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Introduction

Identifying susceptibility variants for common/complex
diseases has proven to be very difficult despite major advances
in high-density genome scans.

It is believed that most common disorders are influenced by
numerous variants, with each variant contributing a relatively
small effect (difficult to detect).

Linkage Analysis Methods: identify regions that related
affecteds share IBD in excess of what is expected under null
hypothesis of no linkage (poor power for complex diseases)

Alternatively association studies, also known as linkage
disequilibrium studies, can be used to identify susceptibility
variants.
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Introduction

Association mapping is now routinely being used to identify
loci that are involved with complex traits.

Technological advances have made it feasible to perform
case-control association studies on a genome-wide basis with
hundreds of thousands of markers in a single study.

We consider testing a genetic marker for association with a
disease in a sample of unrelated subjects.

Case-control association methods essentially test for
independence between trait and allele/genotype.
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Case-Control Association Testing

Allelic Association Tests

Allele is treated as the sampling unit
Typically make an assumption of Hardy-Weinberg equilibrium
(HWE). Alleles within an individual are conditionally
independent, given the trait value.

Genotypic Association Tests

Individual is the sampling unit
Does not assume HWE
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Case-Control Association Testing

Below is a simple example to illustrate association testing at a
genetic marker with two allelic types, A and a

Cases

AA Aa AA

AA AA Aa

Controls

Aa aa Aa

Aa Aa aa
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Pearson’s χ2 Test for Allelic Association

The classical Pearson’s χ2 test is often used for allelic
association testing.

This test looks for deviations from independence between the
trait and allele.

Consider a single marker with 2 allelic types (e.g., a SNP)
labeled “1” and “2”

Let Nca be the number of cases and Nco be the number of
controls with genotype data at the marker.
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Pearson’s χ2 Test for Allelic Association

Below is a 2×2 contingency table for trait and allelic type

Cases Controls Total

Allele 1 nca
1 nco

1 n1

Allele 2 nca
2 nco

2 n2

Total 2Nca 2Nco T

nca
1 is the number of type 1 alleles in the cases and nca

1 = 2 ×
the number of homozygous (1, 1) cases + the number of
heterozygous (1,2) cases

nco
2 is the number of type 2 alleles in the controls and nco

2 = 2
× the number of homozygous (2, 2) controls + the number of
heterozygous (1,2) controls

Hypotheses

H0: there is no association between the row variable and
column variable
Ha: there is an association between the two variables
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Pearson’s χ2 Test for Allelic Association

Can use Pearson’s χ2 test for independence. The statistic is:

X 2 =
∑

all cells

(Observed cell− Expected cell)2

Expected cell

What is the the expected cell number under H0? For each
cell, we have

Expected Cell Count =
row total × col total

total count

Under H0, the X 2 test statistic has an approximate χ2

distribution with (r − 1)(c − 1) = (2− 1)(2− 1) = 1 degree
of freedom
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LHON Example: Pearson’s χ2 Test

Leber Hereditary Optic Neuropathy (LHON) disease and
genotypes for marker rs6767450:

CC CT TT

Cases 6 8 75

Controls 10 66 163

Corresponding 2× 2 contingency table for trait and allelic type

Cases Controls Total

Allele T 158 392 550
Allele C 20 86 106

Total 178 478 656

Intuition for the test: Suppose H0 is true, allelic type and
case-control status are independent, then what counts would
we expect to observe?

Recall that under the independence assumption
P(A and B) = P(A)P(B)
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LHON Example: Pearson’s χ2 Test

Cases Controls Total

Allele T 158 392 550
Allele C 20 86 106

Total 178 478 656

Let n be the total number of alleles in the study. Assuming
independence, the expected number of case alleles that are of
type T is:

n × P(Allele is from a Case and Allelic type is T)

= nP(Allele is from a Case)P(Allelic type is T)

= 656

(
178

656

)(
550

656

)
=

(178)(550)

656
= 149.2378
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LHON Example: Pearson’s χ2 Test

Expected Counts

Cases Controls Total

Allele T 149.2378 400.7622 550
Allele C 28.7622 77.2378 106

Total 178 478 656

X 2 =
(158− 149.2378)2

149.2378
+ · · ·+ (86− 77.2378)2

77.2378
= 4.369

The p-value is

P(χ2
1 ≥ 4.369) = .037
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The Armitage Trend Test for Genotypic Association

The most common genotypic test for unrelated individuals is
the Armitage trend test

Consider a single marker with 2 allelic types (e.g., a SNP)
labeled “1” and “2”

Let Yi = 2 if individual i is homozygous (1,1), 1 if the i is
heterozygous, and 0 if i is homozygous (2,2)

Let Xi = 1 if i is a case and 0 if i is a control.

