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ABSTRACT

Enormous progress in mapping complex traits in humans has been made in the last 5 yr. There has
been early success for prevalent diseases with complex phenotypes. These studies have demonstrated
clearly that, while complex traits differ in their underlying genetic architectures, for many common
disorders the predominant pattern is that of many loci, individually with small effects on phenotype. For
some traits, loci of large effect have been identified. For almost all complex traits studied in humans, the
sum of the identified genetic effects comprises only a portion, generally less than half, of the estimated
trait heritability. A variety of hypotheses have been proposed to explain why this might be the case,
including untested rare variants, and gene–gene and gene–environment interaction. Effort is currently
being directed toward implementation of novel analytic approaches and testing rare variants for
association with complex traits using imputed variants from the publicly available 1000 Genomes Project
resequencing data and from direct resequencing of clinical samples. Through integration with
annotations and functional genomic data as well as by in vitro and in vivo experimentation, mapping
studies continue to characterize functional variants associated with complex traits and address fun-
damental issues such as epistasis and pleiotropy. This review focuses primarily on the ways in which
genome-wide association studies (GWASs) have revolutionized the field of human quantitative genetics.

MANY phenotypes are quantitative in nature, and
complex in etiology, with multiple environmen-

tal and genetic causes. The observation that complex
traits cluster in relation to genetic relatedness suggests
heritability, and advances in theoretical and experimen-
tal genetics, combined with analytical developments and
high-throughput genomics, have provided an unprec-
edented view into the mode of inheritance and genetic
architecture of complex traits.

Common diseases such as obesity, heart disease, type
2 diabetes mellitus, and others, have made Homo sapiens
the most phenotypically studied organism. Genome-wide
characterization of the levels and patterns of human
genetic variation has enabled geneticists to interrogate
this variation for association with complex phenotypes.
In medical genetics, the ultimate objective is to identify
causal functional variants and elucidate the mecha-
nisms through which they exert their effects. Therefore,
trait mapping studies can be considered hypothesis-
generating exercises, helping to prioritize genes or

genomic regions for further investigation. At the same
time, trait mapping studies provide an overall descrip-
tion of genetic architecture: estimating heritability, the
number of loci underlying phenotypic variation, and
the distribution of effect sizes, as well as suggesting
whether genetic interactions among loci (epistasis, see
glossary in Table 1) or among traits (pleiotropy, see Table 1)
exist.

Modern complex trait mapping in humans utilizes the
linkage disequilibrium (LD, see Table 1)-based genome-
wide association study (GWAS). GWAS involves corre-
lating allele frequencies at each of several hundred
thousand markers spaced throughout the genome with
trait variation in a population-based sample (see box,
case study of a GWAS: meta-analysis of six genome-
wide association studies identifies seven new

rheumatoid arthritis risk loci and below). GWAS
is based on the premise that a causal variant is located on
a haplotype, and therefore a marker allele in LD with the
causal variant should show (by proxy) an association
with a trait of interest. One of the advantages of the
GWAS approach is that it is unbiased with respect to
genomic structure and previous knowledge of the trait
etiology, in contrast to candidate gene studies, where
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TABLE 1

Glossary of terms

Term Definition

Association mapping a trait mapping approach that analyzes the co-occurrence of the trait and the
marker in multiple individuals of a population; it relies on historical recombination.

Copy number variant A segment of DNA that is present at variable copy number among individuals when
compared to a diploid reference genome. Several publicly available catalogs of CNVs
in the human genome are available (e.g., http://projects.tcag.ca/variation/;
http://cnv.chop.edu/).

Epistasis The phenomenon where the effect of a gene (or variant) on a trait is not independent
of the effect on the trait of another gene (or variant).

Expression QTL (eQTL) a region of the genome harboring a genetic variant contributing to gene expression
variation. These are identified through association mapping (eQTL mapping) of
variable transcription levels among individuals.

Fine mapping a methodology to resolve locus boundaries. However the same LD that facilitates
GWAS hampers fine mapping. In addition, multi-SNP analyses can help to
refine the signal. Haplotype analyses using SNPs showing statistically independent
association signals could reveal the existence of a single associated haplotype, refining
the LD criterion for considering variants as putatively functional or could suggest
multiple causal variants. Mapping in populations of different ancestry (that have
different LD structure) may also help to refine a locus of interest.

Functional genomics a field of study that combines genetics and molecular biology to understand
the function of genes and other features of the genome.

Gene set enrichment analysis A computational method that determines whether an a priori defined set of genes
shows statistically significant, concordant differences between two states (e.g., different
phenotypes or associated vs. nonassociated genetic variants).

Genetic architecture (1) the number of loci affecting a complex trait, (2) the distribution
of their effects, and (3) their interactions with each other (including
dominance and epistatic effects) and with environmental variation. Although
classically genetic architecture can be viewed as the decomposition of genetic
variance for a trait into additive and interaction components, and (1) and
(2) above are subsumed within additive genetic variance, in the GWAS era, we
can directly investigate the number of loci and their distribution of effects.

Genetic heterogeneity the phenomenon wherein different genetic variants underlie a single phenotypic
trait in different individuals/families.

Imputation a method to estimate genotypes of an individual at unmeasured SNP loci using a
known reference panel of genetic variation and haplotypes derived from a sample
of close ancestry.

Linkage mapping a trait mapping approach that analyzes cosegregation of a trait with a marker
in family pedigrees.

Mendelian disease a disease in which mutations in a single gene cause the phenotype and for which
the pattern of inheritance is very clear.

Meta-analysis a term describing a wide variety of statistical procedures developed to pool and
summarize results from multiple studies, thereby increasing statistical power.

Odds ratio (OR) a statistic used to assess the likelihood of a particular outcome (e.g, disease state) if a
certain factor (or allelic variant) is present. In the context of disease mapping, whether the
odds ratio is greater than or less than one indicates whether a variant is a risk variant or
protective, and the magnitude of the OR can be interpreted as the effect size. An OR of 1
indicates that the condition or event under study is equally likely in both groups.

Penetrance the extent to which a genetic variant has an effect on individuals who carry it. High
penetrance would refer to a Mendelian disease.

Pleiotropy the phenomenon wherein a single gene or variant affects multiple phenotypes.
Prospective cohort a set of individuals that is followed over time with repeated observational measurements

taken throughout. The key feature is that traits studied at a subsequent point in time
are being examined in a set of individuals that was not selected on the basis of
that trait.

Systems genetics holistic study of the effects of one or more genetic variants on the outcome (complex
trait phenotype) and/or intermediate phenotypes such as gene expression profiles
or other functional genomic or cell biological data.

(continued )
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knowledge of the trait is used to identify candidate loci
contributing to the trait of interest. Therefore, GWAS
results hold the promise to reveal causal genes not pre-
viously suspected in disease etiology or indeed genetic
effects of nongenic DNA regions, and GWASs hold the
promise to estimate relatively complete genetic effects
(additive and nonadditive) and pleiotropy in an un-
biased way.

