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The SNPassoc package contains facilities for data manipulation, tools for exploratory
data analysis, convenient graphical facilities, and tools for assessing genetic association for
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both quantitative and categorial (case-control) traits in whole genome approaches. Genome-
based studies are normally analyzed using a multistage approach. In the first step researchers
are interested in assessing association between the outcome and thousands of SNPs (Section
2). In a second and possibly third step, medium/large scale studies are performed in which
only a few hundred of SNPs, those with a putative association found in the first step, are
genotyped (Section 3). SNPassoc is specially designed for analyzing this kind of designs.
In addition, a convenience-based approach (select variants on the basis of logistical con-
siderations such as the ease and cost of genotyping) can also be analyzed using SNPassoc.
Different genetic models are also implemented in the package. Analysis of multiple SNPs can
be analyzed using either haplotype or gene-gene interaction approaches (Section 4). Statis-
tical methods used in the functions are described in Section 5. Lastly, some computational
aspects are described in Section 6.

1 Data manipulation and descriptive analysis

1.1 The class snp

Let’s assume that the data set we are analyzing looks like this

#Let’s load library SNPassoc
>library(SNPassoc)

#get the data example:
#both data.frames SNPs and SNPs.info.pos are loaded typing data(SNPs)
>data(SNPs)

#look at the data (only first four SNPs)
> SNPs[1:10,1:9]

id casco sex blood.pre protein snp10001 snp10002 snp10003 snp10004
1 1 1 Female 13.7 75640.52 TT CC GG GG
2 2 1 Female 12.7 28688.22 TT AC GG GG
3 3 1 Female 12.9 17279.59 TT CC GG GG
4 4 1 Male 14.6 27253.99 CT CC GG GG
5 5 1 Female 13.4 38066.57 TT AC GG GG
6 6 1 Female 11.3 9872.46 TT CC GG GG
7 7 1 Female 11.9 11132.90 TT AC GG GG
8 8 1 Male 12.4 29973.43 TT AC GG GG
9 9 1 Male 14.5 31114.29 CT CC GG GG
10 10 1 Female 12.2 41768.55 TT AC GG GG

... etc

The function snp has been designed for dealing with SNP variables. Here SNPassoc uses
the object-oriented features of R (“classes and methods”) to make it easy to manipulate,
analyze, and plot data sets. Notice that the two alleles in a genotype are normally separated
by a given character. However, users may employ different formats just by changing the
argument called sep. In our example sep="" since there is no character between the two
alleles. To homogenize the results we decided to separate both alleles by ”/” when an object
of class snp is created.

> mySNP<-snp(SNPs$snp10001,sep="")
> mySNP

[1] T/T T/T T/T C/T T/T T/T T/T T/T C/T T/T C/T C/C C/T T/T T/T T/T C/T T/T
[19] T/T T/T T/T C/C C/T T/T T/T C/T T/T T/T T/T C/C T/T T/T C/T T/T C/T C/T
[37] C/C C/T C/T T/T T/T T/T T/T C/T T/T C/C C/T C/T C/T T/T T/T C/T C/T T/T
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Figure 1: Summary for a given SNP using barplot (left figure) or pie (right figure) R
graphics.

[55] T/T T/T T/T T/T C/T T/T T/T T/T T/T T/T T/T T/T C/C T/T T/T C/T C/T T/T
[73] T/T C/T T/T T/T T/T T/T T/T C/T C/T T/T T/T T/T C/C T/T T/T C/C C/C C/T
[91] T/T T/T C/T T/T T/T T/T T/T T/T C/T T/T C/T C/T C/T T/T T/T C/C C/T T/T

[109] T/T C/T T/T C/T C/T T/T C/T C/T T/T T/T C/T C/T C/T T/T C/C T/T T/T T/T
[127] T/T T/T C/T T/T C/T C/C T/T C/T C/T T/T C/T T/T T/T C/T C/T C/T T/T T/T
[145] T/T T/T C/T T/T T/T T/T T/T C/T T/T C/T C/T C/T C/T
Levels: T/T C/T C/C

An object of class ’snp’ can be printed and summarized using print and summary func-
tions. The summary of an object snp includes both genotype and allele frequencies and the
Hardy-Weinberg equilibrium test.

> summary(mySNP)
Genotypes:

frequency percentage
T/T 92 0.58598726
C/T 53 0.33757962
C/C 12 0.07643312

Alleles:
frequency percentage

T 237 0.7547771
C 77 0.2452229

HWE (p value): 0.28163925

An object of class snp may also be plotted using the plot function. Different types of
plots may be obtained just by changing the argument type. Figure 1 shows two different
plots for a given SNP. They have been obtained using the next instructions, where the
arguments label and col are optional.

> # left figure
> plot(mySNP,label="snp10001",col="darkgreen")
> # right figure
> plot(mySNP,type=pie,label="snp10001",col=c("darkgreen","yellow","red"))

Other methods such as reorder are also implemented for an object of class snp. In
that case, the argument ref determines whether the genotype with common allele is the
reference or not.
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> reorder(mySNP,ref="minor")
[1] T/T T/T T/T C/T T/T T/T T/T T/T C/T T/T C/T C/C C/T T/T T/T T/T C/T T/T

[19] T/T T/T T/T C/C C/T T/T T/T C/T T/T T/T T/T C/C T/T T/T C/T T/T C/T C/T
[37] C/C C/T C/T T/T T/T T/T T/T C/T T/T C/C C/T C/T C/T T/T T/T C/T C/T T/T
[55] T/T T/T T/T T/T C/T T/T T/T T/T T/T T/T T/T T/T C/C T/T T/T C/T C/T T/T
[73] T/T C/T T/T T/T T/T T/T T/T C/T C/T T/T T/T T/T C/C T/T T/T C/C C/C C/T
[91] T/T T/T C/T T/T T/T T/T T/T T/T C/T T/T C/T C/T C/T T/T T/T C/C C/T T/T

[109] T/T C/T T/T C/T C/T T/T C/T C/T T/T T/T C/T C/T C/T T/T C/C T/T T/T T/T
[127] T/T T/T C/T T/T C/T C/C T/T C/T C/T T/T C/T T/T T/T C/T C/T C/T T/T T/T
[145] T/T T/T C/T T/T T/T T/T T/T C/T T/T C/T C/T C/T C/T
Levels: C/C C/T T/T

Now, we can see as the genotype C/C is the reference. In order to help other possible
codifications of the genotypes the user is allowed to indicate which are their codes (for
instance, 0,1, and 2 or ”homozig1”, ”heteroz”, ”homozig2”). As an example:

> gg<-c("het","hom1","hom1","hom1","hom1","hom1","het","het","het",
+ "hom1","hom2","hom1","hom2")
> snp(gg,name.genotypes=c("hom1","het","hom2"))
[1] A/B A/A A/A A/A A/A A/A A/B A/B A/B A/A B/B A/A B/B

Levels: A/A A/B B/B

1.2 The class setupSNP

Previous functions are useful for dealing with a unique SNP. However in association studies
we are normally interested in analyzing a huge number of SNPs. Thus, to indicate which
variables are SNPs in our data set we use the function called setupSNP. This function
prepares the data for being analyzed using other function as we will illustrate later. The
following instruction is used to create an object of class setupSNP.

> myData<-setupSNP(data=SNPs,colSNPs=6:40,sep="")

This function creates a data frame of class "setupSNP" where the variables indicated
in the argument colSNPs are converted to class "snp". This object has four additional
attributes, called "label.SNPs", "colSNPs", "gen.info", and "whole". These attributes
encode the information about the names and columns of SNPs, the genomic information of
SNPs (chromosome and position) and whether a whole genome analysis is carried out.

In some occasions one may be interested in having the SNPs sorted by chromosomes and
genomic positions. To do so, the argument sort must be set to TRUE. In addition, we must
indicate the genomic information through the argument info as follows:

> myData.o<-setupSNP(SNPs, colSNPs=6:40, sort=TRUE,
+ info=SNPs.info.pos, sep="")

where the information of SNPs.info.pos looks like this:

snp chr pos
1 snp10001 Chr1 2987398
2 snp10002 Chr1 1913558
3 snp10003 Chr1 1982067
4 snp10004 Chr1 447403
5 snp10005 Chr1 2212031
6 snp10006 Chr1 2515720
7 snp10007 Chr1 1306743
8 snp10008 Chr1 2063658
9 snp10009 Chr1 3403359
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10 snp100010 Chr1 1857134
11 snp100011 Chr2 2439115
12 snp100012 Chr2 1978467
13 snp100013 Chr2 1641528
14 snp100014 Chr2 3852933

...

