having a boy affected. The rest of the children are unaffected with normal genotypes. D) X-linked recessive inheritance: A 
mother with an X-linked mutation has children with a father who also has a copy of X-linked mutation. They have 25% chance with each 
pregnancy of having a girl affected by the disease and a 25% chance having a boy affected. The other half of the girls are unaffected but are 
the mutant carriers and the other half of the boys are unaffected with normal genotypes. 



Jumping on the Train of Genomic Medicine Current Psychiatry Reviews, 2014, Vol. 10, No. 2    105 
whether a person is at risk of developing similar problems. A 
more frequent recurrence of a disease in a pedigree may be 
because of their shared environmental exposure (e.g. toxin), 
however, most of the time it indicates that the disease has a 
hereditary component. Familial aggregation analysis answers 
the question of whether the relatives of the affected person 
(proband) are more likely to suffer the same disease 
compared with the general population at a specific point of 
time. If the phenotype is qualitative, familial aggregation is 
measured by recurrence risk ratio in relatives λ R (Table 1) 
[23]. A greater λ is expected in first degree than in second 
degree relatives of the affected person if genetic factors play 
a role in the occurrence of the disease [23]. A λ R of 2 and 
above is a good indication that the causes of the underlying 
familial aggregation warrant further study [24]. Very high 
relative risk ratios λ S for siblings have been observed for 
autism (λS=75), schizophrenia (λS=10) and bipolar disorder 
(λS=15) [25] in which shared genes greatly contribute to the 
familial recurrence of the diseases. If the phenotype is 
quantitative, familial aggregation is measured by intra-family 
correlation coefficients (ICC) which is the proportion of the 
total variance in the phenotype attributed to differences 
between families. The larger λ R or ICC, the greater the 
familial component of the trait will be [23]. Neither λR nor 
ICC distinguishes genetic from environmental components, 
because family relatives share not only genes but also similar 
environment. For example, familial aggregation for 
depression could be due to either shared genes or similar 
environmental factors, such as socioeconomic status of the 
family.  
 Heritability reflects the proportion of total phenotypic 
variability explained by genetic variance in a particular 
population at a specific time. When only additive genetic 
effects are accounted for in the genetic variance, heritability 
is named narrow-sense heritability or just heritability (h2); 
when all genetic variance from additive, dominant and 
epistatic (gene × gene interaction) effects is accounted for, 
heritability is defined as broad-sense heritability (H2) [26]. 
Twin and adoption studies are ideal experimental designs to 

estimate heritability because of their natural separation of 
genetic and environmental components [26]. In twin studies, 
monozygotic (MZ) twins share 100% of their genome 
whereas dizygotic (DZ) twins share 50%. If genetic factors 
play a role in the phenotype, the correlation coefficient of the 
phenotype between MZs should be significantly higher than 
in DZs. The calculation of the heritability is listed in Table 1. 
These calculations are based on the assumption that MZ 
pairs and DZ pairs grow up in an identical environment [27]. 
There is a methodological concern that twins are not 
representatives of the general population [28]. In practice, 
the assumption of identical environment in twin studies may 
be difficult to hold. Twins may display difference in delivery 
process, special life events, and interactions with teachers or 
friends. In an alternative adoption study, a biological parent 
and an adopted-away offspring, or a full sibling and an 
adopted-away full sibling share 50% of genes that attribute 
to their resemblance in the trait. The heritability in this 
situation assumes they have different environmental exposures 
(Table 1). When the traits are binary, a liability scale model 
in which a disease arises when the determined probability 
exceeds a certain threshold, or the statistical models 
developed for quantitative traits may be applied [29, 30] 
Although the assumptions underlying the twin and adoption 
studies are not always met in practice, many important 
findings have been discovered from such designs [31]. 
Structural equation models have been used to estimate 
heritability with consideration of shared and non-shared 
environment effects by collecting diverse environmental 
variables [32]. Recently, Yang et al. has developed a GCTA 
model, a tool that estimates heritability using genome-wide 
association study (GWAS) data and unrelated individuals for 
both quantitative and binary traits [33, 34]. The phenotypic 
variance explained by this model is from all the SNPs 
(including imputed SNPs) rather than individual SNPs 
associated with this phenotype. It has been applied to 
estimate the heritability in intelligence and schizophrenia 
[35, 36]. Heritability is an important concept in genetics but 
is often misunderstood [26]. Heritability does not influence a 
trait in itself, but it can play a role in the variation of a trait. 

Table 1. Measurements of familial aggregation, heritability and linkage analysis.  

 Measurements Formula Thresholds 

Familial 
Aggregation 

recurrence risk ratio in 
relatives λR [23] 

λR =prevalence of the disease in the relatives of the affected 
individual / prevalence of the disease in the general population [24] 

2 [24] 

Heritability  the proportion of total 
phenotypic variability 
explained by genetic 
variance in a particular 
population [26]  

Twin study: h2=2(rMZ-rDZ) 
Adoption study: h2=2rPO [27] 
Population-based: (narrow- sense) h2= variance of additive genetic 
effects/total variance of the observed phenotype [26] 

There is no consensus on the 
minimum threshold of heritability 
needed to follow-up with gene 
identification program. A 
heritability estimate of 30% maybe 
considered as the minimum [3].  

Linkage study LOD: logarithm of the 
odds score [75]  

LOD(θ)=log10[Likelihood(θ̂ )/Likelihood(θ=0.5)] [75] 3.3 [75] 

rMZ: correlation coefficient of the trait between monozygotic twins 
rDZ: correlation coefficient of the trait between dizygotic twins  
rPO: correlation coefficient of the trait between a biological parent and an adopted-away child  
θ is the probability of a recombination event (recombination fraction) between a genetic marker and the disease locus. Observed θ̂ can be obtained by counting recombinants and non-
recombinants when the genotypes of individuals within a family are available. 
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Therefore, heritability estimate cannot be used as an 
indicator of the individual risk. Heritability may vary in 
different populations and change over time. It is important to 
select a phenotype in a population with a substantial 
heritability to identify the genetic determinants underlying the 
trait [24]. Studies have shown that schizophrenia, bipolar 
disorder and autism are highly heritable traits with 
heritability greater than 80%, whereas drug dependence 
shows moderate heritability of 50-60% [37]. We do not 
encourage gene identification programs if traits show 
heritability estimates lower than 30%, as these programs may 
become a ‘geneticist’s nightmare’ [3, 38].  