As of October 2010, 702 human GWASs have been
published on 421 traits, the majority of medical
relevance. The National Human Genome Research
Institute at the National Institutes of Health updates
weekly a catalog of published GWAS results (http://
www.genome.gov/gwastudies; Hindorff et al. 2009;
Johnson and O’Donnell 2009). There exist several
hundred replicated disease-associated common sin-
gle nucleotide polymorphisms (SNPs), and the list
continues to grow. While much work remains to
identify and characterize the full extent of the genetic
contribution to human complex traits, human geneti-
cists are now in a position to address fundamental
questions of how and why complex traits vary among
us. The large volume of results and systematic study of
many traits makes review and interpretation of human
GWAS results clearly relevant to all students of genet-
ics today.

COMPLEX TRAIT GENETICS—KEY CONCEPTS

Following the rediscovery of Gregory Mendel’s work
in the early 20th century, a heated debate raged between
‘‘biometricians’’ and ‘‘Mendelians’’ as to the underlying
mode of inheritance and genetic architecture of phe-
notypic traits. Focusing on continuous variation of char-
acters within populations, biometricians Francis Galton
and Karl Pearson developed statistical methods and
concepts including correlation, regression, standard de-
viation, and principal components analysis to estimate
the genetic component of phenotypic variance from the
variance and covariance of traits and to further de-

compose genetic variance into additive and nonadditive
components (Galton 1869, 1889, 1901; Pearson

1898). The Mendelian geneticists, including William
Bateson and Hugo de Vries, were primarily interested
in discrete traits and Mendel’s laws of inheritance and
worked to estimate the effects and modes of inheritance
(e.g., dominance/recessivity) of strong allelic effects
(Bateson 1902, 1909).

Ronald A. Fisher’s (1918) important reconciliation
that seemingly purely quantitative variation can be pro-
duced by the combined action of multiple genes, each
inherited in a Mendelian fashion, opened the door to a
unified theory of genetics. This, together with the dis-
covery and understanding of genetic linkage (Bateson

et al. 1905; Punnett 1909; Morgan 1911a; Morgan

et al. 1915) and construction of the first linkage maps
(Morgan 1911b; Sturtevant 1913, 1915), laid the foun-
dation for genetic mapping and genetic analysis of quan-
titative traits.

Theoretical and experimental genetic studies of re-
latively simple quantitative traits, (Castle and Little

1910; East 1910; Altenburg and Muller 1920) led to
the concept of the ‘‘polygene’’ (Thoday 1961), a set of
loci underlying quantitative variation. Quantitative trait
locus mapping, or QTL mapping, was first conceived by
Sax (1923) and developed into a method for rigorous
analysis of quantitative traits in experimental and nat-
ural populations. Of primary interest in the quantitative
genetics of complex traits are the number of loci con-
tributing to trait variance and the distribution of the
magnitudes of their effects, topics that were widely
debated by the early pioneers (e.g., Mather 1943;
Waddington 1943; Mather and Jinks 1971; Thoday

and Thompson 1976) and that are still relevant today.
A comprehensive understanding of the genetic archi-

tecture (see Table 1) of a complex trait includes quan-
tification of heritability and partitioning of the genetic
variance into additive and nonadditive components
(Falconer and Mackay 1996; Lynch and Walsh

1998; Visscher 2008). Nonadditive genetic variance in-
cludes dominance and epistatic interactions of alleles

TABLE 1

(Continued)

Term Definition

The International
HapMap Project

an international consortium to create a catalog of common genetic variation, primarily
SNPs that occur in humans. The data reveal where genetic variants occur in the
genome, how correlated they are with one another (linkage disequilibrium),
and how they are distributed among individuals within and among populations. All data are
publicly available; hapmap.ncbi.nlm.nih.gov/.

The 1000 Genomes Project an international consortium-led project to fully sequence the genomes of at least 1000
people (now approximately 2000 people) of multiple ancestries from around the world.
The project identifies SNPs as well as structural variants (rearrangements, deletions,
or duplications of segments of the human genome). All data are publicly released
as they become available; http://www.1000genomes.org/.
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within and between loci, as well as interactions between
genes and environmental variation. Genetic correlation
between traits, or pleiotropy, is also of interest when
multiple traits are under study.

COMPLEX TRAIT MAPPING IN HUMANS

QTL mapping developed in large part as a method-
ology to uncover the genetic basis of quantitative traits
in experimental crosses in model organisms and of
traits of interest to animal and plant breeders and evo-
lutionary geneticists. Early genetic mapping studies in
humans utilized linkage mapping, a methodology that
traces the transmission of phenotypes with genetic
markers through pedigrees (reviewed in Ott 1991).
In humans, linkage studies have been successful in id-
entifying highly penetrant (see Table 1) genetic variants

of large effect [odds ratio .100, (see Table 1)] under-
lying hundreds, if not thousands of Mendelian diseases
(see Table 1; e.g., HTT gene in Huntington’s disease,
Gusella et al. 1983; CFTR gene in cystic fibrosis,
Riordan et al. 1989).

In contrast to monogenic traits, complex traits have
been more difficult to unravel using linkage approaches.
Several common disease-predisposing variants that are
associated with common disease variation were identi-
fied in early linkage/candidate gene studies, e.g., Factor
VLeiden in deep venous thrombosis (Bertina et al. 1994),
the APOEe-4 allele in Alzheimer’s disease (Corder et al.
1993), and PPARg in type 2 diabetes (Altshuler et al.
2000a). These observations were consistent with a
‘‘common disease/common variant’’ (CDCV) hypo-
thesis, in which a disease phenotype results from the
aggregate effects of polygenic variation, with causal

CASE-STUDY OF A GWAS:

META-ANALYSIS OF SIX GENOME-WIDE ASSOCIATION STUDIES IDENTIFIES SEVEN NEW RHEUMATOID
ARTHRITIS RISK LOCI

RA is the most common autoimmune disease, characterized by chronic inflammation and destruction of the synovial joints
later in life. In a recent study of RA risk (Stahl et al. 2010), six genome-wide association studies totaling over 5500 cases and
over 20,000 controls were combined through meta-analysis. These studies included a new GWAS dataset of cases from the
Brigham Rheumatoid Arthritis Sequential Study (Plenge et al. 2007) and shared controls genotyped on the Affymetrix
SNPChip 6.0 platform, three datasets genotyped on the Illumina HumanHap 317K and 550K platforms (Plenge et al. 2007;
Remmers et al. 2007; Gregersen et al. 2009), and the Wellcome Trust Case Control Consortium (2007) data including
nonautoimmune disease cases as shared controls, genotyped on the Affymetrix 500K platform. All samples were of self-
described European ancestry, with one sample set originating from Sweden, one from the United Kingdom, and four from
North America. In an effort to minimize clinical heterogeneity of the samples, case samples were restricted to autoantibody
positive RA, which is more severe than autoantibody negative RA, and for which previous genetic association studies have been
much more productive (Raychaudhuri 2010).

Raw genotype data were acquired for the 22 autosomes and were filtered to remove poor-quality SNPs (high degree of
missingness across individuals), to remove individuals that did not genotype well (high degree of missing data across SNPs), and
to remove related individuals. PCA was applied to the genotype data to identify genetic outliers. Matching, based on the first five
PCs, was used to remove excess controls in the more stratified North American (pan-European ancestry) datasets. Genome-wide
imputation (Marchini et al. 2007) was used to infer genotypes at over 2.5 million SNPs in common across the studies. Logistic
regression was used to test for association with case-control status in each GWAS dataset; the results were genomic-control
corrected (Devlin and Roeder 1999) and then combined via inverse variance-weighted meta-analysis (de Bakker et al. 2008).