A simple linear regression model of

Y = β0 + β1X + ε

H0 : β1 = 0 vs. Ha : β1 6= 0
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The Armitage Trend for Genotypic Association

To test this hypothesis, the Armitage trend test statistic is

Ar =
β̂2

1

VAR(β̂1)
= Nr2

xy

where r2
xy is the squared correlation between genotype variable

Y and phenotype variable X .

Note that the variance estimate for Y that is used in the
calculation of the Armitage trend test is the sum of the
squared deviations of Y from the fitted values of Y for
regression with only an intercept term.

Under the null hypothesis, Ar will follow an approximate χ2

distribution with 1 degree of freedom.

The Armitage trend test can be shown to be valid when HWE
does not hold.
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LHON Example: Armitage Trend Test

Leber Hereditary Optic Neuropathy (LHON) disease and
genotypes for marker rs6767450:

CC CT TT

Cases 6 8 75

Controls 10 66 163

The Armitage test statistic for this data is

Ar = Nr2
xy = 328(.0114) = 3.74

The p-value is

P(χ2
1 ≥ 3.743) = .053
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Odds Ratios (ORs) Allele Counting

Cases Controls

T A B

C C D

ORT =
odds of disease with T allele

odds of disease with C allele

=
(A/B)

(C/D)
=

A× D

B × C

Allele counting model essentially assumes an additive model

Genotype TT has twice the risk (or protection) of
heterozygous genotype CT .

Same risk (or protection) for the comparison of heterozygous
CT genotype and homozygous CC genotype.
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Odds Ratios (ORs) Allele Counting

Cases Controls

T A B

C C D

ORT = 1 implies no association between genotype and disease

ORT > 1 implies that the T allele is associated with the
disease

ORT < 1 implies that the T allele is protective
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Confidence Intervals for Odds Ratios (ORs)

Cases Controls

T A B

C C D

OR =
A× D

B × C

s.e.(log(OR)) =

√
1

A
+

1

B
+

1

C
+

1

D

Lower limit of 95% CI

= exp(log(OR)− 1.96× s.e.(log(OR)))

Upper limit of 95% CI

= exp(log(OR) + 1.96× s.e.(log(OR)))
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Confidence Intervals for Odds Ratios (ORs)

rs6767450 Cases Controls

T 158 392

C 20 86

OR =
A× D

B × C

s.e.(log(OR)) =

√
1

A
+

1

B
+

1

C
+

1

D

Lower limit of 95% CI

= exp(log(OR)− 1.96× s.e.(log(OR)))

Upper limit of 95% CI

= exp(log(OR) + 1.96× s.e.(log(OR)))
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LHON Example: Confidence Intervals for Odds
Ratios (ORs)

rs6767450 Cases Controls

T 158 392

C 20 86

OR =
158× 86

392× 20
= 1.7332

s.e.(log(OR)) =

√
1

158
+

1

392
+

1

20
+

1

86

Lower limit of 95% CI

= exp(log(OR)− 1.96× s.e.(log(OR)))

= exp(log(1.7332)− 1.96× 0.2665) = 1.03

Upper limit of 95% CI = 2.92
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Odds Ratios (ORs) for Genotypes

Cases Controls

TT A B

CT A′ B ′

CC C D

Typically choose a reference genotype. For this example we
will let CC be the reference genotype.

ORTT =
odds of disease in an individual with the TT genotype

odds of disease in an individual with the CC genotype

ORCT =
odds of disease in an individual with the CT genotype

odds of disease in an individual with the CC genotype
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Odds Ratios (ORs) for Genotypes

To get odds ratios and confidence intervals for genotypes,
logistic regression is used:

log(odds of disease for individual i)

= β0 + βCT I{Gi = CT}+ βTT I{Gi = TT}+ εi

where Gi is the genotype for individual i , and I{Gi = CT} is 1
if Gi = CT and 0 otherwise.