The generic function labels may be used to obtain the names of SNPs for an object of class
“setupSNP”.

> labels(myData)
[1] "snp10001" "snp10002" "snp10003" "snp10004" "snp10005" "snp10006"
[7] "snp10007" "snp10008" "snp10009" "snp100010" "snp100011" "snp100012"

[13] "snp100013" "snp100014" "snp100015" "snp100016" "snp100017" "snp100018"
[19] "snp100019" "snp100020" "snp100021" "snp100022" "snp100023" "snp100024"
[25] "snp100025" "snp100026" "snp100027" "snp100028" "snp100029" "snp100030"
[31] "snp100031" "snp100032" "snp100033" "snp100034" "snp100035"

An object of class “setupSNP” can also be summarized obtaining information about
alleles, major frequency allele, HWE test and missing genotypes as follows:

> summary(myData)
alleles major.allele.freq HWE missing (%)

snp10001 T/C 75.5 0.281639 0.0
snp10002 C/A 72.0 0.004945 0.0
snp10003 G 100.0 - 8.3
snp10004 G 100.0 - 0.6
snp10005 G/A 75.8 0.008020 0.0
snp10006 A 100.0 - 0.0
snp10007 C 100.0 - 0.0
snp10008 C/G 80.3 0.137802 0.0
snp10009 A/G 71.5 0.002848 0.6
snp100010 T 100.0 - 6.4
snp100011 G/C 98.7 0.019139 0.0
snp100012 G/C 76.1 0.013399 1.3
snp100013 A/G 81.7 0.025588 7.6
snp100014 A/C 58.2 1.000000 2.5
snp100015 G/A 95.9 - 0.0
snp100016 G 100.0 - 3.2
snp100017 T/C 70.0 0.000518 1.3
snp100018 T/C 69.9 0.000498 0.6
snp100019 C/G 55.7 0.746284 0.0
snp100020 G/A 80.6 0.125355 0.0
snp100021 G 100.0 - 0.0
snp100022 A 100.0 - 0.6
snp100023 T/A 71.4 0.002842 1.9
snp100024 T/C 74.7 0.092210 0.6
snp100025 C 100.0 - 0.0
snp100026 G 100.0 - 0.6
snp100027 C/G 70.3 0.000896 1.3
snp100028 C/T 55.1 0.419687 0.6
snp100029 G/A 75.6 0.048709 0.6
snp100030 A 100.0 - 0.0
snp100031 T 100.0 - 35.0
snp100032 A/G 55.8 0.258909 0.6
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snp100033 A/G 54.9 0.326373 3.2
snp100034 T/C 75.6 0.048709 0.6
snp100035 T 100.0 - 7.0

After having and object of class “setupSNP” we may summarize and plot a given SNP using
the generic function plot as follows:

> plot(myData,which=20)
snp100020
Genotypes:

frequency percentage
G/G 105 66.878981
A/G 43 27.388535
A/A 9 5.732484

Alleles:
frequency percentage

G 253 80.57325
A 61 19.42675

HWE (p value): 0.1253547

where the argument which indicates the position of the SNP we are interested in looking at.

1.3 Missing data

We may have a look at the information we have for each SNPs using plotMissing function.
This function requires the data to be an object of class setupSNP. The top plot in Figure 2
shows the missing information for SNPs data set. This figure may be obtained typing:

> plotMissing(myData)

If we execute plotMissing(myData.o), as the myData.o is an object of class setupSNP with
the genomic information, the plotMissing function gives a plot including that information
(bottom plot in Figure 2)

1.4 Hardy-Weinberg equilibrium (HWE)

Now, we are interested in checking Hardy-Weinberg equilibrium for a set of SNPs. Here, we
take advantage of having an object-oriented program since the function compute HWE test
for all variables of class snp included in an object of class setupSNP

> res<-tableHWE(myData)
> res

HWE (p value) flag
snp10001 0.2816
snp10002 0.0049 <-
snp10003 -
snp10004 -
snp10005 0.0080 <-
snp10006 -
snp10007 -
snp10008 0.1378
snp10009 0.0028 <-
snp100010 -
snp100011 0.0191 <-
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Figure 2: Missing information for the genotyped SNPs. The bottom figure is the same as
the top one with the SNPs sorted by genomic position at each chromosome.
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snp100012 0.0134 <-
snp100013 0.0256 <-
snp100014 1.0000
snp100015 -
snp100016 -
snp100017 0.0005 <-
snp100018 0.0005 <-
snp100019 0.7463
snp100020 0.1254
snp100021 -
snp100022 -
snp100023 0.0028 <-
snp100024 0.0922
snp100025 -
snp100026 -
snp100027 0.0009 <-
snp100028 0.4197
snp100029 0.0487 <-
snp100030 -
snp100031 -
snp100032 0.2589
snp100033 0.3264
snp100034 0.0487 <-
snp100035 -

The column indicated by flag shows those SNPs that are statistically significant at level
0.05. This significance level may be changed using the argument sig in the print function
(e.g. print(myData, sig=0.0001)). The number of decimals may also be changed using
the digits parameter. A stratified analysis may also be performed using the argument
strata as follows:

> res<- tableHWE(myData,strata=myData$sex)
> res

all.groups Male Female
snp10001 0.2816 0.3941 0.7388
snp10002 0.0049 0.1660 0.0075
snp10003 - - -
snp10004 - - -
snp10005 0.0080 0.2755 0.0257
snp10006 - - -
snp10007 - - -
snp10008 0.1378 0.5078 0.2342
snp10009 0.0028 0.0992 0.0075
snp100010 - - -
snp100011 0.0191 - 0.0184
snp100012 0.0134 0.2761 0.0255
snp100013 0.0256 0.1206 0.2051
snp100014 1.0000 0.8101 0.6456
snp100015 - - -
snp100016 - - -
snp100017 0.0005 0.0304 0.0068
snp100018 0.0005 0.0304 0.0066
snp100019 0.7463 1.0000 0.5012
snp100020 0.1254 0.5078 0.2141
snp100021 - - -
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snp100022 - - -
snp100023 0.0028 0.0972 0.0123
snp100024 0.0922 0.1551 0.5197
snp100025 - - -
snp100026 - - -
snp100027 0.0009 0.0304 0.0123
snp100028 0.4197 1.0000 0.2619
snp100029 0.0487 0.0772 0.5065
snp100030 - - -
snp100031 - - -
snp100032 0.2589 0.8170 0.1834
snp100033 0.3264 0.8139 0.2619
snp100034 0.0487 0.0772 0.5065
snp100035 - - -

2 Whole genome association studies

2.1 The class WGassociation

After an initial inspection of the data (genotyping and allele frequencies, missing data, and
HWE test), Whole Genome association studies (objects of class "WGassociation") can
be analyzed with SNPassoc using WGassociation function. An object of class setupSNP
is needed. Normally, when we are performing genome-wide association studies we may
analyze hundreds of SNPs in different chromosomes. So, in these kind of studies genetic
information will be needed. In addition, we will need to indicate to the object of class
"setupSNP" that a whole genome analysis will be carried out. Let us illustrate this procedure
using a real data set. We have obtained information about 10,000 SNPs from the HapMap
project (http://www.hapmap.org) belonging to all chromosomes. We were interested in
comparing the genotype frequencies for all variants among European population (CEU) and
Yoruba (YRI). The data set containing this information is available in a data frame called
HapMap. The genomic information (names of SNPs, chromosomes and genetic position) is
also available in a data frame called HapMap.SNPs.pos. Both objects can be loaded typing
data(HapMap). The required object of class setupSNP is then created by executing:

> data(HapMap)
> myDat.HapMap<-setupSNP(HapMap, colSNPs=3:9307, sort = TRUE,
+ info=HapMap.SNPs.pos, sep="")

After obtaining the object of class setupSNP, the association analysis is then performed
typing: (NOTE: resHapMap object is loaded after executing data(HapMap). So it is not
necessary to execute the next instruction)