A q-q plot of the genome-wide distribution of results is presented in Figure 1, showing substantial departure from the null
hypothesis of no association. This departure remained even after removing known RA risk-associated loci. Figure 2 presents a
Manhattan plot of the statistical strength of association (�Log10P) across the autosomes, showing that several but not all
previously known RA risk loci show strong association in these data (lack of replication is presumably due to lack of power; Stahl

et al. 2010), and that several new loci exhibit strong associations. Thirty-four SNPs were tested for replication in additional
samples, 10 of which achieved genome-wide significance in the combined analysis of over 41,000 case-control samples. These 10
SNPs represent three loci not previously known in any autoimmune disease, four loci previously implicated in other
autoimmune diseases (Crohn’s disease, systemic lupus erythematosis, and type 1 diabetes), and three loci previously implicated
in RA risk: a celiac disease-associated AFF3 locus recently shown to be associated with RA (Barton et al. 2009), a more strongly
associated SNP at the IL2RA locus (Barton et al. 2008), a new, independent SNP association at the CCL21 RA risk locus
(Raychaudhuri et al. 2008).

A total of 21 of 34 SNPs tested in the replication cohorts replicated with at least nominal significance, more than 10 times
what would be expected by chance, suggesting that further studies with additional samples would lead to more validated RA
risk loci. The q-q plot (Figure 1) also shows substantial departure from the null at even lower significance thresholds, which
could be due to stratification or other weak, systematic bias in the data, but is also consistent with many more common
variants weakly associated with RA risk.

As with other recent GWAS discoveries, the loci validated in Stahl et al. (2010) have modest effect sizes (OR 1.1–1.3; Figure
3). On the basis of their ORs and allele frequencies, we can calculate the proportion of phenotypic variance explained in RA
for each SNP under a liability threshold model (Falconer and Mackay 1996) and these can be assumed to sum to the total
percentage of variance explained by validated RA risk alleles. Figure 3 shows that additional GWAS discoveries contribute little
to the total variance explained, which seems to reach a plateau at 15–16% (Raychaudhuri 2010).
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variants present at high frequency in human popula-
tions. On the basis of these observations and on pop-
ulation genetic modeling of genetic variation (Fisher

1930; Haldane 1932; Wright 1969; Wright 1977;
Wright 1978; Reich and Lander 2001), the CDCV
hypothesis became a focus of human genetics at the turn
of the 21st century (Lander 1996). Although it may
seem paradoxical that deleterious alleles reach high
frequency in a population, many complex disorders
have a late age of onset and thus might not have been
subject to strong purifying selection. Also, if a complex
trait has an architecture wherein there are many loci
with individually small effects on a trait (or fitness), or
variants exhibit incomplete penetrance or pleiotropic
effects, selection on any individual disease variant may
have been only weakly deleterious, neutral, or indeed
positive during human evolutionary history. An alterna-
tive, the common disease/rare variant (CDRV) hypoth-
esis, posits that many genes/alleles with lower-frequency,
higher-penetrance variants contribute to disease and is a
straightforward extension to common diseases of the
discoveries made for Mendelian disorders (Bodmer

and Bonilla 2008). Population genetic modeling
(Pritchard 2001) suggested that disease risk variants
are likely to be mildly deleterious, have a high mutation
rate, have a high total frequency, and exhibit extensive
allelic heterogeneity. Therefore, Pritchard (2001) ar-
gued that the CDRV hypothesis is more consistent with
human pathology and population biology than the
CDCV hypothesis. These two contrasting views of the
likely nature of variants underlying complex disease
have very different implications for the likely success of
different strategies for identifying the genetic basis
underlying heritable complex disorders.

Risch and Merikangas (1996) considered the rela-
tive performance of different mapping methodologies
for traits of various genetic architectures and demon-
strated that linkage studies are well-powered to detect
variants with large effects and high penetrance, but are
underpowered for detection of variants of small effect.
They determined that association mapping (see Table
1), a population-based alternative mapping approach, is
especially well powered for mapping common variants
(minor allele frequency, MAF . 0.05) of small effect size.
In contrast to linkage analyses, association analyses test
for a relationship between phenotypes and genotypes in
large samples of ‘‘unrelated’’ individuals, assuming iden-
tity by state, where individuals of similar phenotype are
assumed to share the same risk variants. Although the
action of multiple factors (genetic or nongenetic), in-
complete penetrance, and modest effects reduce analy-
tical power, these limitations can be overcome with large
sample sizes, except in the case of extensive allelic het-
erogeneity (Terwilliger and Weiss 1998). In addition,
while linkage studies typically identify genomic regions
of 5–10 Mb harboring tens to hundreds of genes, asso-
ciation studies are able to refine genomic loci to roughly

10–100 kb, often just a few genes, because many recom-
bination events have occurred in the history of the pop-
ulation sample.

Human genetic variation and mapping tools: Human
genetic variation reflects demographic forces that oc-
curred since the origin of anatomically modern humans
around 100,000–200,000 yr ago and their migration out
of Africa around 60,000 yr ago, including genetic drift,
substructure, and migration, as well as genetic forces
including mutation, recombination, and natural selec-
tion (Cavalli-Sforza et al. 1994; Cavalli-Sforza and
Feldman 2003). Genetic differences between popula-
tions of different ancestry are modest: ancient poly-
morphisms that predate this migration are shared by all
human populations and account for approximately
90% of human variants (Harris 1966; Li and Sadler

1991; Tishkoff and Verrelli 2003).
Botstein et al. (1980) pioneered the use of a large set

of molecular markers for genetic analysis in humans.
Physical maps (Hudson et al. 1995) provided scaffolding
of the human genome, enabling positional cloning of
quantitative trait loci. The Human Genome Project
(Lander et al. 2001) stimulated many large-scale proj-
ects, including efforts to characterize the most abundant
genetic variants in the human genome, single nucleo-
tide polymorphisms (SNPs), which occur on average
about every 1–2 kb between any two chromosomes.
The combined efforts of The International SNP Con-
sortium (TSC), the Human Genome Project, and other
SNP discovery efforts (Altshuler et al. 2000b) led to the
publication of the first genome-wide map of human
genetic variation (Sachidanandam et al. 2001).