The coefficient estimates for β̂CT and β̂TT can be used to
calculate odds ratios:

ORCT = exp(β̂CT )

ORTT = exp(β̂TT )

95% CI for ORCT is

exp(β̂CT ± 1.96× s.e.(β̂CT ))

Odds Ratios: Genetic Association



Odds Ratios (ORs) for Genotypes: LHON Example

Leber Hereditary Optic Neuropathy (LHON) disease and
genotypes for marker rs6767450:

CC CT TT

Cases 6 8 75

Controls 10 66 163

Odds Ratios: Genetic Association
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Incomplete Genealogy

Many statistical methods for genetic data, e.g. linkage and
association methods, are based on assumptions of
independent samples or samples with known relationships.
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Incomplete Genealogy

Misspecified and cryptic relationships can invalidate many of
these methods.
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Identifying Relative Pairs

A chromosome inherited by an offspring from a parent is
actually a mosaic (created by recombination) of the parent’s
two chromosomes.
In the picture below, positions on the chromosomes that are
the same color are identical by decent (IBD).
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Identifying Relative Pairs

In principle, could determine the relationship between two
individuals by simply looking at the percentage of IBD sharing
in the genome for the two

parent-offspring sharing: 50% of genome
sibs: 50% of genome (on average)
avuncular: 25% of genome (on average)

However, we do not directly observe IBD sharing. We only
observe DNA sequences.
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Genome Screen Data to Identify Relative Pairs

It is now common to have genome screen data on hundreds of
thousands of genetic markers.

Genome screen data can be used to infer genealogical
relationships.

Example: Suppose we are interested in identifying the
relationship between two individuals and assume for now that
haplotype phase is known.

Observed sequence on a chromosome from individual 1:
...TATACGTGCACCTGGATTACAGATTACAGATTACAGATTACATTGCATCGATCGAA...

Observed sequence on a chromosome from from individual 2:
...GGATCCTGAACCTAGATTACAGATTACAGATTACAGATTACAATGCTTCGATGGAC...

If haplotype phase is known, blocks of identical DNA
sequences can be used to infer relationships.
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Genome Screen Data to Identify Relative Pairs

Stanley F Nelson (UCLA Department of Human Genetics):
IBD sharing between relatives: rapid drop in number of blocks
yet size drops asymptotically:

1st cousins: n=20-30, average size∼20-30mb
2nd cousins: n=5-8, average size∼20mb
3rd cousins: n=1-3, average size ∼18mb
4th cousin: n=0-1, average size ∼16mb
5th cousins: n=0-1, average size ∼14mb
6th cousins: n=0-1, average size∼12mb
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Hidden Markov Model for Identifying Relative Pairs

McPeek and Sun (2000) developed approximate likelihood
method to identify relative pairs for close relationships

Stankovich et al. (2005) extended method for more distantly
related pairs (degree 13: 6th cousin). Software is GBIRP

Uses a 2-state Hidden Markov model for IBD status (yes/no)
to approximate the likelihood

Likelihood is a function of the distance between genetic
markers, frequency of alleles between the markers, and
relationship of individuals
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Hidden Markov Model for Identifying Relative Pairs

Find pairwise relationship that maximizes the log likelihood
ratio for the observed genome screen data (g1, g2) over
various types of relationships (up to 6th cousins)

log
P(g1, g2|related)

P(g1, g2|unrelated)

High power to identify relationships up to degree eight (third
cousins once removed)

Typical error in degree for relationship 6 eight is 1
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GBIRP Results for Known Relationships

Table: GBIRP MS Pairs

ID1 ID2 Truth Estimate
20001 30001 2 2
23908 24501 3 3
5809 3701 3 3
45101 45201 4 4
6807 9603 5 6
4801 3701 5 5
8201 42204 5 6
7202 7804 5 7
31001 7603 6 6
4801 5809 6 6
6802 21006 6 6
30602 20503 7 7
30603 9803 7 7
133505 30103 7 9
32204 1303 8 7
33404 4204 8 8
23804 1303 8 8
30501 7037 9 9
2901 602 9 ∅
6202 602 9 ∅
8003 1704 10 ∅
4902 42204 10 ∅
20503 1203 11 9
24001 32801 11 12
30501 7902 13 ∅
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IBD Sharing Probabilities

IBD sharing probabilities are another measure of relatedness
for pairs of individuals

For any pair of outbred individuals i and j , let δk be the
probability that i and j share k alleles IBD at a locus where k
is 0, 1, or 2.