 Once twin studies, adoption studies, family studies or 
population-based studies of unrelated individuals have 
provided evidence that a trait has a genetic component, a 
segregation analysis with family data will answer the 
question of what is the best inheritance mode this trait 
follows [39]. It determines whether the transmission pattern 
of a trait in families is consistent with the expectation of one 
of the Mendelian inheritance modes we discussed above. 
Likelihood ratio test or chi-squared test is usually applied to 
examine whether a segregation ratio deviates from the 
expected under Mendelian laws, with no need for genetic 
marker information. For example, a dominant disease has a 
theoretical segregation ratio of 0.5. If the hypothesized 
Mendelian segregation ratio is true, it indicates the disease is 
determined by a single gene. Otherwise, the deviation may be 
an indication that the disease is determined by multiple genes, 
or caused by interplay between genetic and environmental 
factors, or the disease has an incomplete penetrance. Under 
these complicated circumstances, maximum likelihood  
tests are used to compare different inheritance models  
[40]. Therefore, segregation analysis seems appealing to 
typical Mendelian modes of inheritance. To a few notable 
exceptions (e.g. type 1 diabetes) [41] segregation analyses 
for complex diseases did not succeed in revealing the presence 
of a major gene and a clear pattern of inheritance [42].  

SINGLE GENE DISORDERS VERSUS COMPLEX 
DISEASES  

 A single-gene disorder (also called a Mendelian or 
monogenic disorder) is caused by a single mutation in a 
single gene. It exhibits a familial pattern consistent with one 
of the Mendelian inheritance modes. According to the 
statistics of Mendelian Inheritance in Man (OMIM) (www. 
ncbi.nlm.nih.gov/omim), more than 5200 diseases follow a 
Mendelian inheritance pattern, and the underlying molecular 
basis of 66% of them has been elucidated. Sometimes, 
mutations in only one gene elucidate 100% of disease  
cases (e.g. Huntington’s disease). Sometimes, mutations in 
different genes lead to similar disease presentation. For 
instance, mutations in 15 different genes lead to the Bardet-
Biedl syndrome [43, 44]. In that situation, the disease is 
referred as a heterogeneous monogenic disorder. The 
identification of genes responsible for single-gene diseases 
has made tremendous progress in the past 15 years and has 
greatly facilitated the understanding of disease-related 
molecular mechanisms. However, Mendelian segregation 
law which predicts discrete traits (like yellow/green, 

wrinkled/smooth peas in the original experiments) cannot 
explain many anthropometric features such as height and 
weight that show continuous variation. These quantitative 
traits do display familial clustering (e.g. relatives of the taller 
individuals tend to be taller than the general population), 
however, their transmission across generations does not 
follow clear Mendelian patterns of inheritance. In 1918, 
Ronald A Fisher, together with Sewall Wright and JBS 
Haldane, solved the dilemma by developing a polygenic 
inheritance theory using analysis of variance [45]. Multiple 
genes contribute to the continuous variation of a trait, each 
with allelic variation. Meanwhile, each allele follows 
Mendel’s segregation law and makes a small change in the 
total variance [45, 46]. Many common diseases (eg. cancers, 
diabetes, cardiovascular diseases, Alzheimer’s disease and 
schizophrenia) follow a polygenic model [47, 48]. Though 
the etiology of them is not completely understood, it is 
believed that they are caused by multiple genes and 
environmental factors and their interplay. The term complex 
disease is exchangeable with common disease and polygenic 
disease in the literature. It is important to pinpoint that 
monogenic genes exist in polygenic diseases, often initially 
identified in extreme end of the distribution of a trait. For 
example, more than sixty loci modestly contribute to the risk 
of obesity [49]. In addition, rare mutations or deletions at 
nine loci lead to monogenic forms of early-onset severe 
obesity and may explain 5-10% of obesity cases [49, 50].  
 Different models have been proposed to explain the 
genetic architecture of complex diseases. First, the common 
disease-common variant hypothesis (CDCV) states that risk 
variants are at relatively high frequency (>1%) in populations 
and modestly contribute to the risk of disease [51, 52]. The 
advent of GWAS has identified more than 2000 common 
loci modestly associated with complex traits and has given 
some credit to the CDCV hypothesis. However, the fact that 
common variants identified through large-scale GWAS 
consortium initiatives only explain a small proportion of 
heritability for most complex diseases excludes the 
possibility that CDCV hypothesis is the only relevant model 
[53, 54]. The second hypothesis, common disease-rare variant 
(CDRV), states that most of the common phenotypic 
variance are caused by rare variants (allele frequency <1%) 
with large effect sizes [55]. Recently, rare variants have been 
identified to play a role in several multifactorial disorders 
such as prostate cancer [56], inflammatory bowel disease [57] 
or type 2 diabetes [58]. Third, Dickson et al. recently proposed 
the synthetic association model in which the association of a 
common non-functional SNP with a disease may be the 
result of several disease-causing rare variants that have 
stronger effects and are tagged by the common SNPs [59]. 
Although the synthetic association hypothesis has been 
validated for specific SNPs associated with hearing loss, 
sickle cell anemia or Crohn’s disease [59, 60], it is unlikely 
to explain most of the associations between common variants 
and complex traits identified through GWAS [60, 61]. In 
fact, CDCV and CDRV models are complementary, and 
there is a growing consensus that multifactorial diseases may 
result from a combination of rare and common risk variants 
[62, 63]. 
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IDENTIFICATION OF DISEASE PREDISPOSING 
GENETIC VARIANTS: STUDY DESIGNS  