Observations from sequencing studies of individual
loci and large-scale SNP data revealed that alleles of
nearby SNPs tend to be strongly correlated with each
other across individuals (Nickerson et al. 1998; Daly

et al. 2001; Gabriel et al. 2002). That is, they are in
strong LD and form limited numbers of haplotypes.
In contrast to other species such as Drosophila, LD in
humans does not decay gradually with distance. Rather,
common genetic variation by and large is organized in
‘‘haplotype blocks,’’ local regions that have not been
broken up by meiotic recombination, separated by re-
combination ‘‘hot spots’’ that occur every 100–200 kb
(Daly et al. 2001; Reich et al. 2002; McVean and Cardin

2005). These observations provided the empirical foun-
dation for the construction of a haplotype map of the
human genome (see text below) for diverse popula-
tions, and these early studies demonstrated that LD
patterns vary across populations (Gabriel et al. 2002;
Reich et al. 2002; Rosenberg et al. 2002). Under the
CDCV hypothesis, genetic variation organized into a
limited number of haplotypes spanning a causal variant
would be associated with disease, and relatively few ‘‘tag’’
SNPs chosen to represent the haplotypes would need to
be genotyped in each haplotype block (de Bakker et al.
2005) to capture the effect.
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The International HapMap Consortium (2003;
see Table 1) characterized the patterns of common
genetic variation within the human genome (over 3.1
million common SNPs MAF . 0.05; 25–35% of the total
number of predicted common variants) were genotyped
in 270 individuals from populations of African, Asian,
and European ancestry. Subsequently, a subset of 1.6
million SNPs was genotyped in an additional 270 un-
related individuals of the original four populations plus
nearly 900 additional individuals representing seven ad-
ditional populations (Altshuler et al. 2010). HapMap’s
focus on common SNPs, exacerbated by discovery in
small samples (Clark et al. 2005), means that it provides
little information about patterns of variation for ‘‘rare’’
SNPs (MAF , 0.05). Also, structural variants including
insertions/deletions (indels), inversions, and copy
number variants (CNVs, see Table 1) were not directly
surveyed (except as they are in LD with common SNPs,
but see Redon et al. 2006).

To identify rare polymorphisms (MAF 0.001–0.05)
and CNVs, and to localize CNV boundaries, the 1000
Genomes Project (1KG; see Table 1; Durbin et al. 2010)
was launched in 2008 to sequence the genomes of over
2000 individuals. The 1KG Project is providing a catalog
of low-frequency variants in the human genome, thus

facilitating a next wave of GWAS to assess the role of
variants with lower allele frequency.

Mapping complex traits with GWASs: Technological
advances have enabled cost-effective, ultra high-throughput
SNP and CNV typing in large-scale, well-phenotyped
sample collections, setting the stage for GWASs. (For
recent reviews of GWAS methods, see Cardon and Bell

2001; Balding 2006; Hardy and Singleton 2009;
Smith et al. 2009; for a recent example of a GWAS for
rheumatoid arthritis risk, refer to box, case study of a

GWAS: meta-analysis of six genome-wide associa-

tion studies identifies seven new rheumatoid

arthritis risk loci.)
In a GWAS, allele frequencies at thousands if not

millions of loci are compared in individuals of varying
phenotype (Cardon and Bell 2001). Defining the
phenotype is an important consideration because phe-
notypic heterogeneity can reduce power (Ioannidis

et al. 2009). Other complexities, including data quality
per individual and per SNP, batch effects (Clayton et al.
2005), and relatedness among samples as well as genetic
outliers (Price et al. 2006) must be accounted for to
avoid systematic bias.

GWAS analysis tests for association of each SNP (state
of the art is up to�10 million SNPs) with disease status or
quantitative trait value in hundreds to tens of thousands
of individuals. For quantitative traits, linear regression
or Spearman’s rank correlation is used to test each SNP
for association between trait values and genotype. For
categorical traits (e.g., case-control status or phenotypic
extremes), chi-square or contingency table-based tests
can be used in addition to logistic regression tests.
Population stratification must be addressed in these
analyses. Stratified analysis (e.g., using a Cochran–
Mantel–Haentzel test), population structure covariates
(e.g., inferred population assignments; Pritchard et al.
2000), or principal component analysis (PCA) eigen-
vectors (Price et al. 2006), or mixed model regression
analysis (Aranzana et al. 2005; Aulchenko et al. 2007;
Buckler et al. 2009) are approaches for dealing with
cryptic population structure.

Assessment of GWAS results depends on the assumption
that the vast majority of SNPs follow the null hypothesis,
because relatively few of the tested genetic variants are
expected to influence the trait of interest. Thus, the
observed distribution of test statistics can be examined
for signs of systematic bias. Devlin and Roeder (1999)
suggested the use of a variance inflation factor (lGC), the
ratio of the observed-to-expected median (chi-square)
test statistic, and developed the widely used genomic
control procedure wherein one calculates lGC and divides
all of the test statistics by that factor. Test result distribu-
tions are often visualized in a quantile-quantile (q-q)
plot of observed vs. expected test statistics or �log10(P)
(see box, case study of a GWAS: meta-analysis of six

genome-wide association studies identifies seven

new rheumatoid arthritis risk loci; Figure 1).

Figure 1.—Q-Q plot of the RA GWAS meta-analysis (Stahl

et al. 2010). Results for all SNPs excluding the strongly asso-
ciated PTPN22 (chr1, 113.5–114.5 Mb) and MHC (chr6,
26–34 Mb) regions (which would otherwise dominate the tail
of the distribution) are plotted in black. Results excluding
SNPs in LD (r 2 . 0.1) with previously known RA risk associ-
ations are plotted in red, showing that substantial association
signal remains in the data. And results excluding SNPs in LD
with validated autoimmune disease associations are plotted in
blue, showing a degree of overlap between RA and related
complex diseases. Genomic control lGC (scaled for 1000 cases
and 1000 controls) for the data excluding PTPN22 and MHC
(black) is shown in the inset. Image adapted from Stahl et al.
2010.
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Given the number of tests performed in a GWAS,
multiple hypothesis testing is an important consider-
ation, as was realized in the early days of QTL mapping in
animal breeding (Neimann-Sorensen and Robertson

1961). Replication in independent samples is required
for an association to be considered validated (same
variant, trait, and direction of effect); standard practice
is for a small set of the most significant variants from the
‘‘discovery phase’’ to be tested in an independent sample
in a ‘‘replication phase’’ (multistage designs are also
possible, e.g., Raychaudhuri et al. 2008). A consensus
has emerged that a P-value less than 5 3 10�8 corre-
sponds to genome-wide significance in a non-African
population-based GWAS. This is a conservative Bonfer-
roni correction based on roughly one million ‘‘effec-
tively independent’’ common SNPs throughout the
genome, given the pattern of linkage disequilibrium
among common variants across the genome (Pe’er et al.
2008). A variation on this GWAS methodology—the
Bayesian GWAS (Marchini et al. 2007; Servin and
Stephens 2007; reviewed by Stephens and Balding

2009)—yields Bayes factors for SNP associations (anal-
ogous to a likelihood ratio of models with and without
association, from which a posterior probability of as-
sociation can be calculated given a prior probability of
association), rather than P-values for the null hypothesis
of no association.

The statistical power of a GWAS is a function of
sample size, effect size, causal allele frequency, and
marker allele frequency and its correlation with the
causal variant. Because GWASs are underpowered to
detect associations of modest effect sizes (odds ratio, OR
of 1.1–1.5; Risch and Merikangas 1996; Spencer et al.
2009; Stahl et al. 2010), large population samples are
required to detect variants of even moderate effect (OR
1.5–2). Meta-analyses (see Table 1) of independent
GWASs for a trait reap the full benefit of GWASs that
have already been performed, greatly increasing sample
size and statistical power. When different GWASs use
different genotyping array platforms, only a minority of
the SNPs are in common. Recently, imputation (see
Table 1) methods (reviewed in Li et al. 2009) have been
developed to infer genotypes at untyped SNPs using a
reference panel of more densely genotyped samples
(e.g., HapMap2 data, 2.5 million SNPs, and early releases
of 1KG data,�10 million SNPs). After imputation, GWAS
results can be combined across multiple studies (meta-
analysis methodology reviewed in de Bakker et al.
2008).