IBD Sharing Probabilites for Outbreds
Relationship δ2 δ1 δ0
Parent-Offspring 0 1 0
Full Siblings 1

4
1
2

1
4

Half Siblings 0 1
2

1
2

Uncle-Nephew 0 1
2

1
2

First Cousins 0 1
4

3
4

Double First Cousins 1
16

6
16

9
16

Second Cousins 0 1
16

15
16

Unrelated 0 0 1

Note that
∑2

k=0 δk = 1
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Estimating IBD Sharing Probabilities: EM Algorithm

It is often not be possible to determine exactly how many
alleles a pair share IBD.

Can estimate IBD sharing probabiliting wsing genetic marker
data across the genome.

Choi, Wijsman, and Weir (2009) proposed using an EM
algorithm to estimate the IBD probabilities for this problem.
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Estimating IBD Sharing Probabilities: EM Algorithm

Suppose the data consists of N genetic markers accross the
genome

Assume for now that at we observe IBD sharing at each
marker for individuals i and j in the sample

Let Xk be the number of markers for which i and j share k
alleles IBD, and let let δk be the probability that i and j share
k alleles IBD at a merek where k is 0, 1, or 2..

If the IBD sharing process at the markers is observed, what
would the likelihood function be?
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Estimating IBD Sharing Probabilities: EM Algorithm

The likelihood function for the IBD sharing process would
have the following multinomial distribution

L(X0,X1,X2) =
N!

X0!X1!X2!
δX0
0 δX1

1 δX2
2

where Xk =
∑N

r=1 I { i and j share k alleles IBD at marker r}
Could estimate the δk ’s using the Xk ’s, which are the
sufficient statistics: The MLE is δ̂k = Xk

N for k = 0, 1, 2.

The IBD process, however is not observed.

What is the complete data and what is the observed data?
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Expectation Step of EM Algorithm

The Xk values are the unobserved complete data.

The observed data is the genotype data for individuals i and j
at the N markers, and the Xk values are the missing data

The E step of the EM algorithm calculates the expected value
of Xk conditioned on the observed genotype data.

Remember that initial values for the δk ’s need to be given for
the EM algorithm.

Let δ0 = (δ00 , δ
0
1 , δ

0
2) be the initial values.

Let G = (G1, . . .Gr , . . .GN), where Gr = (Gir ,Gjr ) is the
genotype data at marker r for i and j .

Estimating Relatedness



Expectation Step of EM Algorithm

X2 =
∑N

r=1 I { i and j share 2 alleles IBD at marker r}
E
[
X2|G, δ0

]
=

N∑
r=1

E
[
I { i and j share 2 alleles IBD at marker r} |G, δ0

]

=
N∑

r=1

E
[
I { i and j share 2 alleles IBD at marker r} |Gr , δ

0
]

=
N∑

r=1

P
(

i and j share 2 alleles IBD at marker r |Gr , δ
0
)

=
N∑

r=1

P
(

i and j share 2 alleles IBD at marker r ,Gr |δ0
)

P (Gr |δ0)
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Expectation Step of EM Algorithm

The numerator of the summand is
P
(

i and j share 2 alleles IBD at marker r ,Gr |δ0
)

= P
(
Gr | i and j share 2 alleles IBD at marker r , δ0

)
×

P
(

i and j share 2 alleles IBD at marker r |δ0
)

= P
(
Gr | i and j share 2 alleles IBD at marker r , δ0

)
δ02

P (Gr | i and j share 2 alleles IBD at marker r) will be based
on the population allele frequency distribution at marker r .
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Expectation Step of EM Algorithm

For simplicity, assume that marker r is a SNP with the 2
allelic types labeled “0” and “1’”

Let pr be the frequency of allelic type 1 in the population at
marker k, where 0 < pr < 1.

If the genotype of i is (1,1) and the genotype of j is (1,1) at
marker r , then
P (Gr | i and j share 2 alleles IBD at marker r) = p2

r (if HWE
is assumed).

What is the probability if the genotype of i is (1,2) and the
genotype of j is (2,2) at marker r?

What is the probability if the genotype of i is (1,2) and the
genotype of j is (1,2) at marker r?
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Expectation Step of EM Algorithm

From these probabilities, we can obtain E
[
X2|G, δ0

]
=

N∑
r=1

P
(

i and j share 2 alleles IBD at marker r ,Gr |δ0
)

P (Gr |δ0)

Can similarly obtain E
[
X1|G, δ0

]
and E

[
X0|G, δ0

]
, where

X1 =
N∑

r=1

I { i and j share 1 alleles IBD at marker r}

and

X0 =
N∑

r=1

I { i and j share 0 alleles IBD at marker r}
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Maximization Step of EM Algorithm

The M step involves maximizing the expected value of the
log-likelihood (obtained in the E step) with respect to the δk
parameters.