 Different study designs can be used to identify disease-
associated genetic variants in different contexts. Case-control 
and prospective cohort studies commonly used in classical 
epidemiology are also applied to genetic epidemiology. A 
case-control study recruits two groups of individuals who are 
diagnosed with (cases) or without (controls) a disease and 
determines the risk of being affected depending on different 
genotypes. This enables researchers to identify genes 
responsible for a disease (especially a less-common disease) 
in a time- and cost-efficient way, because adequate sample 
size is required to reach sufficient power to detect modest 
genetic effects. The major weaknesses of a case-control 
design are biases brought up by the retrospective recalls of 
exposures and misclassification of cases and controls [3, 64]. 
However, such biases are not a significant concern in a 
genetic association study because the genotypes (exposures) 
of individuals does not change with time [65]. However, 
when confounding factors of some exposures or gene-
environment interactions are assessed, considerations to  
such biases are still relevant. Since genetic associations are 
sensitive to population stratification between cases and 
controls, individuals in both groups should come from the 
same population [66]. In some case-control studies, an 
enrichment sampling strategy may be applied to increase 
power to detect a novel genetic variant [67]. Such a strategy 
increases power but usually overestimates the relative risk. 
Therefore, it is necessary to replicate in a population-based 
sample or make a conclusion based on a specific group of 
people.  
 In a prospective cohort study, individuals without the 
disease at baseline are followed for a period of time and then 
the associations between genotypes and the incident disease 
status are assessed at the end of the study. Because the 
disease has not yet presented during sampling, it allows the 
researchers to control the potential selection bias and 
minimize the misclassification errors as well. This is why 
cohort studies are considered the gold standard for both 
classical and genetic epidemiology studies, but this is with 
the sacrifice of time and cost. For this reason, case-control 
studies are more popular in genetic epidemiology. An 
alternative study design, the nested case-control study, 
collects cases in a defined cohort and selects a specific 
number of controls among those who have not developed the 
disease yet at the time of assessment [68]. Such an approach 
shows its unique value in gene-environment interaction 
association studies because it increases the measurement 
accuracy of environmental exposures which is essential to 
increase statistical power to detect interactions [64, 69].  
 Population-based designs are desirable in genetic 
epidemiology but they require larger sample sizes than case-
control designs to reach the same statistical power, the latter 
being enriched in a greater proportion of cases [70]. This 
limitation can become critical if expensive technologies are 
used (e.g. genome-wide DNA arrays, whole genome 
sequencing).  
 Family-based designs are also widely used in genetic 
epidemiology, which are ideal to assess parental imprinting 

effects or in haplotype studies (the reconstruction of the 
haplotype phase is improved by the availability of parental 
genotypes) [71]. A case-parent triad design which consists of 
one affected offspring and the two parents in each family is 
commonly used. Given the same power, type I error 
threshold and risk allele frequency, the number of trios in 
family-based study is the same as the pairs in a case-control 
study, signifying 50% more individuals and 50% increased 
genotyping or sequencing costs are needed. For example, if 
the power is 90%, using two-sided P-value of 0.001 and an 
allele frequency of 20% in the control group, 3731 trios will 
be requested to detect an odds ratio of 1.20 in family-based 
design and 3731 pairs of case and control in a case-control 
study, representing 50% more participants. Case-parent triad 
design is also used to confirm an association from a case-
control study because it is robust to population stratification. 
However, it is not well-adapted to late-onset diseases due to 
the difficulty or unavailability of DNA collection in parents 
[72]. There are also other family-based matching designs and 
corresponding statistical methods [73]. The main limitations 
are the lack of power, especially if the effect sizes are small, 
difficulties in recruiting required number of samples and the 
generalization of the discoveries from family-based studies 
to general populations [74, 75].  
 As mentioned above, the choice of an appropriate control 
is critical to conduct a valid case-control study. The case-
only study is one of the designs which have no controls 
involved. As well explained by Khoury et al., this design is 
especially efficient in the context of gene-environment 
interaction studies when the assumption that the tested 
genotype and environmental exposure are independent in a 
given population is met [76, 77]. Case-only studies can only 
examines the departure from a multiplicative interaction 
model rather than an additive interaction model, which is 
also less accepted by the scientific community. Although the 
case-only study design provides better estimation and needs 
a smaller sample size than traditional case-control design, it 
also may increase type I error if the assumption is not true 
[77, 78]. In addition to gene-environment interactions, it has 
also been used in gene-gene interaction and pharmacogenetic 
studies [79, 80]. Pharmacogenetic interaction is a special 
type of gene-environment interaction and is designed to 
identify genetic variants which predict response to treatment. 
When case-only study design is applied, the assumption  
that there is no correlation between genetic variants and 
treatment assignment must been examined. Thus, a case- 
only design nested in a randomized controlled trial (RCT) 
provides an ideal model for pharmacogenetic studies in 
which treatment assignment is random and unrelated to 
genotypes [80].  

HOW DO WE GET THE GENETIC INFORMATION? 

DNA Extraction 

 Adequate quantity and quality of DNA from a large 
number of individuals are prerequisites for a successful 
genetic epidemiology study, both of which depend on  
the samples collected and DNA extraction methods. The 
samples stored in the Biobank of study centres may be buffy 
coat (mainly blood leukocytes), saliva (mainly buccal cells) 
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or tissue biopsies. The buffy coat is most commonly used, 
but saliva is getting more and more popular because of its 
non-invasive nature and stability at room temperature. 
Modern DNA extraction methods are fast, non-toxic and 
reach high yields. A general DNA extraction procedure 
consists of cell lysis by alkaline, protein removal by salt 
precipitation and DNA recovery by ethanol precipitation 
[81]. Extracted DNA is dissolved in appropriate buffer and 
stored in small aliquots at -70°C for long-term storage, but 
repeated freezing and thawing should be avoided.  

Genotyping 

 Single nucleotide polymorphisms (SNPs) represent more 
than 90% of the entire genomic variants. SNPs have been 
initially detected by direct sequencing and genotyping of 270 
individuals in the context of the Human Genome Project and 
HapMap Project and more recently through the 1000 
Genomes Project. There are over 38 million validated  
human SNPs in the dbSNP database (dbSNP Build 137) 
(https://www.ncbi.nlm.nih.gov/SNP/). In the past two decades, 
many genotyping methods have been developed, with most 
of them assuming a bi-allelic feature of most SNPs in 
human. The commonly used approaches include restriction 
fragment length polymorphism (RFLP), differential 
hybridization (TaqMan), allele-specific primer extension 
(SNaPshot, SNPstream, pyrosequencing), allele-specific 
oligonucleotide ligation (Applied Biosystems SNPlex), 
allele-specific extension (Illumina Omni Whole-Genome 
Arrays) and single-base extension (Affymetrix 6.0) which can 
be detected by mass spectrometry (Sequenom MassArray), 
fluorescent light (TaqMan, Applied Biosystems), 
bioluminescent light, electrophoresis or high-resolution 
melting curves (Roche Applied Sciences LightTyper) [82, 
83]. Generally speaking, all these methods are performed in 
two different formats: homogeneous reactions (in solution) 
and heterogeneous reactions (in solution and a solid phase 