Notably, almost all GWASs to date have been con-
ducted on populations of European descent, and almost
none on populations of African descent. GWASs in al-
ternative populations could identify population-specific
associations with causal mutations that occurred after
the migrations that established major ethnic popula-
tions, and may be especially important for rare variants.
GWASs in alternative populations would also contribute

to fine mapping (see Table 1), particularly if performed
in populations of African descent, which have shorter
LD stretches than non-African populations. Fine map-
ping across ethnicities is based on the idea that a SNP
associated in multiple populations must be in LD with
the causal variant in all populations (e.g., Udler et al.
2009) and assumes a single causal variant across pop-
ulations and no population differences in disease
etiology. Most GWAS signals have replicated across
populations of different ethnicity (Waters et al. 2009,
2010; Teslovich et al. 2010), but in some cases differ-
ences between populations have been observed due to
extreme allele frequency differences or lack of effect in
one population vs. another (Kochi et al. 2009). Recently,
it has been shown that under some circumstances, map-
ping in multiethnic cohorts can significantly increase
power to detect associations, as genetic drift may elevate
allele frequencies of some variants in different popula-
tions, thereby boosting statistical power to detect an
association (Pulit et al. 2010). Thus, GWAS in addi-
tional populations are an important area of current and
future research in medical genetics.

GWAS AND THEIR FINDINGS—IMPLICATIONS FOR
GENETIC ARCHITECTURE

The first successful GWAS was of age-related macular
degeneration, with�100,000 SNPs tested for association
in 96 cases and 50 healthy controls (Klein et al. 2005),
followed by GWASs for Crohn’s Disease (Yamazaki et al.
2005), myocardial infarction (Ozaki and Tanaka 2005),
inflammatory bowel disease (Duerr et al. 2006), and
type 2 diabetes (Sladek et al. 2007). A landmark study
by the Wellcome Trust Case Control Consortium

(2007) (WTCCC) reported GWAS results for seven
common diseases, including bipolar disorder (BD),
coronary artery disease (CAD), Crohn’s disease (CD),
hypertension (HT), rheumatoid arthritis (RA), type I
diabetes (T1D), and type II diabetes (T2D). For each
disease, �500,000 SNP genotypes of 1500–2000 cases
were compared to 3000 ‘‘shared’’ control samples. The
study identified previously implicated risk loci, but,
more important, revealed multiple new risk loci for
some of the diseases. Interestingly, only one new asso-
ciation was found for CAD, and none were found for BD
and HT, perhaps because of difficulties in defining dis-
ease phenotypes (heterogeneity in disease diagnosis
and many underlying causes of disease), or perhaps due
to differences in the genetic architecture of these dis-
eases (e.g., fewer common variants with moderate to
strong effects), making GWAS less powerful for these
traits.

Following the success of the WTCCC study, the trickle
of GWAS publications has become a flood. Below we
describe results for a few well-studied traits, each with
GWASs with .10,000 samples and genome-wide impu-
tation (.2 million SNPs), representing a range of
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complex trait genetic architectures (at least in terms of
common variants): T1D, involving early-onset autoim-
mune destruction of the insulin-producing b-cells of the
pancreas, has a population prevalence of roughly 0.5%
and estimated heritability of 88% (Hyttinen et al. 2003).
GWAS of over 34,000 samples (Barrett et al. 2009a,b;
Hakonarson et al. 2007, 2008; Cooper et al. 2008) have
brought the list of validated T1D-risk associated loci to
more than 40, explaining 80% of genetic variation of
T1D [50% of which comes from the major histocompat-
ability complex (MHC) region; Wei et al. 2009]. An
example of another autoimmune disease with later
onset but substantial overlap in etiology, RA, is given in
box, case study of a GWAS: meta-analysis of six

genome-wide association studies identifies seven

new rheumatoid arthritis risk loci. Human height
is highly heritable (�80–90% heritability; Visscher

2008). A recent GWAS meta-analysis of nearly 180,000
individuals identified �200 loci that together explain
�14% of height variation (Lango Allen et al. 2010). For
other quantitative traits, including body mass index
(Speliotes et al. 2010) and cholesterol (Kathiresan

et al. 2008), GWASs of more than 240,000 and 22,000
individuals, respectively, have identified 32 and 18 loci
that together explain only 2–4% and 5–6% of heritable
variation.

Distribution of effect sizes: Mapping of complex
traits in humans and model organisms shows that for the
majority of traits studied, many loci contribute to the
genetic component of trait variance. The distribution of
effect sizes, however, is not completely consistent with
the infinitesimal model of quantitative variation where
many, many variants of small effect contribute to the
trait (Fisher 1918; Bulmer 1980). Instead, for some
traits, particularly the immune-related traits where the
human leukocyte antigen (HLA) genes exert large
effects, the trait architecture consists of a few loci of
relatively large effect and many additional loci of very
small effect, which is more consistent with Robertson’s
(1967, 1968) hypothesis of a roughly exponential dis-
tribution of effect sizes and consistent with models of
adaptation by Fisher (1930), Kimura (1983), and Orr

(1998). Among 531 genome-wide significant trait-SNP
associations reported as of December 2008 (Hindorff

et al. 2009), odds ratios range from 1.04 to 29.4 with first
and third quartiles of 1.2 and 1.6. Thus, the vast majority
of effect sizes identified to date are small (OR # 1.5).

Gene–environment and gene–gene interactions:
Gene–environment (G 3 E) and gene–gene interac-
tions may be ubiquitous aspects of complex trait genet-
ics (Templeton 2000; Cordell 2009), due, for
example, to genetic redundancy and evolutionary can-
alization (Waddington 1942; Gibson 2009). In hu-
mans, there are several well-documented interactions;
for example, multiple studies have shown that the ef-
fects of FTO alleles [increasing body mass index by
an amount equivalent to 1–1.5 kg body weight and

increasing obesity risk by 30% (Frayling et al. 2007;
Scuteri et al. 2007)] are attenuated by exercise (e.g.,
Vimaleswaran et al. 2005; Rampersaud et al. 2008).
Most GWASs have not investigated G 3 E, primarily due
to lack of data on environmental exposures. To facilitate
testing for G 3 E, large prospective cohorts (see Table 1) are
being established with robust, long-term quantification of
environmental variables, e.g., the National Children’s study
in the United States (www.nationalchildrensstudy.gov) and
the Avon Longitudinal Study of Parents and Children in the
United Kingdom (www.bristol.ac.uk/alspac/).