> resHapMap<-WGassociation(group, data=myDat.HapMap, model="log-add")

where group is a factor with levels CEU and YRI. In this exampleWGassociation will fit
individual logistic regression models to each of the variables class “snp” provided in the
“setupSNP” data object myDat. If we need an analysis adjusted for covariates, these can be
indicated using a model formula. For example, to adjust the association of each SNP for
age and sex we would use group age+sex. Analysis assuming different genetic models may
be obtained with the argument model (codominant, dominant, recessive, overdominant, log-
additive or all). Since a genome-wide association analysis may be very time consuming, we
recommend the user to change this argument and carry out the association assuming only
one genetic model in a preliminary step (in our example "log-additive"). The value re-
turned by WGassociation is an object of class "WGassociation". It can be stored, plotted,
and inspected using the methods for the generic operations: plot, print and summary. The
function summary provides, for each SNP and genetic model, a cross tabulation with numbers
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and percentages, ORs (or mean differences in quantitative traits), 95% confidence intervals,
the p-value for the likelihood ratio test of association, and the Akaike information criteria.
Figure 3 shows a plot for a whole genome analysis assuming a log-additive mode of inheri-
tance. This plot may be obtained typing plot(resHapMap). The argument cutPval may be
used for changing threshold of those SNPs that are statistically significant. As an example,
if we consider a p-value of 5× 10−8, cuPval should be set to cutPval=c(0,5e-08,1). This
figure is obtained by default when more than 10 chromosomes (or genes) are analyzed. The
user may obtain other kind of plot (Figure 4) just by changing the argument whole=FALSE.

> plot(resHapMap, whole=FALSE, print.label.SNPs = FALSE)

When there is not information about chromosomes but about genes, a similar plot may also
be obtained setting both sort.chromosome and centromere to FALSE.

The information given in Figure 3 may be summarized using the function summary as
follows:

> summary(resHapMap)
SNPs (n) Genot error (%) Monomorphic (%) Significant* (n) (%)

chr1 796 3.8 18.6 163 20.5
chr2 789 4.2 13.9 161 20.4
chr3 648 5.2 13.0 132 20.4
chr4 622 6.3 17.7 104 16.7
chr5 587 4.4 14.7 118 20.1
chr6 556 4.1 16.9 101 18.2
chr7 515 5.8 15.7 96 18.6
chr8 476 4.4 13.7 99 20.8
chr9 450 6.4 15.3 98 21.8
chr10 440 2.7 18.2 99 22.5
chr11 437 7.1 17.6 75 17.2
chr12 431 6.5 16.7 79 18.3
chr13 371 2.7 13.2 75 20.2
chr14 346 7.8 15.0 60 17.3
chr15 326 4.6 12.0 76 23.3
chr16 288 4.5 17.7 61 21.2
chr17 256 6.2 17.2 60 23.4
chr18 247 4.9 17.8 38 15.4
chr19 207 6.3 18.4 41 19.8
chr20 203 3.0 30.5 34 16.7
chr21 153 6.5 14.4 28 18.3
chr22 161 3.7 25.5 28 17.4

*Number of statistically significant associations at level 1e-06

As we will later illustrate, the WGassociation function computes for each SNP: ORs,
confidence intervals, p values from likelihood ratio test (LRT) and AIC. However, in many
occasions the researcher is only interested in knowing those SNPs that are statistically
significant at a given level (i.e. p value from LRT). Thus, in order to save computing
time we have programmed an alternative function, called scanWGassociation, for analyzing
whole genome data sets when p values are the only required. This function also returns an
object of class “WGasscociation”. So all methods and functions implemented for objects
of class “WGasscociation” may also be used for inspecting those results obtained using
scanWGassociation. The HapMap data set may also be analyzed using:

> resHapMap.scan<-scanWGassociation(group, data=myDat.HapMap, model="log-add")
Be patient. The program is computing ...
The program took 1.87 seconds

which is extremely less time-consuming than to use the WGassociation function.
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Figure 3: Results of WGassociation for the HapMap data set. The -log p values for a whole
genome analysis assuming a log-additive genetic model are showed for each chromosome.
The statistically significant associations at level 10−15 are plotted in red, while the other
associations are in gray. Blue lines indicate the centromeres.

Figure 4: Results of WGassociation for the HapMap data set. The -log p values for a
whole genome analysis assuming a log-additive genetic model are showed. The statistically
significant associations at nominal level (pink line) and at Bonferroni corrected level (red
line) are also indicated.

11



2.2 Permutation and related tests

Permutation test is a widely-used method to compute significance level. In a whole genome
association study the problem is that genotypes are correlated and such correlation might
be consider to be successful. The standard procedure is to permute trait values among
individuals while keeping their genotypes fixed. The minimum p-value is obtained at each
permutation to estimate its empirical distribution and to get the significance level. Another
possibility is to obtain the significance level assuming that minimum p-values are distributed
as a Beta distribution [Dudbridge and Koeleman, 2004].

Dudbridge et al. (2006) stated that the accuracy of permutation test can be improved
by noting that the minimum P-value (and other statistics such as sum statistic or truncated
product) can be regarded as the extreme value of a large number of observations. Thus,
they propose to use the extreme value distribution to obtain more accurate significance levels
[Dudbridge et al, 2006].

SNPassoc performs the permutation test (we must say that this procedure is ONLY
available for binary traits) using the function scanWGassociation. Since this procedure is
extremely time-consuming, it has been implemented using FORTRAN routines which are
called from R functions via a dll. The p values are obtained executing:

> resHapMap.perm<-scanWGassociation(group, data=myDat.HapMap,
+ model="log-add", nperm=1000)
Be patient. The program is computing ...
The program took 277.17 seconds

Then, the permutation test is performed typing:

> res.perm<- permTest(resHapMap.perm)
> print(res.perm)

Permutation test analysis (95% confidence level)
------------------------------------------------
Number of SNPs analyzed: 9305
Number of valid SNPs (e.g., non-Monomorphic and passing calling rate): 9305
P value after Bonferroni correction: 5.37e-06

P values based on permutation procedure:
P value from empirical distribution of minimum p values: 1.79e-05
P value assuming a Beta distribution for minimum p values: 1.931e-05

Figure 5 shows significance level from the permutation test which is easily obtained by
writing:.

> plot(res.perm)
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Figure 5: Empirical and theoretical distribution, assuming a Beta(1,α), for the minimum p
values. Results obtained from a permutation test for HapMap data set. Red line indicates
the adjusted significance level.

The rank truncated product [Dudbridge et al, 2006] is implemented in permTest func-
tion, just indicating method="rtp" and the number of the K most significant p-values.

> res.perm.rtp<- permTest(resHapMap.perm,method="rtp",K=20)
> print(res.perm.rtp)

Permutation test analysis (95% confidence level)
------------------------------------------------
Number of SNPs analyzed: 9305
Number of valid SNPs (e.g., non-Monomorphic and passing calling rate): 9305
P value after Bonferroni correction: 5.37e-06

Rank truncated product of the K=20 most significant p-values:
Product of K p-values (-log scale): 947.2055
Significance: <0.001
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3 Medium/Large scale association studies

The preliminary step helps the researchers to identify a subset of SNPs with putative asso-
ciations. In a following stage, those SNPs are retested in populations that have larger size.
To identify the set of SNPs with association that are statistically significant at a given level
(by default 1e-15) the function getSignificantSNPs may be used as follows:

> getSignificantSNPs(resHapMap,chromosome=5)
$names
[1] "rs6555568" "rs4702723" "rs4866272" "rs7720894" "rs6452430"
[6] "rs10067664" "rs6880750" "rs267030" "rs179194" "rs809039"

[11] "rs1015565" "rs6871275" "rs1864998" "rs263890" "rs11955678"
[16] "rs1702380" "rs1106986"

$column
[1] 6726 6742 6807 6927 6985 7022 7099 7101 7107 7123 7143 7157 7204 7260 7268

[16] 7277 7290

where resHapMap is the object of class WGassociation previously fitted, which contains the
results of a whole genome analysis, and the argument chromosome indicates the chromosome
from which the significant SNPs are obtained. SNPs associated with the outcome at different
level of signification may be obtained modifying the argument sig (e.g. sig=5e-08 for a
significant level of 5×10−8)

After determining this set of SNPs, we are normally interested in not only assessing
association between dependent variable and SNPs but also in further investigating how the
SNPs and the disease are associated (i.e. which is the mode of inheritance). Thus, in this
second step, other functions included in SNPassoc package may be used. To illustrate them
we are using the SNPs data set presented in Section 1.