The MLE is:

δ̂0 =
E[X0|G,δ0]

E [X0|G,δ0]+E [X1|G,δ0]+E [X2|G,δ0]

δ̂1 =
E[X1|G,δ0]

E [X0|G,δ0]+E [X1|G,δ0]+E [X2|G,δ0]

δ̂2 =
E[X2|G,δ0]

E [X0|G,δ0]+E [X1|G,δ0]+E [X2|G,δ0]

The next step is to set δ1 = δ̂ and then return to the E step
of the algorithm.

Continue iterating between the E and M step until the δ̂i

values converge.
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Estimating Kinship Coefficients

Kinship coefficients can also be used to quantify relationships
between two individuals.

Table: Kinship Coefficients

Relationship φ

Parent-Offspring 1/4
Full Siblings 1/4
Half Siblings 1/8
Uncle-nephew 1/8
First Cousins 1/16
Double First Cousins 1/8
Second Cousins 1/64
unrelated 0

Note that φ = 1
2δ2 + 1

4δ1
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Estimating Kinship Coefficients

Thornton and McPeek (submitted) propose a method to
estimate kinship coefficients using genetic marker data

Consider once again a marker r with 2 allelic types labeled
“0” and “1”

Let pr be the frequency of allelic type 1, where 0 < pr < 1.

Consider two individuals i and j . For individual i , let Yir = 1
2

× (the number of alleles of type 1 in individual i at marker r).
So the value of Yir is 0, 1

2 , or 1. Similarly define Yjr for
individual j .

It can be shown that Cov(Yir ,Yjr ) = pr (1− pr )φij , where φij

is the kinship coefficient for i and j .

Rearrange terms to see that φij =
Cov(Yir ,Yjr )

pr (1−pr )
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Estimating Kinship Coefficients

This relationship will hold for markers across the genome (with
the allele frequency distribution changing for each marker).

Can use data across the genome to estimate kinship
coefficients for pairs of individuals

Let N be the total number of markers in the data.

For any pair of individuals i and j , can estimate φij with

φ̂ij =
1

N

N∑
r=1

(Yir − p̂r )(Yjr − p̂r )

p̂r (1− p̂r )

where p̂r is an allele frequency estimate for the type 1 allele at
marker r
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Estimating Kinships Using GAW 14 COGA Data

The Collaborative Study of the Genetics of Alcoholism
(COGA) provided genome screen data for locating regions on
the genome that influence susceptibility to alcoholism.

There were a total of 1,009 individuals from 143 pedigrees
with each pedigree containing at least 3 affected individuals.
Individuals labeled as white, non-Hispanic were considered.

10K SNP array (10,081 SNPs) on 22 autosomal chromosomes

Estimated kinship coefficients using genome-screen data
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Estimating Kinships Using COGA Data

Hist w/ True Kinship = .25

Estimated Kinship Coefficient
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Estimating Kinships Using COGA Data

From the given pedigrees, two pairs of individuals that should
have a kinship coefficient of .25 appear to be unrelated
(estimated kinship coefficients of -0.006 and -0.003,
respectively)

Two pairs of individuals that should have a kinship coefficient
of .125 appear to be unrelated (estimated kinship coefficients
of -0.003 and 0.002, respectively)

9 pairs of ”unrelated” individuals have a kinship coefficient
around .125

2 pairs of ”unrelated” individual have a kinship coefficient
around .25

Estimating Relatedness
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Nonrandom Mating

HWE assumes that mating is random in the population

Most natural populations deviate in some way from random
mating

There are various ways in which a species might deviate from
random mating

We will focus on the two most common departures from
random mating:

inbreeding
population subdivision or substructure

Population Structure



Nonrandom Mating: Inbreeding

Inbreeding occurs when individuals are more likely to mate
with relatives than with randomly chosen individuals in the
population

Increases the probability that offspring are homozygous, and
as a result the number of homozygous individuals at genetic
markers in a population is increased

Increase in homozygosity can lead to lower fitness in some
species

Increase in homozygosity can have a detrimental effect: For
some species the decrease in fitness is dramatic with complete
infertility or inviability after only a few generations of
brother-sister mating
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Nonrandom Mating: Population Subdivision

For subdivided populations, individuals will appear to be
inbred due to more homozygotes than expected under the
assumption of random mating.