Gene–gene or more specifically variant–variant inter-
actions (epistasis) have been identified in model organ-
isms (Phillips 2008; Tyler et al. 2009) and anecdotally
in humans (Sing and Davignon 1985; Zerba et al. 2000;
Small et al. 2002; Combarros et al. 2009), but to date have
not been widely implicated as contributing to human
complex trait variation (Hill et al. 2008). Analyses to
detect epistatic interactions suffer from a substantially
increased multiple testing burden that hampers de-
tection and interpretation (reviewed by Cordell 2009)
or have focused only on those SNPs with significant
marginal effects (Barrett et al. 2008; Raychaudhuri

et al. 2008).
Pleiotropy: It has long been postulated that pleiot-

ropy is ubiquitous (Caspari 1949). The existence of
pleiotropic loci is well documented in model organisms;
high-resolution mapping in Drosophila melanogaster,
mouse, yeast and Arabidopsis thaliana has demonstrated
that what at first appeared to be single QTL for multiple
traits, were dissected into multiple variants, often with
opposite effects (reviewed in Flint and Mackay 2009).
It remains to be seen whether the same will hold true for
humans. Several loci appear to have opposite effects
across related diseases (Smyth et al. 2008; Maier et al.
2009), and could represent important checkpoints in
the branching pathways that lead to the development of
related but distinct diseases (Zhernakova et al. 2008). A
few GWAS-discovered loci are associated with multiple
diseases not previously thought to be related. The loci
JAZF1 and TCF2 (or HNF1b) are associated with T2D as
well as prostate cancer (Gudmundsson et al. 2007), sug-
gesting that adaptive immunity and T cells play impor-
tant roles in these different diseases. Interestingly, TCF2
variants contribute to susceptibility to prostate cancer,
but are protective against T2D. Pleiotropy at the level
of individual variants can influence the evolution of
traits and populations (Barton and Keightley 2002;
Mitchell-Olds et al. 2007; Roff and Fairbairn 2007)
through both positive and negative selection. In hu-
mans, particularly non-African populations with rela-
tively extensive LD, pleiotropy may very well turn out to
operate at the level of both locus and individual variant,
and could be an important contributor to common
disease.

Natural selection on trait-associated variants: The
impact of natural selection on disease-associated var-
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iants is of keen interest in medical and population ge-
netics (Di Rienzo 2006; Blekhman et al. 2008). Loci and
variants underlying many traits, particularly those sub-
ject to geographical variation in selection (e.g., skin
pigmentation and resistance to infectious agents), show
population genetic evidence of the action of natural se-
lection (Cavalli-Sforza et al. 1994; Sabeti et al. 2007;
Coop et al. 2009; Pickrell et al. 2009). Genes under-
lying Mendelian disorders show strong evidence for
purifying selection (Blekhman et al. 2008). In contrast,
genes implicated in complex diseases do not show
strong evidence of either purifying or positive selection
(Blekhman et al. 2008). Recent genome scans for signals
of positive natural selection based on long haplotypes
and population differentiation, found enrichment of
T2D risk loci (Pickrell et al. 2009; Chen et al. 2010),
which may reflect its correlation with energy metabolism
(Neel 1962). Barreiro and Quintana-Murci (2010)
found that long-haplotype signatures of recent positive
selection were enriched in SNPs associated with auto-
immune but not other complex diseases; these risk al-
leles may have experienced recent positive selection
through pleiotropic effects on immune-related pheno-
types, including resistance to infectious disease and/or

protection against other autoimmune diseases. Tests
for selection on complex trait-associated loci or variants
need further development and application, because
predictions vary across diseases/traits and depend on
the nature and degree of localization of the selection
signal (Grossman et al. 2010), and they suffer because
causal variants remain to be characterized for most
complex trait associations. A few clear examples exist,
however, for selection acting on individual variants. For
example, the T1D- and celiac disease-associated risk
allele of the SH2B3 locus shows evidence of selec-
tion (Pickrell et al. 2009; Zhernakova et al. 2010),
perhaps due its greater response to bacterial infection
(Zhernakova et al. 2010), and at the IFIH1 locus,
associated with T1D risk and response to viral infection,
selection appears to act on the haplotypes associated
with infectious disease (Fumagalli et al. 2010). Thus,
compelling anecdotal evidence of selection on disease-
associated loci also suggests that pleiotropic effects,
especially those relating to infectious disease, may be
important determinants of selection.

The tests for positive selection described above, how-
ever, are based on detecting signals of selective sweeps at
individual loci (Maynard Smith and Haigh 1974) and

Figure 2.—Manhattan plot for
RA GWAS meta-analysis. Statistical
strength of association (-Log10P) is
plotted against genomic position
with the 22 autosomal chromo-
somes in different colors. The blue
horizontal line indicates the
genome-wide significance thresh-
old of P ¼ 5 3 10�8; the red line
is a threshold for ‘‘suggestive’’ asso-
ciation (P ¼ 10�5). SNPs at 5 of 29
loci known from previous studies
(gene symbols shown), and one
of the 10 new loci identified in this
study (marked by red triangles),
achieved genome-wide signifi-
cance in this meta-analysis (prior
to the replication phase of the
study). Over 200 SNPs represent-
ing 35 loci achieved P ,10�5, versus
roughly 10 expected by chance.

Figure 3.—Validated RA risk alleles, their effect
sizes (odds ratios, OR), and their percent variance
explained. Modern understanding of the genetic
etiology of RA has progressed quickly in the age
of the GWAS, with scores of recently discovered
risk alleles. As resources and technology have im-
proved, our ability to discover alleles with more
modest effect sizes has accelerated our ability to
discover new risk alleles. On the other hand, with
each discovered risk locus, the heritability (percent
variance) explained is increasingly modest because
new risk alleles’ odds ratios are smaller while their
frequencies in the population are comparable.
Image courtesy of S. Raychaudhuri.
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are not able to detect adaptive events that affected many
alleles of small effect (Chevin et al. 2008; Hancock et al.
2010; Pritchard et al. 2010). Recently, Pritchard and
Di Rienzo (2010) discussed ‘‘polygenic adaption,’’
which can occur by modest changes in allele frequency
at multiple loci. Polygenic adaptation, an idea rooted
in classical quantitative genetics, could be detected by
combining trait-associated variants and then testing for
a more significant correlation of their allele frequencies
than expected under a neutral model (Pritchard et al.
2010).

Unexplained heritability remains: Although GWASs
have proven successful in identifying regions of the
genome harboring variants that contribute to complex
phenotypes and diseases, for most traits the effects of
all associated loci account for a small proportion of the
estimated heritability. With the exception of age-
related macular degeneration and type 1 diabetes, for
which collectively the proportion of heritability ex-
plained to date is approximately 50% and 80%, re-
spectively (Klein et al. 2005; Maller et al. 2006;
Barrett et al. 2009a), most complex disease variants
identified to date together account for much less of the
trait variance. Several proposed explanations for this
‘‘missing heritability’’ include (reviewed in Manolio

et al. 2009; Eichler et al. 2010): (1) Effect sizes of
associated variants may be underestimates due to in-
complete linkage disequilibrium between causal variants
and marker SNPs; (2) low-frequency polymorphisms
(MAF 0.005–0.05) or rare variants (MAF , 0.005) that
are not captured by current genotyping platforms,
including CNVs, may contribute a portion of the un-
explained heritability; (3) heritability may be overesti-
mated (Slatkin 2009), with epistasis, epigenetics, and
genotype–environment interactions contributing to trait
heritability; and (4) many additional, currently unde-
tected small effects may together comprise a significant
contribution to heritability. Several of these ideas have
stimulated the broadening of approaches taken to
unravel complex traits.