such as a microtiter well plate, latex beads, a glass slide,  
or a silicon chip). The former has limited capability of 
multiplexing which is to examine more than one SNP at a 
time; while the latter one is flexible in multiplexing ranging 
from a few to a hundred to several million SNPs. Because  
of their intrinsic characteristics, each genotyping method  
has unique applications and multiplexing capability. For 
examples, TaqMan SNP Genotyping Assays (Applied 
Biosystems) identify the genotypes of single SNP at a time 
with great precision and is widely used in candidate-gene 
association and replication studies even with large sample 
size [84]. The Sequenom MassArray uses a single-base primer 
extension genotyping method followed by distinguishing 
DNA base by molecular weight. It has high resolution  
but moderate multiplexing, and it is appropriate for small 
number of SNPs [85]. The more recent genome-wide 
genotyping arrays can accommodate up to 4.8 million 
genetic markers, including single nucleotide polymorphisms 
(SNPs) and probes for the detection of copy number 
variations (CNV). Therefore, some platforms work better for 
single SNPs or a few targeted SNPs in many individuals, 
some are suitable for small to moderate number (a few 
hundred to a few thousand) of SNPs on a few subjects at one 
time, and others are the best choice for several million SNPs 
on one subject at one time, depending on the aim and design 
of a particular study. Customized design may also be applied 
to genotyping on a single SNP or moderate number of SNPs. 
More than 4.5 million predesigned probes are available to 
customized uses with TaqMan genotyping [83]. Table 2 
gives a simple guideline on how to choose an appropriate 
genotyping platform, and the updated capacity of each 
platform is always available on the commercial websites. 

Sequencing 

 Sequencing is a method to determine the exact sequence 
of nucleotides from a fragment of DNA or the whole 

Table 2. Genotyping methods and study designs. 

Number of SNPs to be Genotyped Study Designs Genotyping Methods 

1-10 Candidate gene studies 
Replication studies 

TaqMan 
LightTyper 
Pyrosequencing 

1-500 Replication studies 
Linkage studies 
Fine-mapping studies 

SNaPshot 
SNPlex 
Sequenom MassARRAY 
Illumina Golden Gate with BeadXpress readout 

384-3,072 Linkage studies 
Fine-mapping studies 
Disease-specific SNPs  
Pathway-specific SNPs 

Illumina Golden Gate with iScan readout 

6,000-70,000 Linkage studies 
Fine-mapping studies 
Disease-specific SNPs  
Pathway-specific SNPs 

Illumina Infinium iSelec Custom Beadchip  

>500,000 
Up to 4.8 million 

GWAS (SNPs, CNVs) Illumina Omni Whole-Genome Array 
Affymetrix 6.0 Array 
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genome. It not only examines the presence of the bi-allelic 
variants reported in databases, but also provides information 
on all possible polymorphisms (including those with 3 or 4 
alleles). Sequencing is the ideal method to characterize the 
sequence of a new genome or to identify rare genetic 
variants not reported in SNP databases. Due to its current 
cost, sequencing has not yet been an efficient and 
economical way to genotype SNPs. Sanger sequencing (the 
first generation sequencing method), which was described in 
1977 [86], experienced many technical revolutions and 
eventually developed into today’s automated Sanger 
sequencing [87, 88]. The completion of the Human Genome 
Project led to tremendous improvements in the Sanger 
sequencing method, including the development of whole-
genome shotgun sequencing and a parallel sequencing 
initiative of the human genome by the company Celera 
Genomics [89]. However, Sanger sequencing is still 
expensive and laborious, and faster and more affordable 
methods to sequence DNA have been in great demand from 
broad research interests such as variant association studies, 
comparative genomics, population evolution and clinical 
diagnostics. High-throughput next generation sequencing 
(NGS), first launched in 2005, involves “massively parallel” 
sequencing and offers to sequence up to hundreds of millions 
of DNA fragments in a single platform. It cost $2.7 billion 
and 12 years to complete the Human Genome Project with 
Sanger sequencing, but it is now possible to obtain a 
personal whole-genome sequence at a cost of $1,000 [90].  
 Currently the DNA polymerase-dependent sequencing 
strategies are widespread on the market and can be classified 
as single nucleotide addition (SNA), cyclic reversible 
termination (CRT) and real-time sequencing. Here we will 
introduce three major platforms which are commercially 
available, in combination with their unique sequencing 
principles (Table 3). Roche/454 was the first developed NGS, 
using “pyrosequencing” technique of DNA [91, 92]. The 
current Roche/454 GS FLX+ Sequencer is able to produce 
700 Mb of sequence with 99.997% accuracy for single reads 
of 1,000 bases in length (http://454.com/products/gs-flx-
system/index.asp).  
 The second NGS approach is the Illumina/Solexa 
Genome Analyzer which uses cyclic reversible termination 
sequencing method and currently dominates the market. The 
capacity of the newest model generates up to 600 Gb of 
bases per run with a read length of about 100 bases (http:// 
www.illumina.com/technology/solexatechnology. ilmn). This 
is less than Roche/454 due to less efficient incorporation of 
modified nucleotides.  

 Another NGS system is Applied Biosystems Supported 
Oligonucleotide Ligation and Detection (SOLiD) sequencer 
based on sequencing by ligation [93]. The complicated process 
is well illustrated in Metzker’s paper [92]. SOLiD systems have 
two independent flow cells and allow two completely different 
experiments to be run at the same time. The updated  
SOLiD system can yield 320 Gb of sequence per run with a 
99.99% accuracy and a read length of 50-75 bases (http:// 
www.invitrogen.com/site/us/en/home/Products-and-Services/ 
Applications/Sequencing/Next-Generation-Sequencing/).  
 Recently, the novel sequencing technology ION Torrent 
arose on the market. It does not need any modified 
nucleotides. Its chemistry rationale is very simple. During 
the process of DNA synthesis, the incorporation of each 
dNTP causes the release of a hydrogen ion. The hydrogen 
ion changes pH in the solution, which can be detected by an 
ion-sensitive field-effect transistor (ISFET) detector [94]. 
This method enables a fast, accurate, inexpensive, and 
simple massively parallel sequencing. Ion Personal Genome 
Machine (PGM) and Ion Proton sequencers load amplified 
DNA fragments into micro wells of a high-density Ion  
chip to perform sequencing. The changed pH can be detected 
by an ion sensitive layer beneath the wells and converted 
into voltage changes. The change in voltage is proportional 
to the type and number of nucleotides incorporated and 
recorded. These smaller and cheaper sequencers can produce 
up to 2 Gb output per run with a read length of 200-400 
bases.  
 In addition to the strategies discussed above, many other 
technologies are under development and all the methods will 
continue to compete and improve [88]. Currently, it is not 
easy to predict which approach will be the winner of the 
future sequencing market. NGS is certainly another ground-
breaking revolution in biology and medicine after the 
completion of the Human Genome Project, making personal 
whole-genome studies more than just a dream. The 1000 
Genomes Project has used Illumina/Solexa and Roche/454 
platforms to sequence whole genomes and has validated up 
to 38 million SNPs, 1.4 million short insertions and deletions, 
and more than 14,000 larger deletions [95]. Whole-genome 
sequencing plays a unique role in facilitating a deeper and 
broader understanding of the spectrum of genetic variants 
and their pathogenesis in complex diseases, clinical 
diagnosis and personalized health decision-making. It will 
eventually come into daily practice in the near future, 
however, current cost and analytical challenges limit its 
applicability [90, 96]. An alternative solution to this may  
be to apply NGS to target specific sequences of interest,  

Table 3. Characteristics of sequencing platforms. 