Wahlund Effect: Reduction in observed heterozygosity
(increased homozygosity) because of pooling discrete
subpopulations with different allele frequencies that do not
interbreed as a single randomly mating unit.
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Wright’s F Statistics

Sewall Wright invented a set of measures called F statistics
for departures from HWE for subdivided populations.

F stands for fixation index, where fixation being increased
homozygosity

FIS is also known as the inbreeding coefficient.

The correlation of uniting gametes relative to gametes drawn
at random from within a subpopulation (Individual within the
Subpopulation)

FST is a measure of population substructure and is most
useful for examining the overall genetic divergence among
subpopulations

Is defined as the correlation of gametes within subpopulations
relative to gametes drawn at random from the entire
population (Subpopulation within the Total population).
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Wright’s F Statistics

FIT is not often used. It is the overall inbreeding coefficient of
an individual relative to the total population (Individual within
the Total population).
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Genotype Frequencies for Inbred Individuals

Consider a bi-allelic genetic marker with alleles A and a. Let p
be the frequency of allele A and q = 1− p the frequency of
allele a in the population.

Consider an individual with inbreeding coefficient F . What are
the genotype frequencies for this individual at the marker?

Genotype AA Aa aa

Frequency
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Generalized Hardy-Weinberg Deviations

The table below gives genotype frequencies at a marker for
when the HWE assumption does not hold:

Genotype AA Aa aa

Frequency p2(1− F ) + pF 2pq(1− F ) q2(1− F ) + qF

where q = 1− p

The F parameter describes the deviation of the genotype
frequencies from the HWE frequencies.

When F = 0, the genotype frequencies are in HWE.

The parameters p and F are sufficient to describe genotype
frequencies at a single locus with two alleles.
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Fst for Subpopulations

Example in Gillespie (2004)

Consider a population with two equal sized subpopulations.
Assume that there is random mating within each
subpoulation.

Let p1 = 1
4 and p2 = 3

4

Below is a table with genotype frequencies

Genotype A AA Aa aa

Freq. Subpop1
1
4

1
16

3
8

9
16

Freq. Subpop2
3
4

9
16

3
8

1
16

Are the subpopulations in HWE?

What are the genotype frequencies for the entire population?

What should the genotypic frequencies be if the population is
in HWE at the marker?
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Fst for Subpopulations

From the table below it is clear that there are too many
homozygotes in this population.

Genotype A AA Aa aa

Freq. Subpop1
1
4

1
16

3
8

9
16

Freq. Subpop2
3
4

9
16

3
8

1
16

Freq. Population 1
2

5
16

3
8

5
16

Hardy-Weinberg Frequencies 1
2

1
4

1
2

1
4

To determine a measure of the excess in homozygosity from
what we would expect under HWE, solve

2pq(1− FST ) =
3

8

What is Fst?
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Fst for Subpopulations

The excess homozygosity requires that FST = 1
4

For the previous example the allele frequency distribution for
the two subpopulations is given.

At the population level, it is often difficult to determine
whether excess homozygosity in a population is due to
inbreeding, to subpopulations, or other causes.

European populations with relatively subtle population
structure typically have an Fst value around .01 (e.g., ancestry
from northwest and southeast Europe),

Fst values that range from 0.1 to 0.3 have been observed for
the most divergent populations (Cavalli-Sforza et al. 1994).
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Fst for Subpopulations

Fst can be generalized to populations with an arbitrary
number of subpopulations.

The idea is to find an expression for Fst in terms of the allele
frequencies in the subpopulations and the relative sizes of the
subpopulations.

Consider a single population and let r be the number of
subpopulations.

Let p be the frequency of the A allele in the population, and
let pi be the frequency of A in subpopulation i , where
i = 1, . . . , r

Fst is often defined as Fst =
σ2

p

p(1−p) , where σ2
p is the variance

of the pi ’s with E (pi ) = p.
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Fst for Subpopulations

Let the relative contribution of subpopulation i be ci , where
r∑

i=1

ci = 1.