The proportion of heritability attributable to common
SNPs has been well characterized for many complex
human traits, but not as extensively for CNVs. Despite
several well-documented examples of CNV association
with complex traits (e.g., deletion of CCL3L1 in HIV
susceptibility; Gonzalez et al. 2005), common CNVs will
not likely contribute substantially to unexplained herita-
bility, as common CNVs are in LD with SNPs (Conrad

et al. 2010; Craddock et al. 2010). However, it does
appear that for some traits, including neurodevelopmen-
tal diseases such as schizophrenia (SCZ) (Stefansson

et al. 2008; Walsh et al. 2008) and autism (Sebat et al.
2007; Wang et al. 2009), CNVs play a substantial role, so
there is still interest in including CNVs in future GWASs.

Rare variants of large effect may explain a portion of
the missing heritability. A heavy investment is being
made to characterize low-frequency variants (MAF

0.001–0.05; e.g., through the 1KG Project), and com-
mercial genotyping arrays will soon include newly as-
certained low-frequency polymorphisms. A substantial
number of causal variants could be very rare, possibly de
novo or private to families, and these would need to be
characterized through sequencing of clinical samples
(Li and Leal 2009; Cirulli and Goldstein 2010),
probably requiring specialized pooled-variant analysis
strategies (Kryukov et al. 2009; Madsen and Browning

2009; Price et al. 2010). As sequencing technologies
advance, whole-exome and whole-genome sequencing
will become feasible for large numbers of individuals;
initial studies (Choi et al. 2009; Lupski et al. 2010; Ng

et al. 2010) are promising, though they present a pra-
ctical challenge of accurate identification of the lowest
frequency variants and distinguishing causal variants
among so many.

Focused analysis of candidate genes and follow-up of
loci identified through GWAS have demonstrated that
some genes contain both common and rare variants as-
sociated with the trait [e.g., for lipid phenotypes (Cohen

et al. 2005; Kotowski et al. 2006; Romeo et al. 2007),
blood pressure ( Ji et al. 2008), and type 1 diabetes],
although the generality of these results will be resolved
with empirical data. Dickson et al. (2010) demonstrated
via simulations that trait association signals detected for
common variants could, in fact, be caused by rare
variants. But note that rare variants with very large ef-
fects (OR �10) would have already been identified
through linkage studies, and despite many attempts,
very few replicable linkages to complex diseases have
been discovered (McCarthy 2002; Orozco et al. 2010).
If rare variants influencing a trait are disproportion-
ately located at the same loci as the common variants
already identified, then targeted resequencing of re-
gions revealed by GWAS will be a powerful approach
(McCarthy 2009).

The distribution of effect sizes for common variants
affecting human complex traits is highly skewed toward
small effect sizes, and the true distribution is likely even
more skewed than the empirical distribution, as GWASs
are underpowered to detect small effects. The identifi-
cation of additional loci of small effect will be partially
addressed through meta-analysis of multiple GWAS, but
given stringent significance thresholds, it is unlikely that
GWAS will ever be powered to identify the full spectrum
of small effects. Several recent analytical approaches
have been developed to test whether common variants
of extremely small effect size might contribute en masse
to trait variation. This approach was successfully applied
to SCZ, suggesting a highly polygenic model of common
variants with small effects, together explaining approx-
imately 35% of population variance in disease (Purcell

et al. 2009), still a minority of the estimated 80% heri-
tability of SCZ. Interestingly, Purcell et al. (2009)
demonstrated that the same variants contributing to
schizophrenia risk also play a role in bipolar disorder.
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Recently, Yang et al. (2010b) estimated that 67% of the
heritability of human height could be explained by a
polygenic model. A proportion of the estimated herita-
bility remains unaccounted for in both of these traits,
but the model nevertheless accounts for far more than
that of known, validated associations. These approaches
are unable to identify specific variants contributing to
trait variation. Models with many genetic variables ob-
scure the estimation of marginal effects, so that al-
though an overall effect can be inferred, the effects of
individual variants cannot be identified with any accu-
racy (Gibson 2010). Despite this, the approach has pra-
ctical value; a polygenic analysis defines a large set of
variants of which an unknown subset affect phenotype,
that together represent real underlying biology. Thus
information-based study of the set of variants as a whole
may hold the greatest promise of GWAS to dissect
human complex traits (see PROMISE OF GWAS—
SYSTEMS GENETICS OF COMPLEX TRAITS).

THE PROGRESS OF GWAS—MEDICAL
GENETIC DISCOVERY

GWAS discoveries promise to provide understanding
of mechanisms of disease etiology and disease pathogen-
esis. Associated loci not previously suspected of a role in
disease etiology have suggested unexpected biology, such
as CFH and other genes of the complement pathway
(inflammatory pathway regulation) involved in macular
degeneration (Klein et al. 2005), and genes of the
autophagy pathway (degradation of intracellular compo-
nents in lysosomes, induced by bacterial infection) in-
volved in inflammatory bowel disease (Rioux et al. 2007;
Cho et al. 2008; Mathew 2008). Such genes and pathways
would not have been tested in candidate gene studies.
GWAS of related diseases often reveal an overlapping
genetic basis, and the overlaps promise to shed light on
disease mechanisms. Several so-called ‘‘autoimmunity’’
loci are associated with multiple autoimmune diseases,
including the HLA genes of the MHC region, and other
genes involved in both innate and adaptive immunity
(Maier and Hafler 2008; Zhernakova et al. 2008).
Among cancers, the 8q24 ‘‘gene desert’’ region, has been
found to harbor common variants associated with blad-
der, breast, colon, ovarian, and prostate cancers (re-
viewed in Ghoussaini et al. 2008), whereas most other
cancer GWAS discoveries are disease specific (reviewed in
Easton and Eeles 2008).

The associated SNPs identified through GWAS are
unlikely to be the functional variants themselves.
Rather, they serve as markers for an underlying
haplotype containing the functional variant, but for
which the complete pattern of sequence variation is
unknown. Hindorff et al. (2009) reported bioinfor-
matic analyses of a recent tally of trait-associated SNPs,
providing clues as to the types of genetic variants
contributing to complex trait variation. Coding regions

were overrepresented (11% of trait-associated SNPs vs.
2% of the genome sequence) among GWAS hits, 43% of
associations were located in intergenic regions (outside
of promoters and transcribed regions), and 45% were
located in introns. Nonsynonymous codons and pro-
moter regions were significantly enriched for trait-
associated SNPs, while intergenic regions were signifi-
cantly underrepresented. Trait-associated SNPs may be
preferentially located in genic regions, but they can lie
anywhere in the genome, including in gene deserts (e.g.,
the prostate cancer locus at 8q24; Yeager et al. 2007 and
the Crohn’s disease locus at 5p13; Wellcome Trust

Case Control Consortium 2007). The current picture
of gene-centric functional variation is driven by effects of
common variants; it remains to be seen whether the pat-
tern will hold once a wider range of allele frequencies
and effect sizes have been characterized.

From a medical genetics perspective, the ultimate
goal of GWAS is to identify the causal variants underlying
validated trait-SNP associations and to characterize their
functional effects. In practice the most strongly associ-
ated variant at a locus identified through GWAS is pre-
sumed to be in LD with the causal, functional variant and
becomes the focus for follow-up studies. Fine mapping
of an associated locus, followed by deep resequencing of
the associated region in samples of interest identifies all
possible functional variants, and then a variety of bio-
informatic and genomic approaches are used to prior-
itize variants for experimental studies to verify the
functional consequences of putative functional variants
(see below).