Platform Sequencing Technology Sequencing Reaction Capacity Efficiency (bp/Read) 

Roche/454 Single nucleotide addition (pyrosequencing) Synthesis 700 MB 1,000 

Illumina/Solexa Genome Analyzer Cyclic reversible termination Synthesis 600Gb 100 

Applied Biosystems/ (SOLiD) Real-time sequencing Ligation 320Gb 50-75 

Applied Biosystems/ION Torrent Semiconductor Synthesis 2Gb 200-400 
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for example, whole-exome sequencing which sequences  
the entire protein-coding genes. In spite of constituting 
approximately 1% of the human genome, protein-coding 
regions include 85% of mutations associated with Mendelian 
diseases [97]. Meanwhile, non-synonymous variants predict 
with a high likelihood a functional change [98]. As such, the 
whole-exome is a relevant subset of the genome to search  
for genetic variants with large effect sizes and has been  
used to dissect the genetic architectures of Mendelian and 
complex disorders [99, 100]. Exome sequencing by NGS, in 
conjunction with developed strategies in study design and 
analytic methods, has had a great success in identifying 
causal alleles for several dozen Mendelian disorders [99]. 
Although more challenging, whole-exome sequencing has 
also been an effective strategy in identifying coding variants 
associated with complex diseases such as autism spectrum 
disorders and schizophrenia [101-103]. Compared to whole-
genome sequencing, whole-exome sequencing is currently a 
more widely accepted strategy to search for rare variants 
because of its cost-effectiveness, the simpler data analysis 
and interpretation.  

GENE IDENTIFICATION STRATEGIES  
 The identification of genes responsible for Mendelian 
and complex diseases may enable a better understanding of 
their pathology, provide efficient molecular targets for 
innovative therapeutic drugs, and help to better predict 
disease risk in populations for targeted prevention. In the 
past decade, a remarkable progress has been made in the 
journey of discovering disease-causing genes. However, 
more than 30% of the underlying genes leading to Mendelian 
disorders are still unknown, and the identified genetic 
variants to complex diseases account for only a small portion 
of heritability. In order to pursue gene identification efforts, 
traditional and novel gene identification strategies are 
introduced below.  

Genetic Linkage Studies  
 Linkage analysis aims to map the location of a disease-
causing loci by looking for genetic markers that co-segregate 
with the disease within pedigrees, though the disease causing 
allele has not to be directly genotyped [75]. Linkage is based 
on the facts that recombination occurs between homologous 
chromosomes during meiosis and recombination likelihood 
increases with the distance between two loci, a random 
probability from zero to 0.5. When a marker allele is 
inherited along with the disease in pedigrees, it strongly 
suggests that the disease-causing locus is located in the 
vicinity of the genetic marker on the chromosome. A set of 
400 highly-informative microsatellite markers (repeated 
sequences of DNA fragments less than 10 bp [104]) equally 
distributed across the genome is generally selected in a 
whole-genome linkage analysis. More recently, a set of 
6,000-10,000 markers have been proposed by different 
companies to perform linkage analysis.  

 Different linkage approaches are chosen depending on 
the type of disease (monogenic or polygenic) or trait 
(dichotomous or quantitative). Parametric or model-based 
linkage analysis is used if the disease follows one of the 

typical Mendelian inheritance modes. Results of linkage 
analysis are often reported as logarithm of the odds (LOD) 
score which is a function of the parameter θ. θ is the 
probability of a recombination event (recombination fraction) 
between a genetic marker and the disease locus [75]. LOD 
score analysis is equivalent to likelihood ratio test, assessing 
the null hypothesis H0 of θ=0.5 (absence of linkage) versus 
alternative hypothesis H1 of θ<0.5 (presence of linkage). In 
the simplest scenario with a known inheritance model, 
complete penetrance, no de novo mutations and no 
phenocopies (different environmental exposures and genetic 
variants lead to the same disease), θ is estimated by the 
maximum likelihood method, thus giving rise to a maximum 
LOD score (Table 2). The higher the LOD score is, the 
stronger the evidence of linkage will be. Historically, a rule 
of thumb states that a LOD score above 3 is sufficient to 
claim a significant linkage, based on the critical value from 
Morton [105]. An even higher LOD score of 3.3 is required 
to ensure the genome-wide type I error of 0.05. Other 
complicated model-based cases with incomplete penetrance, 
phenocopies and mutations, and more relaxed LOD score 
thresholds are discussed in detail by Ziegler and Konig [30]. 
Linkage analysis has successfully mapped genes responsible 
for Mendelian disorders such as the Wolfram syndrome on 
the short arm of chromosome 4 [106, 107].  
 Little is known about loci predisposing to complex 
diseases, and attributing a clear Mendelian pattern of 
inheritance within families for such a locus is impossible. As 
a result, model-based linkage analyses do not apply to 
complex trait linkage analyses and model-free linkage 
analyses have been developed. The fundamental rationale 
underlying model-free linkage analysis is that the genetic 
resemblance in the affected sibling pairs is more similar in 
certain regions of the genome if the disease is heritable. 
Therefore, the statistical tests assess whether the observed 
degree of genotypic similarity exceeds the expected value. 
Instead of measuring recombinant fraction of θ , genotypic 
similarity is measured by the identical by descent (IBD) 
value which refers to the number of alleles inherited from the 
same common ancestor in a pair of relatives. The IBD values 
can be 0, 1, or 2. If the distribution of IBD values is 
determined, model-free linkage analysis examines whether 
allele sharing in affected siblings is different from the 
expected distribution. More generally, it tests whether the 
mean number of IBD shared alleles departs from the 
expected value of 1 in sibling pairs [108]. Excess of IBD 
sharing can also be tested by other methods such as the 
maximum non-parametric LOD score test and Wald test [30] 
which successfully identified the HLA region associated 
with type I diabetes [109].  
 Linkage studies also apply to quantitative traits such as 
cholesterol or glucose level. The approaches for model-free 
linkage analysis of quantitative traits include the Haseman-
Elston, variance component methods among others [30].  
A region between markers D9S925 and D9S741 on 
chromosome 9p associated with high-density lipoprotein-
cholesterol concentration in Mexican Americans was 
initially identified with variance component analysis [110]. 
However, true linkage has been hard to find in complex trait 
studies, likely due to the modest effect sizes of genetic 
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variants, allelic heterogeneity, or gene by environment 
interactions in complex diseases [25, 111].  