3.1 Association with a single SNP

3.1.1 Crude analysis

We may assess the association between a given SNP and the outcome using association
function. To do so, it is necessary to incorporate in the model a variable of class snp. There
are two different possibilities. The first one is to use the function snp in the formula as
follows:

> association(casco~snp(snp10001,sep=""), data=SNPs)

SNP: snp10001, sep = "" adjusted by:
0 % 1 % OR lower upper p-value AIC

Codominant
T/T 24 51.1 68 61.8 1.00 0.1323 193.6
C/T 21 44.7 32 29.1 0.54 0.26 1.11
C/C 2 4.3 10 9.1 1.76 0.36 8.64
Dominant
T/T 24 51.1 68 61.8 1.00 0.2118 194.1
C/T-C/C 23 48.9 42 38.2 0.64 0.32 1.28
Recessive
T/T-C/T 45 95.7 100 90.9 1.00 0.2715 194.4
C/C 2 4.3 10 9.1 2.25 0.47 10.69
Overdominant
T/T 26 55.3 78 70.9 1.00 0.0613 192.1
T/T-C/C 21 44.7 32 29.1 0.51 0.25 1.03
log-Additive
0,1,2 47 29.9 110 70.1 0.87 0.51 1.47 0.5945 195.4
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The another possibility, which is recommended, is to use an object of class setupSNPs as
the data frame. Thus, it is not necessary to indicate which is the variable of class snp since
the object has this information as we have previously illustrated. Thus, we should type:

> myData<-setupSNP(data=SNPs,colSNPs=6:40,sep="")
> association(casco~snp10001, data=myData)

SNP: snp10001 adjusted by:
0 % 1 % OR lower upper p-value AIC

Codominant
T/T 24 51.1 68 61.8 1.00 0.1323 193.6
C/T 21 44.7 32 29.1 0.54 0.26 1.11
C/C 2 4.3 10 9.1 1.76 0.36 8.64
Dominant
T/T 24 51.1 68 61.8 1.00 0.2118 194.1
C/T-C/C 23 48.9 42 38.2 0.64 0.32 1.28
Recessive
T/T-C/T 45 95.7 100 90.9 1.00 0.2715 194.4
C/C 2 4.3 10 9.1 2.25 0.47 10.69
Overdominant
T/T 26 55.3 78 70.9 1.00 0.0613 192.1
T/T-C/C 21 44.7 32 29.1 0.51 0.25 1.03
log-Additive
0,1,2 47 29.9 110 70.1 0.87 0.51 1.47 0.5945 195.4

By default this function calculates the association between the SNP and the dependent
variable (left side of the formula) under five different genetic models. The argument model
may be used for analyzing only some of them. Let’s assume that we are only interested in
analyzing codominant and log-additive models. In that case, the instructions are:

> association(casco~snp10001, data=myData, model=c("cod","log"))

SNP: snp10001 adjusted by:
0 % 1 % OR lower upper p-value AIC

Codominant
T/T 24 51.1 68 61.8 1.00 0.1323 193.6
C/T 21 44.7 32 29.1 0.54 0.26 1.11
C/C 2 4.3 10 9.1 1.76 0.36 8.64
log-Additive
0,1,2 47 29.9 110 70.1 0.87 0.51 1.47 0.5945 195.4

The output is self-defined. Labels make reference to different genetic mode of inheritance.
We notice that a quantitative trait may be analyzed using the same instruction just changing
casco by a continuous variable (the user may try protein as an example). We highlight
that it is not necessary to indicate whether the trait is quantitative because when a factor
variable with two levels is written in the left side of the formula, a case-control study is
performed. Anyway, the user may force to perform a quantitative analysis indicating that
the argument quantitative is TRUE.

3.1.2 Adjusted analysis

Now, we can analyze this SNP adjusted by other covariates, such as gender or arterial blood
pressure, as follows:

> association(casco~sex+snp10001+blood.pre, data=myData)
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SNP: snp10001 adjusted by: sex blood.pre
0 % 1 % OR lower upper p-value AIC

Codominant
T/T 24 51.1 68 61.8 1.00 0.15410 195.8
C/T 21 44.7 32 29.1 0.55 0.26 1.14
C/C 2 4.3 10 9.1 1.74 0.35 8.63
Dominant
T/T 24 51.1 68 61.8 1.00 0.22859 196.1
C/T-C/C 23 48.9 42 38.2 0.65 0.32 1.31
Recessive
T/T-C/T 45 95.7 100 90.9 1.00 0.28494 196.4
C/C 2 4.3 10 9.1 2.22 0.46 10.70
Overdominant
T/T 26 55.3 78 70.9 1.00 0.07188 194.3
T/T-C/C 21 44.7 32 29.1 0.52 0.25 1.06
log-Additive
0,1,2 47 29.9 110 70.1 0.87 0.51 1.49 0.60861 197.3

3.1.3 Stratified analysis

We may also be interested in analyzing this SNP for two different populations (i.e. stratified
analysis). Let us assume that we want to compute the same ORs for males and females. In
this case strata function from survival package may be used as follows:

> association(casco~snp10001+blood.pre+strata(sex), data=myData)

strata: sex=Male
SNP: snp10001 adjusted by: blood.pre

0 % 1 % OR lower upper p-value AIC
Codominant
T/T 11 52.4 29 53.7 1.00 0.04070 90.3
C/T 10 47.6 17 31.5 0.63 0.22 1.80
C/C 0 0.0 8 14.8 0.00
Dominant
T/T 11 52.4 29 53.7 1.00 0.89492 94.7
C/T-C/C 10 47.6 25 46.3 0.93 0.34 2.57
Recessive
T/T-C/T 21 100.0 46 85.2 1.00 0.01740 89.1
C/C 0 0.0 8 14.8 0.00
Overdominant
T/T 11 52.4 37 68.5 1.00 0.18207 92.9
T/T-C/C 10 47.6 17 31.5 0.49 0.17 1.39
log-Additive
0,1,2 21 28.0 54 72.0 1.35 0.62 2.95 0.44244 94.1

strata: sex=Female
SNP: adjusted by:

0 % 1 % OR lower upper p-value AIC
Codominant
T/T 13 50.0 39 69.6 1.00 0.3054 102.7
C/T 11 42.3 15 26.8 0.49 0.17 1.38
C/C 2 7.7 2 3.6 0.35 0.04 2.88
Dominant
T/T 13 50.0 39 69.6 1.00 0.1309 100.8
C/T-C/C 13 50.0 17 30.4 0.47 0.17 1.25
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Recessive
T/T-C/T 24 92.3 54 96.4 1.00 0.4595 102.5
C/C 2 7.7 2 3.6 0.46 0.06 3.60
Overdominant
T/T 15 57.7 41 73.2 1.00 0.2290 101.6
T/T-C/C 11 42.3 15 26.8 0.54 0.19 1.47
log-Additive
0,1,2 26 31.7 56 68.3 0.54 0.24 1.20 0.1300 100.8

3.1.4 Subset analysis

In some occasions one may be interested in analyzing data only in a subset of individuals.
This can be easily done using subset argument.

> association(casco~snp10001+blood.pre, data=myData,
+ subset=sex=="Male")

SNP: snp10001 adjusted by: blood.pre
0 % 1 % OR lower upper p-value AIC

Codominant
T/T 11 52.4 29 53.7 1.00 0.04070 90.3
C/T 10 47.6 17 31.5 0.63 0.22 1.80
C/C 0 0.0 8 14.8 0.00
Dominant
T/T 11 52.4 29 53.7 1.00 0.89492 94.7
C/T-C/C 10 47.6 25 46.3 0.93 0.34 2.57
Recessive
T/T-C/T 21 100.0 46 85.2 1.00 0.01740 89.1
C/C 0 0.0 8 14.8 0.00
Overdominant
T/T 11 52.4 37 68.5 1.00 0.18207 92.9
T/T-C/C 10 47.6 17 31.5 0.49 0.17 1.39
log-Additive
0,1,2 21 28.0 54 72.0 1.35 0.62 2.95 0.44244 94.1

The same analyses may be performed for a quantitative trait replacing casco by a contin-
uous variable such as protein. The only difference is that the output is obviously slightly
different. As an example, let us suppose that we are interested in analyzing the effect of the
SNP snp10029 and protein levels for males and females, adjusted by arterial blood pressure.
To do so, we should execute:

> association(log(protein)~snp100029+blood.pre+strata(sex), data=myData)

strata: sex=Male
SNP: snp100029 adjusted by: blood.pre

n me se dif lower upper p-value AIC
Codominant
G/G 42 10.64 0.07722 0.00000 0.02949 136.4
A/G 23 10.51 0.11754 -0.13259 -0.4299 0.16474
A/A 9 10.07 0.31101 -0.56823 -0.9892 -0.14730
Dominant
G/G 42 10.64 0.07722 0.00000 0.06801 138.1
A/G-A/A 32 10.39 0.12369 -0.25505 -0.5290 0.01887
Recessive
G/G-A/G 65 10.59 0.06486 0.00000 0.01204 135.2
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A/A 9 10.07 0.31101 -0.52112 -0.9279 -0.11434
Overdominant
G/G 51 10.54 0.08759 0.00000 0.83495 141.4
G/G-A/A 23 10.51 0.11754 -0.03186 -0.3316 0.26787
log-Additive
0,1,2 -0.24135 -0.4315 -0.05119 0.01286 135.3

strata: sex=Female
SNP: adjusted by:

n me se dif lower upper p-value AIC
Codominant
G/G 52 10.607 0.07686 0.0000 0.0001702 175.3
A/G 25 10.326 0.16002 -0.2713 -0.5961 0.05359
A/A 5 9.286 0.52398 -1.2954 -1.9214 -0.66947
Dominant
G/G 52 10.607 0.07686 0.0000 0.0074509 182.7
A/G-A/A 30 10.153 0.17075 -0.4402 -0.7625 -0.11777
Recessive
G/G-A/G 77 10.516 0.07436 0.0000 0.0001499 176.1
A/A 5 9.286 0.52398 -1.2053 -1.8284 -0.58218
Overdominant
G/G 57 10.491 0.09551 0.0000 0.3843038 189.0
G/G-A/A 25 10.326 0.16002 -0.1553 -0.5052 0.19457
log-Additive
0,1,2 -0.4679 -0.7154 -0.22048 0.0002103 176.7

3.1.5 Interaction analysis

An interaction term, generally one SNP with a categorical covariate, may be included in the
formula. Then, the ORs (or mean differences if a quantitative trait is analyzed) and their
95% confidence intervals are expressed with respect to the non variant genotype and the
first category of the covariate. The other two tables show the ORs and their 95% confidence
intervals for both marginal models. P values for interaction and trend are also showed in
the output. We use the print function to obtain a nicer output to read (less decimals using
digit argument).

> ans<-association(log(protein)~snp10001*sex+blood.pre, data=myData,
+ model="codominant")
> print(ans,dig=2)

SNP: snp10001 adjusted by: blood.pre
Interaction

---------------------
Male dif lower upper Female dif lower upper

T/T 40 11 0.08 0.00 NA NA 52 10.6 0.079 -0.026 -0.29 0.24
C/T 27 11 0.10 -0.13 -0.45 0.19 26 10.2 0.184 -0.472 -0.79 -0.15
C/C 8 10 0.35 -0.64 -1.13 -0.14 4 9.8 0.286 -0.887 -1.56 -0.22

p interaction: 0.36051

sex within snp10001
---------------------
T/T

n me se dif lower upper
Male 40 11 0.080 0.000 NA NA
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Female 52 11 0.079 -0.026 -0.29 0.24

C/T
n me se dif lower upper

Male 27 11 0.10 0.00 NA NA
Female 26 10 0.18 -0.34 -0.69 0.0086

C/C
n me se dif lower upper

Male 8 10.0 0.35 0.00 NA NA
Female 4 9.8 0.29 -0.25 -1.0 0.53

p trend: 0.26575

snp10001 within sex
---------------------
Male

n me se dif lower upper
T/T 40 11 0.08 0.00 NA NA
C/T 27 11 0.10 -0.13 -0.45 0.19
C/C 8 10 0.35 -0.64 -1.13 -0.14

Female
n me se dif lower upper

T/T 52 10.6 0.079 0.00 NA NA
C/T 26 10.2 0.184 -0.45 -0.75 -0.14
C/C 4 9.8 0.286 -0.86 -1.52 -0.20

p trend: 0.36051

The mode of inheritance may be changed using the model argument. We may also obtain
an interaction table for two SNPs using the command (notice that one of the snps migth be
converted to factor)

> ans<-association(log(protein)~snp10001*factor(recessive(snp100019))
+ +blood.pre, data=myData, model="codominant")
> print(ans,dig=2)

SNP: snp10001 adjusted by: blood.pre
Interaction

---------------------
G/G-C/G dif lower upper C/C dif lower upper

T/T 60 11 0.063 0.00 NA NA 32 11 0.11 -0.038 -0.32 0.24
C/T 53 10 0.106 -0.30 -0.54 -0.053 0 0 0.00 NA NA NA
C/C 12 10 0.244 -0.72 -1.13 -0.313 0 0 0.00 NA NA NA

p interaction: NA

factor(recessive(snp100019)) within snp10001
---------------------
T/T

n me se dif lower upper
G/G-C/G 60 11 0.063 0.000 NA NA
C/C 32 11 0.112 -0.038 -0.32 0.24
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C/T
n me se dif lower upper

G/G-C/G 53 10 0.11 0 NA NA
C/C 0 0 0.00 NA NA NA

C/C
n me se dif lower upper

G/G-C/G 12 10 0.24 0 NA NA
C/C 0 0 0.00 NA NA NA

p trend: NA

snp10001 within factor(recessive(snp100019))
---------------------
G/G-C/G

n me se dif lower upper
T/T 60 11 0.063 0.00 NA NA
C/T 53 10 0.106 -0.30 -0.54 -0.053
C/C 12 10 0.244 -0.72 -1.13 -0.313

C/C
n me se dif lower upper

T/T 32 11 0.11 0 NA NA
C/T 0 0 0.00 NA NA NA
C/C 0 0 0.00 NA NA NA

p trend: NA

3.2 Multiple tests

After that, we can carry out the same analysis for several SNPs. To do so we may also use
the WGassociation function as in the case of a whole genome analysis. In that case, the
WGassociation function will take into account that the object myData of class "setupSNP"
will have the attribute whole equal FALSE. As an example, this fact will be important when
method plot is used.

Here we notice that if we are interested in further analyzing HapMap data set we could
take advantage of the previous analysis as follows. First, we create an object of class
"setupSNP" with those SNPs with putative association typing:

> sigSNPs<-getSignificantSNPs(resHapMap,"X",sig=5e-8)$column
> myDat2<-setupSNP(HapMap, colSNPs=sigSNPs, sep="")

Then, the association analysis in this second step would be:

> resHapMap2<-WGassociation(group~1, data=myDat2)
> plot(resHapMap2,cex=0.8)
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Figure 6: Results of WGassociation for the HapMap data set. The -log p values for a whole
genome analysis for chromosome 5 and a set of SNPs with putative associations are showed
for each mode of inheritance.

Figure 6 shows the p values (in -log scale) for the association analysis in the second
step after selecting a given chromosome (5 in our case) and those SNPs with putative
associations. We highlight that a different plot is obtained from that obtained when a whole
genome analysis is carried out (Figure 3).