Examples of experimentally confirmed functional
variants underlying validated GWAS hits are accumulat-
ing, and they reveal a variety of functional mechanisms
underlying trait variation. The IRF5 locus includes
variants that disrupt intron splicing, decrease mRNA
transcript stability, and delete part of the interferon
regulating factor (IRF) protein (Graham et al. 2007),
explaining independent associations with systemic lu-
pus erythmatosis (Sigurdsson et al. 2005; Graham et al.
2006), inflammatory bowel disease (Dideberg et al.
2007), and RA (Stahl et al. 2010). Allele-specific chro-
matin remodeling affecting the expression of several
genes in the ORMDL3 locus region (Verlaan et al.
2009) explains its association with asthma (Moffatt

et al. 2007), Crohn’s disease (Barrett et al. 2008), and
T1D (Barrett et al. 2009a). At a locus associated with
elevated LDL-cholesterol levels in the blood and myo-
cardial infarction, a common nonprotein-coding vari-
ant was found to create a transcription factor binding
site that alters the expression of the SORT1 gene in the
liver (Musunuru et al. 2010). In another recent study,
the largest GWAS meta-analysis to date of blood lipid
traits, Teslovich et al. (2010) identified 59 distinct gene
variants and validated the biological significance of
three of the novel genes in mice, holding promise for
therapeutics.
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THE PROMISE OF GWAS—SYSTEMS GENETICS
OF COMPLEX TRAITS

If polygenic analysis is required to understand the
genetic basis of complex traits, this leads to a systems
biology perspective in which many perturbations of a
complex network contribute to the outcome of complex
trait phenotype in ways that may not be possible to dis-
entangle on a per-variant basis. A systems genetics (see
Table 1) approach is thus needed, in which large sets of
genetic variants and/or genes are analyzed together,
genetic data are integrated with external functional data
types, and the results inform the biology of the complex
trait directly (reviewed in Mackay et al. 2009). Systems
genetics is perhaps the culmination of the classic quan-
titative genetics perspective, where patterns of pheno-
typic and genetic covariance shed light on complex trait
biology directly, but fueled with GWAS and functional
genomic (see Table 1) data.

Functional annotation of the genome can shed light
on mechanisms of trait biology. One common approach
is to determine whether trait-associated variants cluster
into groups of specific biological functions more than
would be expected by chance, e.g., for gene ontology
(GO) terms. Large-scale databases integrate various
types of data from the literature to build pathways, and
commercial and public tools exist to facilitate access [e.g.,
Ingenuity (http://www.ingenuity.com); Kyoto Encyclope-
dia of Genes and Genomes (KEGG; www.genome.jp/
kegg/)]).

Recently, GWASs have been conducted on mRNA
levels, themselves quantitative traits, in expression QTL
(eQTL) mapping studies (see Table 1) (e.g., Dixon et al.
2007; Goring et al. 2007; Stranger et al. 2007a,b; Dimas

et al. 2009). Several studies show that complex trait-
associated variants overlap with eQTL variants (e.g.,
Emilsson et al. 2008; Nica et al. 2010), helping to pri-
oritize a gene and mechanism for functional follow-
up. Furthermore, a recent study of GWAS associations
reported that on a global scale, GWAS-identified variants
are significantly more likely to be eQTL than minor-allele-
frequency-matched SNPs chosen from high-throughput
GWAS platforms (Nicolae et al. 2010). Although some
eQTL datasets are publicly available (e.g., http://www.
sanger.ac.uk/resources/software/genevar/; Yang et al.
2010a), few are from primary cell types, and available
datasets may not be relevant to some traits or diseases,
and few studies have performed both complex trait
GWAS and eQTL mapping in the same individuals. To
provide the scientific community with a resource to
facilitate large-scale analyses, the National Institutes of
Health recently launched the Genotype-Tissue Expres-
sion (GTeX) project (http://nihroadmap.nih.gov/GTEx/
index.asp) to provide a publicly available catalog of tissue-
specific gene expression profiles and eQTL.

Similarly, other data types such as methylation/
acetylation, protein–protein interactions, and miRNA

regulatory networks, can be integrated with GWAS
results. Gene set enrichment analysis (GSEA; see Table
1) (Subramanian et al. 2005) and related analyses (Lage

et al. 2008) have identified correlated expression profiles
of trait-associated genes across experiments and tissues
in several diseases. High-confidence protein–protein
interactions have successfully identified candidate genes
within linkage/association intervals on the basis of their
protein products’ interactions with those implicated in
similar diseases (Lage et al. 2007).

Integrative analyses have thus far focused largely on
validated SNPs (Lage et al. 2007; Lango Allen et al.
2010; Nicolae et al. 2010) and provide an accurate but
incomplete picture of the genetic system underlying
complex traits. As future GWASs bring the numbers of
validated SNPs from a few tens to .100 for complex
diseases, these analyses will become a gold standard for
comparison with systems genetics approaches based on
broader sets of variants (e.g., from polygenic analysis,
GWAS, or sequencing studies) to provide insights into
complex trait biology directly.

The Bayesian GWAS framework is appropriate for
using external biological and functional genomics-
based information to inform prior probabilities of SNP
association (Stephens and Balding 2009). Leveraging
independent, functional knowledge to establish priors
should be straightforward, based on odds ratios of the
external data in validated trait-associated SNPs, but re-
mains a key challenge for the development of Bayesian
GWAS methods because of their heterogeneity and
potential bias. While exciting approaches for combining
heterogeneous data are being developed (Lage et al.
2008; Huttenhower et al. 2009; Lee et al. 2009; Battle

et al. 2010), these issues must be taken into consideration
in the design and interpretation of truly integrative
systems genetics analyses.

CONCLUSION

Genome-wide association studies in humans have
already proven a resounding success in providing a
framework for unraveling the genetic basis of complex
traits. The results have provided unprecedented views
into the contribution of common variants to complex
traits, illuminated genome function, and have opened
new possibilities for the development of therapeutic in-
terventions. Trait architecture conforms to a roughly
exponential distribution of effect sizes: the majority of
common complex trait-associated variants studied thus
far have modest effects (OR , 2), and for most traits,
substantial heritability remains to be explained. Identi-
fying the genetic basis of the remaining trait variance will
require additional discoveries, particularly of rare trait-
associated variants and better characterization of ge-
netic modes of action and interaction and refined es-
timates of heritability. DNA sequencing will play a key
role in the next generation of GWAS, through candidate
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locus resequencing in large cohorts, whole-exome se-
quencing, and eventually whole-genome sequencing of
large numbers of individuals. Also, integration of func-
tional biological knowledge into association analyses
promises to point directly to putative functional var-
iants. Importantly, identification of causal variants and
expansion of these studies into populations of diverse
ancestry will facilitate further biological understanding
and population genetics of complex traits. Continued
accelerated pace of discovery of medically important
trait-associated variants in humans will depend on
implementation of new technologies and analytic ap-
proaches to integrate diverse data types, but also, crit-
ically, on the lessons learned from the burst of discovery
that has been the result of the first round of genome-
wide association studies in humans.
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