Homozygosity Mapping  
 Homozygosity mapping is a powerful tool to map  
genes responsible for recessive Mendelian disorders in 
consanguineous pedigrees [112]. With this approach less 
than a dozen of affected individuals are needed and more 
importantly no additional family members are required to 
identity a disease-causing locus. These advantages render it 
possible to map disease loci of many rare recessive disorders 
when it is impossible to collect adequate number of families 
as linkage analysis usually requires. The principle underlying 
this approach is that if the offspring of a consanguineous 
marriage (for example sibling, first-cousin, and second-
cousin) is affected with a recessive inherited disease, a large 
region spanning the disease locus is homozygous by decent 
[112]. For instance, a child of a consanguineous couple has a 
coefficient of inbreeding F of 1/4, 1/16, 1/64 for sibling, 
first-cousin, and second cousin, respectively. Assuming the 
frequency of the disease allele in this population is q, the 
probability of homozygosity by decent at the disease locus is 
α= F*q/[F*q+(1-F)*q2]. If q is far smaller than F, α is close 
to 1, indicating the greatest chance to be homozygous. The 
comparison of homozygous regions in several affected 
family members, along with traditional linkage analysis and 
a sufficiently dense genetic map, can narrow down the 
location of a gene underlying a recessive disease. Low-
density restriction fragment length polymorphism (RFLP), 
microsatellite linkage maps, and more recently high-density 
SNP arrays have been used in homozygosity mapping gene 
identification. For instance, the use of a high-density 
GeneChip containing 57,244 SNPs identified the linked 
region for autosomal recessive Bardet-Biedl syndrome which 
was initially missed by linkage studies with 400 highly 
informative microsatellites in a small Israeli Bedouin 
consanguineous pedigree [113].  

Candidate Gene Studies 

 This approach is hypothesis-driven and has been widely 
used in genetic association studies before the advent of 
GWAS. Candidate genes are selected based on prior 
knowledge of their potential role on the trait of interest from 
in vivo, in vitro or in silico studies in animals or humans 
[114, 115]. One important advantage of the candidate gene 
approach is to restrict the number of hypotheses tested and to 
relax the multiple testing correction thresholds in comparison 
with genome-wide approaches. One limitation of the 
candidate gene approach is its dependence on the level of 
current knowledge of a specific gene. The success rate of 
candidate gene studies has been low, in part due to the 
limited understanding of the molecular and genetic mechanisms 
in complex diseases [66]. Selecting strong candidate genes 
on the basis of converging arguments from different research 
disciplines has been more successful, as illustrated by the 
identification of SNPs in APOE4 associated with Alzheimer 
disease (AD) [116]. APOE4 gene was indeed located on the 
proximal long arm of chromosome 19, in a region of linkage 
for late-onset AD [117]. In addition, apolipoprotein E (apoE) 
was a key protein related to AD [116].  

Genome-Wide Association Studies  

 Hypothesis-free GWAS exhaustively test the genotype-
phenotype associations across up to 4.8 million genetic 
markers and represent to date the most efficient way to 
identify common variants (MAF> 1%) associated with 
complex diseases [118]. Along with the advanced high-
throughput technology, more and more SNPs and copy 
number variants (CNVs) are validated by the 1000 Genomes 
Project, which enable the current genotyping arrays to 
include rare variants and CNVs in addition to common 
variants. GWAS have identified several risk variants 
associated with bipolar disorder [119] or schizophrenia 
[120]. However, there are two major limitations of GWAS. 
First, a very stringent level of significance is required to 
adjust for multiple testing. Second, most of the statistically 
significant associations lack a biological support [121-123].  

Whole-Genome/Whole-Exome Sequencing 

 Whole-genome/whole-exome sequencing strategies are 
currently efficiently applied to identify rare variants 
associated with Mendelian or complex traits. Whole-
genome/whole-exome sequencing is not just an alternative 
way for genotyping as it also detects novel mutations not 
catalogued in SNP databases and additional alleles beyond 
bi-alleles. The biggest challenge in whole-genome/whole-
exome sequencing experiments is how to analyze a huge 
sequencing dataset to identify the novel causal genes for 
either Mendelian or complex diseases [124]. Usually, 20,000 
to 30,000 variants are found through each whole-exome run. 
Unreliable variants are first removed by data quality control 
procedures (e.g. read coverage less than five, inconsistency 
among the reads). If the investigators focus their attention on 
potentially deleterious rare coding variants, variants located 
outside the coding regions and synonymous coding variants 
are filtered out. Then the most important step with substantial 
reduction of the number of variants is to exclude known 
polymorphisms in human population based on appropriate 
databases [125]. At this step, approximately 150-500 non-
synonymous or splicing variants remain to be potentially 
causal variants. Additional filtering methods may include  
in silico functional evaluation of mutations, candidate gene, 
linkage, homozygosity mapping, de novo and overlap strategies 
[124]. Becker et al. have successfully used homozygosity 
mapping, in combination with an exome sequencing strategy, 
to elucidate the genetic basis of osteogenesis imperfecta 
[126]. They found 318 non-synonymous variants after 
several filtering strategies. Among them, 17 were autosomal 
homozygous, but only three were in the regions with the 
larger stretch of homozygous loci. In combination with 
overlap strategy and functional testing, truncating mutations 
in gene SERPINF1 were identified as causal loci leading to 
autosomal-recessive osteogenesis imperfecta [126].  

HOW TO INTERPRET GENETIC ASSOCIATIONS IN 
COMPLEX DISEASE? 