Genotype AA Aa aa

Freq. Subpopi p2
i 2piqi q2

i

Freq. Population
∑r

i=1 cip
2
i

∑r
i=1 ci2piqi

∑r
i=1 ciq

2
i

where qi = 1− pi

In the population, we want to find the value Fst such that
2pq(1− Fst) =

∑r
i=1 ci2piqi

Rearranging terms:

Fst =
2pq −

∑r
i=1 ci2piqi

2pq

Now 2pq = 1− p2 − q2 and∑r
i=1 ci2piqi = 1−

∑r
i=1 ci (p

2
i + q2

i )
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Fst for Subpopulations

So can show that

Fst =

∑r
i=1 ci (p

2
i + q2

i )− p2 − q2

2pq

=

[∑r
i=1 cip

2
i − p2

]
+
[∑r

i=1 ciq
2
i − q2

]
2pq

=
Var(pi ) + Var(qi )

2pq

=
2Var(pi )

2p(1− p)

=
Var(pi )

p(1− p)

=
σ2

p

p(1− p)
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Estimating Fst

Let n be the total number of sampled individuals from the
population and let ni be the number of sampled individuals
from subpopulation i

Let p̂i be the allele frequency estimate of the A allele for the
sample from subpopulation i

Let p̂ =
∑

i
ni
n p̂i

A simple Fst estimate is F̂ST1 = s2

p̂(1−p̂) , where s2 is the
sample variance of the p̂i ’s.
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Estimating Fst

Weir and Cockerman (1984) developed an estimate based on
the method of moments.

MSA =
1

r − 1

r∑
i=1

ni (p̂i − p̂)2

MSW =
1∑

i (ni − 1)

r∑
i=1

ni p̂i (1− p̂i )

Their estimate is

F̂ST2 =
MSA−MSW

MSA + (nc − 1)MSW

where nc =
∑

i ni −
∑

i n
2
i∑

i ni
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GAW 14 COGA Data

The Collaborative Study of the Genetics of Alcoholism
(COGA) provided genome screen data for locating regions on
the genome that influence susceptibility to alcoholism.

There were a total of 1,009 individuals from 143 pedigrees
with each pedigree containing at least 3 affected individuals.

Individuals labeled as white, non-Hispanic were considered.

Estimated self-kinship and inbreeding coefficients using
genome-screen data
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COGA Data

Histogram for Estimated Self−Kinship Values

Estimated Self Kinship Coefficient
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y
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Historgram for Estimated Inbreeding Coefficients

Estimated Inbreeding Coefficient
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Association Testing with Cryptic Population
Structure
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Family Based Association Tests

The popularity of family-based association tests, such as the
TDT and FBAT, are largely due to fact that they are robust
to population heterogeneity

Can be used to protect against potential problems of unknown
population substructure.

What are some of the limitations of family based designs?

Family-based tests are generally less powerful than
case-control association methods
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Case-Control Association Testing Review

Consider testing for association between a disease and a
genetic marker
Idea is to look for an association by comparing allele/genotype
frequencies between the cases (affected individuals) and the
controls (unaffected individuals).

Cases

AA Aa AA

AA AA Aa

Controls

Aa aa Aa

Aa Aa aa
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Population Structure and Association Testing

The observations in genome-wide case-control association
studies can have several sources of dependence.

Population structure, the presence of subgroups in the
population with ancestry differences, is a major concern for
association studies

Population structure is often cryptic.

Neglecting such structure in the data can lead to seriously
spurious associations.
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Balding-Nichols Model

A model that is often used for population structure is the
Balding-Nichols model (Balding and Nichols, 1995).

Consider unrelated outbred individuals that are sampled from
a population with K subpopulations.

Assume that an individual can be a member of only one
subpopulation, i.e., there is no admixture.

Under the Balding-Nichols model, the allele frequency for
each subpopulation, 1, 2, . . . ,K , is a random draw from a
beta distribution with parameters p(1− Fst)/Fst and
(1− p)(1− Fst)/Fst , where 0 < p < 1

The parameter p can be viewed as the ancestral allele
frequency and Fst can be viewed as Wright’s standardized
measure of variation in the population
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Balding-Nichols Model: Covariance Structure

Consider a single bi-allelic marker (e.g. a SNP) with allele
labels “0” and “1”

Let N be the number of sampled individuals with genotype
data at the marker.

Let Y = (Y1, . . .YN) where Yi =the number of alleles of type
1 in individual i , so the value of Yi is 0, 1, or 2.