Let us turn to the example given in the SNPs data set where a moderate number of
SNPs were analyzed. First, we recall how to create the object of class "setupSNP"

> myData<-setupSNP(SNPs, colSNPs=6:40, sep="")

The same object including genomic order:

> myData<-setupSNP(SNPs, colSNPs=6:40, sep="")
> myData.o<-setupSNP(SNPs, colSNPs=6:40, sort=TRUE,
+ info=SNPs.info.pos, sep="")

The association analysis is then performed as follows:

> ans<-WGassociation(protein~1,data=myData.o)

The function WGassociation carries out the same analyses as association does. The
only difference is that we do not need to give any variable of class snp since the function
performs the association analysis for all variables of class snp given in the data argument.
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This argument is required an it has to be an object of class setupSNP. This function returns
an object of class WGassocition as in the case of analyzing a whole genome data set. So,
the “methods” implemented are the same we have previously mentioned. A short summary
(only p values) is obtained as follows:

> ans

comments codominant dominant recessive overdominant log-additive

snp10004 Monomorphic - - - - -

snp10007 Monomorphic - - - - -

snp100010 Monomorphic - - - - -

snp10002 - 0.78525 0.93292 0.48600 0.87267 0.76807

snp10003 Monomorphic - - - - -

snp10008 - 0.20293 0.29843 0.08453 0.83628 0.13289

snp10005 - 0.63220 0.43763 0.50030 0.55340 0.37129

snp10006 Monomorphic - - - - -

snp10001 - 0.00492 0.00456 0.01491 0.12102 0.00114

snp10009 - 0.74695 0.87183 0.47708 0.68095 0.93605

snp100015 - 0.02484 - - - -

snp100013 - 0.14592 0.09659 0.10819 0.38274 0.05278

snp100012 - 0.70516 0.58280 0.47821 0.72292 0.48889

snp100011 - 0.30259 0.12717 0.27118 0.28248 0.12583

snp100014 - 0.03531 0.01398 0.11743 0.26964 0.01143

snp100020 - 0.20671 0.31223 0.08453 0.86316 0.13932

snp100022 Monomorphic - - - - -

snp100017 - 0.70588 0.79091 0.45852 0.59896 0.99917

snp100016 Monomorphic - - - - -

snp100021 Monomorphic - - - - -

snp100019 - 0.02190 0.00674 0.14573 0.18974 0.00934

snp100018 - 0.75250 0.88674 0.47708 0.69475 0.92116

snp100027 - 0.92845 0.71446 0.94892 0.69917 0.75822

snp100029 - 0.00738 0.02052 0.00484 0.47493 0.00286

snp100023 - 0.77503 0.99543 0.48087 0.79853 0.82666

snp100026 Monomorphic - - - - -

snp100035 Monomorphic - - - - -

snp100033 - 0.01099 0.00397 0.06641 0.26365 0.00372

snp100031 Genot 65% - - - - -

snp100025 Monomorphic - - - - -

snp100030 Monomorphic - - - - -

snp100034 - 0.00738 0.02052 0.00484 0.47493 0.00286

snp100032 - 0.01752 0.00585 0.09452 0.23811 0.00643

snp100028 - 0.01315 0.00444 0.08557 0.23352 0.00482

snp100024 - 0.00615 0.01654 0.00484 0.42319 0.00223

We notice that information about the quality of SNPs is also showed in the comments.
As an example, we may observe that for the SNP called snp100031 we obtain Genot 65% as a
result, meaning that only 65% of individuals have information for this SNP. The percentage
of genotyping for those SNPs that we are interested in including in the analysis is controlled
by the argument GenoRate, which defaults to 80%. Previous analysis corresponds to a
crude analysis. Adjusted results may be obtained replacing ∼ 1 by ∼ age+sex, if we are
interested in obtaining results adjusted by age and sex. These results may be easily exported
to LaTeX using latex function from Hmisc package as follows (Table 1). We notice that
the information about p values may easily obtained using the function pvalues.

> library(Hmisc)
> SNP<-pvalues(ans)
> out<-latex(SNP,file="c:/temp/ans1.tex", where="’h",
+ caption="Summary of case-control study for SNPs data set.",
+ center="centering", longtable=TRUE, na.blank=TRUE,
+ size="scriptsize", collabel.just=c("c"), lines.page=50,
+ rownamesTexCmd="bfseries")
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Table 1: Summary of case-control study for SNPs data set.

SNP comments codominant dominant recessive overdominant log-additive
snp10001 NA 0.0049 0.0046 0.0149 0.1210 0.0011
snp10002 NA 0.7853 0.9329 0.4860 0.8727 0.7681
snp10003 Monomorphic
snp10004 Monomorphic
snp10005 NA 0.6322 0.4376 0.5003 0.5534 0.3713
snp10006 Monomorphic
snp10007 Monomorphic
snp10008 NA 0.2029 0.2984 0.0845 0.8363 0.1329
snp10009 NA 0.7469 0.8718 0.4771 0.6810 0.9361
snp100010 Monomorphic
snp100011 NA 0.3026 0.1272 0.2712 0.2825 0.1258
snp100012 NA 0.7052 0.5828 0.4782 0.7229 0.4889
snp100013 NA 0.1459 0.0966 0.1082 0.3827 0.0528
snp100014 NA 0.0353 0.0140 0.1174 0.2696 0.0114
snp100015 NA 0.0248
snp100016 Monomorphic
snp100017 NA 0.7059 0.7909 0.4585 0.5990 0.9992
snp100018 NA 0.7525 0.8867 0.4771 0.6947 0.9212
snp100019 NA 0.0219 0.0067 0.1457 0.1897 0.0093
snp100020 NA 0.2067 0.3122 0.0845 0.8632 0.1393
snp100021 Monomorphic
snp100022 Monomorphic
snp100023 NA 0.7750 0.9954 0.4809 0.7985 0.8267
snp100024 NA 0.0062 0.0165 0.0048 0.4232 0.0022
snp100025 Monomorphic
snp100026 Monomorphic
snp100027 NA 0.9285 0.7145 0.9489 0.6992 0.7582
snp100028 NA 0.0132 0.0044 0.0856 0.2335 0.0048
snp100029 NA 0.0074 0.0205 0.0048 0.4749 0.0029
snp100030 Monomorphic
snp100031 Genot 65%
snp100032 NA 0.0175 0.0059 0.0945 0.2381 0.0064
snp100033 NA 0.0110 0.0040 0.0664 0.2637 0.0037
snp100034 NA 0.0074 0.0205 0.0048 0.4749 0.0029
snp100035 Monomorphic

The WGstats function returns the same analyses as in the case of analyzing a single SNP
at time but for each of the SNPs included in the object of class "setupSNP".

> WGstats(ans,dig=5)

$snp10004

[1] "Monomorphic"

$snp10007

[1] "Monomorphic"

$snp100010

[1] "Monomorphic"

$snp10002

n me se dif lower upper p-value AIC

Codominant

C/C 74 42876 2890.1 0.00 0.78525 3612.5

A/C 78 42740 2575.9 -135.77 -376.13 104.59

A/A 5 50262 6879.3 7385.64 6701.24 8070.05

Dominant

C/C 74 42876 2890.1 0.00 0.93292 3610.9

A/C-A/A 83 43193 2456.3 317.33 80.92 553.73

Recessive

C/C-A/C 152 42806 1924.1 0.00 0.48600 3610.5

A/A 5 50262 6879.3 7455.31 6784.29 8126.34

Overdominant

C/C 79 43343 2741.8 0.00 0.87267 3610.9

C/C-A/A 78 42740 2575.9 -603.22 -839.22 -367.21

log-Additive

0,1,2 996.48 784.59 1208.36 0.76807 3610.9

.....

$snp100024

n me se dif lower upper p-value AIC
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Codominant

T/T 91 46651 2338.8 0.0 0.0061525 3580.0

C/T 51 40730 3423.4 -5920.9 -6172.2 -5669.6

C/C 14 26373 5559.6 -20277.8 -20690.3 -19865.4

Dominant

T/T 91 46651 2338.8 0.0 0.0165390 3582.3

C/T-C/C 65 37638 3013.4 -9013.1 -9249.0 -8777.3

Recessive

T/T-C/T 142 44525 1946.1 0.0 0.0048407 3580.2

C/C 14 26373 5559.6 -18151.3 -18555.3 -17747.3

Overdominant

T/T 105 43948 2252.7 0.0 0.4231868 3587.4

T/T-C/C 51 40730 3423.4 -3217.2 -3469.1 -2965.3

log-Additive

0,1,2 -8554.0 -8729.4 -8378.5 0.0022318 3578.8

When the attribute whole is FALSE, the function plot gives a different plot from that
obtained in a whole genome analysis. Since we are normally interested in analyzing several
modes of inheritance at the sime time, the p values (in -log scale) are plotted for each genetic
model. Figure 7 shows the results in Table 1.

> plot(ans)
Warning: Any SNP is statistically significant after

Bonferroni Correction under codominant model
Warning: Any SNP is statistically significant after

Bonferroni Correction under dominant model
Warning: Any SNP is statistically significant after

Bonferroni Correction under recessive model
Warning: Any SNP is statistically significant after

Bonferroni Correction under overdominant model

Warnings showed after plotting an object of class WGassociation indicate how many
SNPs are statistically significant after Bonferroni correction.
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Figure 7: Results of WGassociation for the SNPs data set. The -log p values from likelihood
ratio test for each SNPs are showed for each genetic model. The horizontal dotted lines
indicate two different thresholds. One of them based on Bonferroni correction (red line),
and another one in the nominal p-value wich is set equal to 0.05 (pink line).
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3.2.1 Bonferroni correction

We may be interested in having these p values adjusted by the number of tests that we have
carried out. One simple way to address this problem is using Bonferroni correction. As an
example, let us obtain the SNPs that are statistically significant at 0.05 level after correcting
by the number of tests and assuming a codominant model.