Power of a Study  

 In genetic epidemiology, most genetic variants confer 
small to modest effect sizes with an odds ratio (OR) lower 
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than 1.5, indicating that a large sample size is needed in a 
population-based association study. For example, if the risk 
allele frequency in controls is 20%, 1763 cases and 1763 
controls are needed to detect an OR of 1.3 at a type I error 
level of 0.001 (two-sided) and power of 90% [3]. The 
requirement for such large sample sizes can be difficult to 
achieve by single teams and as a result researchers have to 
pool samples in large-scale international consortium initiatives 
to reach an adequate power. These power estimations also 
imply that many previously published case-control studies 
were underpowered. This may explain why many promising 
associations were never replicated [127]. Replication of an 
association study in an independent sample is recommended. 
The sample size for the replication study should take into 
account of the risk of overestimation of the true effect in the 
initial sample (a phenomenon called the Winner’s curse 
effect) [128, 129]. Statistical power may be even more a 
concern in genetic association studies involving rare variants, 
and the desired number of individuals may not be feasible in 
practice [130]. To deal with these issues, researchers select 
designs where additional copies of the variant of interest can 
be sampled (perhaps in large pedigrees or in a founder 
population). They also pool together variants likely to have 
an impact on the function of a specific gene and compare the 
global distribution of these variants in case control designs 
[131]. 

Data Quality Control (QC) 

 Genotyping errors cause genotype misclassification and 
have the potential risk of decreased power, leading to false 
associations [132]. The procedures to remove the uncertain 
individuals and DNA markers are critical steps before 
statistical analysis of associations. It is recommended to 
conduct QC on the individuals before QC on the DNA 
markers [133]. Individuals with discordant sex information, 
inaccurate phenotypic data, or a conflicting ethnicity 
between self-reported and genetically determined should be 
identified and removed. Individuals with low DNA quality 
(e.g. displaying >10% missing genotypes in a genotyping 
array) should also be taken out. At the genetic marker level, 
the genotyping method should be reliable and the laboratory 
protocols should be standard. The concordance rate of 
duplicated samples must be higher than 99% (usually > 10% 
of the entire sample are re-genotyped with the same or a 
different genotyping method). SNPs with a genotyping call 
rate (percentage of successfully genotyped individuals) 
<95%, a significant deviation from a Hardy-Weinberg 
equilibrium (HWE) test [134] (P HWE < 0.005 in the control 
group), a significant difference in the missing genotype rates 
between cases and controls, or a very low allele frequency 
should be filtered out. In a family-based study, an additional 
check of Mendelian inconsistencies should be conducted 
[30].  

 According to the workflow of NGS, standard protocols 
for QC should be developed and implemented at each step 
including DNA extraction, targeted gene enrichment, library 
preparation and sequencing. Current NGS technologies have 
higher raw per-base error rates than Sanger sequencing 
[135]. However, this shortcoming can be compensated to 
some extent by increasing the coverage depth of sequencing, 

checking the presence of a mutation in related individuals or 
validating the findings by Sanger sequencing [136, 137]. 
False-positive association may also result from a difference 
of coverage depth between cases and control groups [138].  

Statistical Analysis  

 A genetic model (i.e., dominant, additive, recessive) 
needs to be defined prior to any genotype-phenotype 
association study. If the underlying genetic model is 
unknown, an additive model is frequently assumed, but 
testing the three models is more informative. Given two 
alleles A and B (B is risk allele) and three genotypes AA, 
AB and BB at a locus, AA is coded as 0, AB as 1 and BB as 
2, and a 2×3 contingency table is created under an additive 
model as illustrated in the Table 4. In the simplest scenario 
in which cases and controls are matched for confounding 
factors (e.g. age, sex), the Cochran-Armitage test is used to 
test the association between the allele B and a trait, which  
is similar to Peason’s χ2 test but taking into account the 
order of risk of the three genotypes (AA<AB<BB) [139]. 
Meanwhile, the odds ratios (OR) are often calculated to 
provide a measure of the strength of the associations. If 
individuals have one risk allele B, the risk of having the 
disease is OR1=(b/a)/(e/d)=bd/ae times higher than those 
who has no risk allele B; and if individuals have two copies 
of B, the risk of being affected is OR2=(c/a)/(f/d)=cd/af 
times higher than those who has no B. If the outcome is 
binary (presence or absence of the disease), a simple logistic 
regression can also be applied. The exponential of the 
regression coefficient equals to the increased OR with per 
additional B. If the outcome is a continuous (or quantitative) 
variable, a linear regression model will be used. The beta 
coefficient from a linear regression analysis means how 
much increase in the outcome for each additional risk allele 
B. Compared to Cochran-Armitage and Peason’s χ2 tests,  
the advantage of using a linear or logistic regression is that 
they allow for the adjustment for the confounding factors 
such as age, sex and including of gene × gene and gene × 
environment interaction terms into the model [140]. When 
the outcome is a count/rate or a time-to-events, a Poisson 
regression model or a Cox proportional hazard model will be 
chosen, respectively. As a result, relative risk (RR) or hazard 
ratio (HR) will be estimated [141]. Sophisticated methods 
such as the kernel association test have been recently 
developed to assess the association of groups of rare variants 
with a disease or a quantitative trait [142, 143].  
 From the perspective of statistics, GWAS analysis is just 
an extension of the single-SNP analysis and covariates can 

Table 4. A 2×3 contingency table in an additive model. 