> Bonferroni.sig(ans, model="log-add", alpha=0.05,
+ include.all.SNPs=FALSE)
number of tests: 21
alpha: 0.05
corrected alpha: 0.002380952

comments log-additive
snp10001 - 0.001143723
snp100024 - 0.002231790

In this case we have corrected using the number of test performed only in those SNPs
that are not monomorphic and in which the percentage of genotyping is greater than those
established in WGassocation function. The argument include.all.SNPs may be modified
in order to include all SNPs analyzed.

3.2.2 FDR correction

False Discovery Rate (FDR) is an approach to the multiple comparisons problem. Instead
of controlling the chance of any false positives (as Bonferroni do), FDR controls the ex-
pected proportion of false positives [Benjamini and Hochberg, 1995]. The R library qvalue
performs the FDR analysis. The only think it needs is a vector with the pvalues. These
may be easily obtained after executing WGassociation using the functions codominant,
dominant, recessive, overdominant or additive depending on the model we are in-
terested in analyzing. As an example, let us assume that we want to compute the FDR for
the SNPs in the HapMap example. The p values are saved in the object resHapMap, so they
may be obtained using:

>pvalAdd<-additive(resHapMap)

Notice that codominant(resHapMap) would not work since we only computed the log-
additive model for these data. Now we have to delete those SNPs that are monomorphic.
This can be done executing:

>pval<-pval[!is.na(pval)]

After that, the q-values can be calculated as follows:

>library(qvalue)
>qobj<-qvalue(pval)

Finally, if we are interested in knowing the FDR for a desired p-value (e.g. 0.001) we might
try:

> max(qobj$qvalues[qobj$pvalues <= 0.001])
[1] 0.0005786454

Other methods based on p values as implemented in R package multtest [Pollard et al, 2006]
could be used. As an example, we could use the following testing procedures based on per-
mutation adjusted p-values:

procs<-c("Bonferroni","Holm","Hochberg","SidakSS","SidakSD","BH","BY")
res2<-mt.rawp2adjp(rawp,procs)
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Then, the identity and number of rejected hypotheses for previous multiple testing proce-
dures and different nominal Type I error rates may easily obtained typing:

mt.reject(cbind(res$rawp,res$adjp),seq(0,0.1,0.001))$r
rawp Bonferroni Holm Hochberg SidakSS SidakSD BH BY

0 0 0 0 0 220 220 0 0
0.001 3343 1519 1538 1538 1519 1538 3100 2454
0.002 3550 1592 1651 1651 1595 1651 3324 2643
0.003 3732 1672 1706 1706 1672 1706 3488 2781
0.004 3786 1712 1783 1783 1713 1783 3543 2830
0.005 3846 1752 1812 1812 1752 1813 3612 2876
0.006 3894 1801 1832 1832 1801 1833 3736 2927
0.007 4011 1818 1856 1856 1818 1856 3765 3036
0.008 4047 1832 1874 1874 1833 1875 3802 3052
0.009 4081 1851 1888 1888 1852 1890 3833 3087
0.01 4122 1867 1931 1931 1868 1931 3855 3112
....

4 Analysis of multiple SNPs

4.1 Haplotype analysis

Library haplo.stats is specifically designed to deal with haplotype estimates. The haplo.glm
function performs a regression of a given trait (quantitative or not) on ambiguous haplotypes
using a general lineal model (glm). As the authors point out, the “critical” element of the
data frame to fit these models is the matrix of genotypes. Thus we have programmed a
function called make.geno that prepares the SNPs in the required format to be included in
the formula of haplo.glm function. A regression analysis may then be performed as follows.
Let us assume that we know that the tag SNPs are snp10001, snp100019 and snp100029.
We first prepare a model matrix with these genotypes to be analyzed in haplo.glm function
as follows:

> datSNP<-setupSNP(SNPs,6:40,sep="")
> tag.SNPs<-c("snp100019", "snp10001", "snp100029")
> geno<-make.geno(datSNP,tag.SNPs)

We must notice that the order of the SNPs is important and this is why we have writ-
ten tag.SNPs<-c("snp100019", "snp10001", "snp100029"). This information must be
known by the user. After that, we can easily estimate the effects of haplotypes using
haplo.glm function as follows:

> mod<-haplo.glm(log(protein)~geno,data=SNPs,
+ family=gaussian,
+ locus.label=tag.SNPs,
+ allele.lev=attributes(geno)$unique.alleles,
+ control = haplo.glm.control(haplo.freq.min=0.05))
> mod

Call:
haplo.glm(formula = log(protein) ~ geno,

family = gaussian, data = SNPs, locus.label = tag.SNPs,
allele.lev = attributes(geno)$unique.alleles,
control = haplo.glm.control(haplo.freq.min = 0.05))

Coefficients:
coef se t.stat pval
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(Intercept) 10.6880 0.0985 108.543 0.00e+00
geno.3 -0.3485 0.0859 -4.058 7.86e-05
geno.6 -0.0466 0.0994 -0.469 6.40e-01
geno.rare -0.2324 0.2429 -0.957 3.40e-01

Haplotypes:
snp100019 snp10001 snp100029 hap.freq

geno.3 G C A 0.2321
geno.6 G T G 0.2990
geno.rare * * * 0.0262
haplo.base C T G 0.4427

The method intervals have been designed to obtain the confidence intervals for an object
of class haplo.glm

> intervals(mod)
freq diff 95% C.I. P-val

CTG 0.4351 10.70 Reference haplotype
GCA 0.2366 -0.36 ( -0.53 - -0.19 ) 0.0000
GTG 0.3016 -0.05 ( -0.25 - 0.15 ) 0.6112

rare 0.0267 -0.24 ( -0.72 - 0.24 ) 0.3219

Other covariates may also be included in the model (adjusted analysis) as usual (e.g.
log(protein) geno + sex). When case-control study is performed, we need to change
family=gaussian by family=binomial when in haplo.glm is executed.

We can also perform and interaction analysis between haplotypes and a factor variable.
The function haplo.interaction calls both make.geno and haplo.glm functions to perform
the following analysis:

Haplotype using SNPs: snp100019 snp10001 snp100029 adjusted by:
Interaction

-------------------------
HapFreq Male (dif) lower upper Female (dif) lower upper

CTG 0.4427 0.00 NA NA -0.20 -0.58 0.18
GTG 0.2983 -0.16 -0.46 0.13 -0.10 -0.43 0.23
GCA 0.2313 -0.30 -0.53 -0.07 -0.62 -1.00 -0.25
rare 0.0278 0.00 -0.60 0.59 -0.96 -1.82 -0.10

p interaction: 0.1361707

sex within haplotype
-------------------------
$Male

diff lower upper
CTG 0.00 NA NA
GTG -0.16 -0.46 0.13
GCA -0.30 -0.53 -0.07
rare 0.00 -0.60 0.59

$Female
diff lower upper

CTG 0.00 NA NA
GTG 0.09 -0.17 0.35
GCA -0.42 -0.68 -0.17
rare -0.76 -1.58 0.05
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haplotype within sex
-------------------------
$CTG

diff lower upper
Male 0.0 NA NA
Female -0.2 -0.58 0.18

$GTG
diff lower upper

Male 0.00 NA NA
Female 0.06 -0.22 0.34

$GCA
diff lower upper

Male 0.00 NA NA
Female -0.32 -0.66 0.01

$rare
diff lower upper

Male 0.00 NA NA
Female -0.96 -1.96 0.04
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4.2 Gene-Gene interaction analysis

The last analysis we can perform with SNPassoc package is an interaction analysis between
SNPs. This analysis makes sense in the case of having SNPs from different genes or chro-
mosomes. This analysis may be done using interactionPval function. The command
is:

> ansCod<-interactionPval(log(protein)~sex, data=myData.o,
+ model="codominant")

The meaning of this instruction is the following. We are looking for interactions effects
of protein levels (in log scale) between the SNPs: snp10001, snp10002, . . . , snp100035
adjusted by sex. This function requires that a model of inheritance is specified. In this case
we assume a codominant model. The ansCod matrix may be printed. The upper part of the
matrix contains the p values for the interaction (epistasis) log-likelihood ratio (LRT) test.
The diagonal contains the p values from LRT for the crude effect of each SNP. Finally, the
lower triangle contains the p values from LRT comparing the two-SNP additive likelihood
to the best of the single-SNP models. This information may also be plotted using plot
function obtaining the plots showed in Figure 8.
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Figure 8: Interaction plots for each SNP using four genetic models. Each plot contains the
p values obtained from different likelihood ratio tests. Different colors indicates different
statistical significant levels. The diagonal contains the p values from likelihood ratio test
for the crude effect of each SNP. The upper triangle in matrix contains the p values for
the interaction (epistasis) log-likelihood ratio test. Finally, the lower triangle contains the p
values from LRT comparing the two-SNP additive likelihood to the best of the single-SNP
models.

31



5 Statistical Methods

5.1 Association between a single SNP and a trait

To study the association between a given SNP and a trait (function association, we may
consider a SNP as a categorical variable with one level for each possible genotype (codomi-
nant model). In such a situation, to assess the association between the phenotype Y (quan-
titative or binary) and a SNP, we apply a general linear model (glm):

Yi = α + βXi + εi, (1)

where α is the intercept, Xi is the ith subject’s genotype score for a given marker and εi

is distributed according to a normal with mean 0 and variance σ2. Under the additive
model, Xi indicates ith subjects’ number of minor alleles; under the dominant model, Xi

denotes, with coded values 1 and 0, whether the ith subject has at least one minor allele.
Similarly, under the recessive (or over-dominant) model, Xi is codified as 1 and 0 depending
on whether the ith subject has two minor alleles (or, in the over-dominant model, two
minor or two major alleles). Depending on Y ’s distribution (normal or binomial) the most
appropriate link function may be chosen. Confounded association is an important point
in genetic association studies [Cordell and Clayton, 2005]. In case we need to adjust the
model by confounders’ variables, the equation (1) may be easily extended just adding the
term, γZi, where Z denotes confounders’ variables. For each genetic model we compute
the odds ratios, exp(β), for dichotomous traits and mean differences for quantitative traits.
Confidence intervals are also computed using the variance estimated for each parameter.

5.2 Genetic model selection

To test the statistical significance of a given SNP, we compare the effect of the polymor-
phism with the null model (only including the intercept) using the likelihood ratio test,
LRT = 2(log Liknull − log Likother), where “other” makes reference to codominant, reces-
sive, dominant, overdominant or additive. In some occasions, when case-control studies
are analyzed, this test cannot be applied since there are no cases in a given cell. In that
case association functions compute the exact Fisher test instead of LRT. These p val-
ues are showed in the output after using the functions: association, WGassociation,
scanWGassociation.

When this test is not sensitive enough to discriminate between models, other criteria, like
the Akaike information (AIC), may be useful to choose the right model of inheritance. In
general, the most optimal is attributed to the model with the less AIC, AIC = −2 log Lik+2q,
where q denotes the number of parameters for the fitted model. The AIC is given in the
last column in the output for association function.

5.3 Analysis of multiple SNPs

5.3.1 Interaction between SNPs

The study of more than one SNP at the same time, and their interactions, may be easily
introduced in Equation 1. The interactionPval fuction calculates, for each pair of SNPs
(i,j): the likelihood underlying the null model Liknull (e.g. only with α), the likelihood
under each of the single-SNP, Liki and Likj , the likelihood under an additive SNP model
Likad(i,j), and the likelihood under a full SNP model (including SNP-SNP interaction),
Likfull(i,j). Here SNPassoc uses the object-oriented features of R (“classes and methods”)
to plot interaction analysis. If ans is an object of class SNPinteraction then plot(ans)
will generate a plot with the following information. The upper triangle in matrix from this
function contains the p values for the interaction (epistasis) log-likelihood ratio test, LRT,
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LRTij = −2(log Likfull(i,j) − log Likad(i,j)). The diagonal contains the p values from LRT
for the crude effect of each SNP, LRTii = −2(log Liki − log Liknull). The lower triangle
contains the p values from LRT comparing the two-SNP additive likelihood to the best of
the single-SNP models, LRTji = −2(log Likad(,j) − log max(Liki,Likj)).

5.3.2 Haplotype analysis

Haplotype analysis is performed calling functions from the haplo.stats package [Sinnwell and Schaid, 2005]
which implements the EM algorithm. The authors proposed a method to study haplotype
association that are applicable to either dichotomous or quantitative traits using generalized
linear models (see for further details [Schaid et al, 2002]). Our contribution has been to pro-
gram several functions and methods (i.e., make.geno or intervals) to deal with genotype
matrices (required by haplo.glm function). In addition, as in the case of SNPs, we may be
interested in assessing the effect of gene-environment interaction. Lake et al, 2003 extended
the method of Schaid et al, 2002 to tests and estimation of haplotype-environment interac-
tion. The association analysis of haplotypes is similar to that above described of genotypes
in that either logistic regression are shown as OR and 95% CI or linear regression results
with differences in mean effects and 95% CI (function haplo.interaction).

6 Computational issues

It is well known that association studies at a whole genome scale are a very time consuming
task due to the large amount of SNPs that are analyzed. Besides the statistical procedures,
there are also other steps we have to perform before further analyzing the data. The first
step is to import SNP data. This information is usually available in a text file. The simplest
way (most user-friendly) of importing such kind of data to R is using either read.table or
read.delim functions. The problem with using these functions is their computational cost.
Thus, we strongly recommend the user to employ scan function which is very much less
time demanding. Here you may see a possible way of importing genotype data to R. Let us
assume that HapMap.txt contains the genotype data and that the first row has the names
of SNPs.

n<-120 #number of rows without the header (e.g. number of individuals)

dat<-scan("HapMap.txt",list("character"),skip=1)

variables<-scan("HapMap2.txt",list("character"),n=1)

ncols<-length(dat[[1]])/n

temp<-matrix(dat[[1]],nrow=n,ncol=ncols,byrow=TRUE)

HapMap<-data.frame(temp, stringsAsFactors = FALSE)

dimnames(HapMap)[[2]]<-variables[[1]]

The second step is to prepare the data for being analyzed. That is, we need to indicate
which variables are SNPs. To do this, setupSNP function is used. Lastly, the statistical test
is carried out using either WGassociation or scanWGassociation functions. As it has been
indicated in this manual, the first one gives a summary of association tests (sample sizes, ORs
or mean differences, confidence intervals, likelihood ratio tests, and AIC), while the second
one is focused on computing the p values corresponding to the likelihood ratio test. Table
2 shows an estimated time cost of these procedures. As you may observe a whole genome
association study including close to 270,000 SNPs may be carried out in approximately 1
hour. We must indicate that associations are performed only in 10 minutes.
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CPU time

Study n SNPs action R function 1 model / 5 models

Quantitative trait 150 35 import data read.table 0.1sec

prepare data setupSNP 0.2sec

summary WGassociation 1.1sec / 3.6sec

compute p values scanWGassociation 0.2sec / 1.0sec

Case/control 110/47 35 summary WGassociation 1.2sec / 3.8sec

compute p values scanWGassociation 0.3sec / 1.4sec

interaction interactionPval 23sec / 1min 50sec

Case/control 369/341 138 import data read.table 0.3sec

prepare data setupSNP 1.2sec

summary WGassociation 2.6sec / 7.4sec

compute p values scanWGassociation 0.6sec / 3.1sec

interaction interactionPval 8min 20sec / 32min 30sec

Two groups 60/60 9,305 import data scan 2min 10sec

(HapMap) prepare data setupSNP 1min 15sec

summary WGassociation 13min 15sec / 1h 09min

compute p values scanWGassociation 1.9sec / 3.2sec

permutation test scanWGassociation 4min 50sec / -

Two groups 60/60 269,605 import data scan 6min 32sec

(HapMap) prepare data setupSNP 58min 13sec

summary WGassociation Not calculated

compute p values scanWGassociation 1min 42sec / 3min 38sec

permutation test scanWGassociation 3h 20min / -

Table 2: CPU time requirements for different procedures involved in a whole genome anal-
ysis. The analysis was carried out in a dual AMD-64 bit processor. The action summary
includes to compute odds ratios, their confidence intervals, p values and AIC.
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