 AA AB BB 

Case a b c 

Control d e f 

a, b, c are the counts of individuals with genotypes of AA, AB, BB respectively in 
cases, and d, e, f are the counts of individuals with genotypes of AA, AB, BB 
respectively in controls. 
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also be adjusted in linear or logistic regression models. One 
issue is that most of the significant associations at the 
nominal level (P < 0.05) are likely to be spurious in the 
context of the many tests performed in GWAS [144]. There 
is no universal standard to obtain a critical value for 
adjustment; nevertheless, the Bonferroni correction, Bayesian 
procedures and false-discovery rate (FDR) are widely used 
to define an appropriate threshold of significance level 
accounting for multiple testing. The Bonferroni correction 
considers a simple setting in which the type I error α level is 
0.05 and n independent SNPs are tested, the adjusted 
significance level α’ should meet α=1-(1-α’)n and then 
α’≈α/n. If 1 million SNPs are independently tested whether 
they are associated with a trait in a GWAS context, the 
Bonferroni-adjusted threshold will be 0.05 / 1,000,000 = 5 
×10-8, which is a genome-wide significance level frequently 
reported in the GWAS literature [145]. The Bonferroni 
correction is overly conservative because many SNPs being 
tested are in linkage disequilibrium and tightly correlated 
each other. The Bayesian approach is based on the prior 
probability of true positive association from previous 
evidence [146]. As a result, the P-values are far less stringent 
and the thresholds are different from study to study and  
from researcher to researcher. The false-discovery rate 
(FDR) method measures the false rate of the rejected null 
hypotheses (detected associations) rather than focusing on 
the presence of at least one error, resulting in an increase in 
power [147, 148]. A FDR of 0.05 is usually adapted and 
indicates that 5% of the detected associations are random 
results. However, in GWAS, because the majority of the null 
hypotheses are true, FDR does not provide a substantial 
advantage in comparison with the Bonferroni correction.  
 Multiple testing presents new challenges in whole-exome 
and whole-genome sequencing experiments due to the 
massive amount of genetic data generated by these methods. 
Because there are many rare variants which are expected to 
have larger effect sizes and more severe functional impacts, 
it is not practical to use the same threshold across all the 
variants. Several recommendations are proposed and 
different analytic packages are in implementation [131, 149]. 
Some authors suggest gene-based or pathway-based tests 
[131], while others recommend different thresholds would be 
generated according to cut-offs derived from different allele 
frequencies. Probably, a permutation-based approach is more 
accurate to handle multiple testing by naturally taking into 
account allele frequency and correlated alleles [100].  
 Most genetic association studies focus on the main 
effects of variants contributing to the development of a 
disease. However, predisposing SNPs identified to date only 
explain a small portion of the heritability of many complex 
diseases. Gene by gene (G×G) and gene by environment 
(G×E) interactions are critical components of the 
architecture of complex traits and have been proposed to 
explain at least a fraction of the “missing heritability” [47, 
54]. May a variant missed by a classical GWAS have an 
increased effect in presence of another genetic variant or in a 
specific environment? This hypothesis can be tested by 
incorporating interaction terms into a SNP-based linear or 
logistic regression model [65]. When a systematic search  
for G×G epistatic interactions is undertaken, the power 
dramatically decreases due to the numerous combinations of 

any two SNP tests. If two SNPs interactions are systematically 
investigated in a first generation GWAS (e.g. 300,000 
SNPs), 100 billion epistasis tests will be performed, resulting 
in an exceptionally stringent Bonferroni-corrected significance 
threshold of 5 × 10-13 [150]. As a result, the few epistasis 
studies using GWAS data published up to date failed to 
identify G×G interactions significant after multiple testing 
correction [151, 152]. Compared to an epistatic study, a G×E 
interaction study is more feasible in the context of GWAS, 
although an empirical rule states that the samples needed are 
four times larger than those needed for studying the main 
effect [153]. Currently, three classical methods are used to 
identify G×E interactions [154]. The first tests G×E 
interactions using biologic candidate genes and/or GWAS 
validated loci. This is currently the more commonly used 
approach in literature. The second approach is the hypothesis-
free Genome-Environment Wide Interaction Study (GEWIS), 
which systematically tests G×E interactions across the 
genome. Multiple testing decreases the statistical power in 
GEWIS. The third method of variance prioritization (VP) 
prioritizes SNPs on the basis of heterogeneity in the variance 
of a quantitative trait among three genotypes of a bi-allelic 
SNP [155]. It selects a subset of SNPs for G×E interaction 
tests, thus increasing the chance to detect potential 
associations missed by GEWIS.  
 All the commonly used statistical software (such as SAS, 
SPSS or STAT et al.) can be used to analyze genetic data. 
PLINK [156] is a free and very efficient tool to deal with 
genetic quality control and data analysis, especially for 
GWAS data. R software is more and more used in genetic 
epidemiology as many packages with specific genetic 
functions are programmed and it is free online.  

Meta-Analysis 

 An individual linkage or association study is rarely 
conclusive in genetic epidemiology; therefore replication 
studies are always required. Following the same rules as in 
traditional clinical epidemiology, meta-analysis is also 
applied to genetic epidemiology. Meta-analysis combines 
relevant but independent studies and increases the power of 
the analysis and the precision of the effect size by increasing 
sample size, thus providing more precise evidence of 
association [157]. Usually, more weight is assigned in the 
meta-analysis to studies displaying a larger sample size or a 
greater event rate. Both the sample size and event rate can be 
reflected in the variance estimate. Therefore, a usual way to 
assign a weight to individual studies in a meta-analysis is to 
use inverse variance, even though alternative methods exist 
(e.g. Mantel-Haenszel test). The estimation of the degree of 
between-study heterogeneity is important in the inter- 
pretation of meta-analyses [158]. Between-study heterogeneity 
is measured by I2 which is a modified Cochran’s Q statistic 
[159]. Because this test has a low power, a p value of less 
than 0.1 is considered as significant heterogeneity. Usually, 
I2 values of 25%, 50% and 75% represent low, moderate and 
high levels of between-study heterogeneity, respectively.  
If heterogeneity exists, subgroup or sensitivity analysis  
may further be performed to assess the causes of such 
heterogeneity (e.g. study ascertainment). New global fixed-
effect (FE) and random-effects (RE) meta-analytic methods 
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have been recently proposed to deal with heterogeneity 
between studies [160]. The recent emergence of international 
consortia and the conduct of large-scale meta-analyses of 
genetic association studies have revolutionized the field and 
have led to an important yield of novel disease-predisposing 
loci. For instance, a recent meta-analysis of the 5, 10-
methylenetetrahydrofolate reductase (MTHFR) gene variant 
C677T in 29,502 subjects has confirmed its associations with 
schizophrenia, bipolar disorder and unipolar depressive 
disorder and suggests a shared genetic susceptibility among 
distinct psychiatric disorders [161]. Numbers matter but do 
not always lead to success. Recently, the psychiatric GWAS 
consortium conducted a mega-analysis for major depressive 
disorder in 18,759 subjects followed by a replication in 
57,478 samples. They did not find genome-wide significant 
association signal and concluded that the sample was still 
underpowered to identify common variants associated with 
major depression [162]. 

CONCLUSIONS 

 Genetic epidemiology is a relatively recent but 
fascinating research field in which expertise from different 
disciplines converge to elucidate genetic factors responsible 
for Mendelian and complex diseases. We comprehensively 
reviewed the key concepts and methods in genetic 
epidemiology including single gene disorders and complex 
diseases, study design implementation, genotyping and 
sequencing strategies, gene identification strategies, data 
analysis and data interpretation. We hope this review will 
help non-geneticist clinicians critically appraise a genetic 
association study and understand what makes a good genetic 
association study. With the decrease in sequencing costs, 
personalized genome sequencing will eventually become an 
instrument of common medical practice. In the next paper, 
we will review the past, current and coming applications of 
genetic knowledge in medical practice, and we will appreciate 
how far we are from the personalized medicine revolution.  
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