Under the Balding-Nichols model:

Individual i has inbreeding coefficient equal to Fst

If individuals i and j are are both from the same subpopulation
then Corr(Yi ,Yj) = Fst

If i and j are from different subpopulations then
Corr(Yi ,Yj) = 0

Fst , the number of subpopulations K , and the subpopulation
memberships for the sample individuals will be unknown when
there is cryptic population structure.
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If there is no structure then the covariance matrix of Y will be a
function of the identity matrix:

I =


1 0 . . . 0
0 1 . . . 0
... . . . . . .

...
0 0 . . . 1

 ,

If there is structure then the covariance matrix of Y will be a
function of :

Σ =


1 + Fst Fst . . . 0

Fst 1 + Fst . . . 0
... . . . . . .

...
0 0 . . . 1 + Fst

 ,
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Methods for Population Structure

There are three general approaches that have been proposed
to correct for cryptic population structure in case-control

Genomic Control

Principal Components Analysis

Structured Association
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Observations from a Single Population: The
Armitage Trend Test

We previously introduced the Armitage Trend Test.

It is the most common genotypic test for unrelated individuals

Consider a single marker with 2 allelic types (e.g., a SNP)
labeled “1” and “2”

Let Yi = 2 if individual i is homozygous (1,1), 1 if the i is
heterozygous, and 0 if i is homozygous (2,2)

Let Xi = 1 if i is a case and 0 if i is a control.

A simple linear regression model of

Y = β0 + β1X + ε

H0 : β1 = 0 vs. Ha : β1 6= 0
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The Armitage Trend for Genotypic Association

To test this hypothesis, the Armitage trend test statistic is

Ar =
β̂2

1

VAR(β̂1)
= Nr2

xy

where r2
xy is the squared correlation between genotype variable

Y and phenotype variable X .

Under the null hypothesis, Ar will follow an approximate χ2

distribution with 1 degree of freedom.
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Genomic Control

Devlin and Roeder (1999) proposed correcting for
substructure via a method called ”genomic control.”

The idea is to use data across the genome to correct for
cryptic structure

Let N be the number of individuals in the study.

Let X = (X1, . . .XN) be a phenotype indicator vector for case
control status where Xi = 1 if i is a case and Xi = 0 if i is a
control

Let M be the number of bi-allelic markers (e.g. SNPs) in the
data. Consider a marker s, where 1 6 s 6 M, and let
Ys = (Y1s , . . .YNs ) where Yis =the number of alleles of type 1
in individual i at marker s.
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Genomic Control

For each marker s, the Armitage trend statistic is calculated

Ars = Nr2
XYs

where r2
XYs

is the squared correlation between the genotype
variable Ys for marker s and the binary phenotype variable X.

If there is no population structure, the distribution of Ars will
approximately follow a χ2 distribution with 1 degree of
freedom.

If there is population structure, the statistic will deviate from
a χ2

1 distribution due to an inflated variance.
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Genomic Control

Use λ =
median(Ar1 ,...,Ars ,...ArM

)

.456 as a correction factor for cryptic
structure, where .456 is the median of a χ2

1 distribution.

λ will be ≈ 1 if there is no population structure. λ > 1
indicates that there is population structure.

The uniform inflation factor λ is then applied to the Armitage
trend statistic values

Ãrs =
Ars

λ

Ãrs will approximately follow a χ2 distribution with 1 degree
of freedom.

For the Armitage statistic, the variance is calculated assuming
individuals are unrelated (calculation based on the identity
matrix).

Genomic control inflates this variance to account for the
cryptic structure (unknown Fst values)
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Principal Components Analysis

Price et al. (2006) proposed corrected for structure in
association studies by using principal components analysis
(PCA)

They developed a method called EIGENSTRAT for
association testing in structured populations.

If there is cryptic structure then the covariance matrix of Y
will be an unknown:

Σ =


1 + Fst Fst . . . 0

Fst 1 + Fst . . . 0
... . . . . . .

...
0 0 . . . 1 + Fst

 ,
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EIGENSTRAT

They propose estimating Σ by an empirical covariance matrix
Σ̂ with components Σ̂ij :

Σ̂ij =
1

M

M∑
s=1

(Yis − 2p̂s)(Yjs − 2p̂s)

p̂s(1− p̂s)

where p̂s is an allele frequency estimate for the type 1 allele at
marker s

Principal components (eigenvectors) for Σ̂ are obtained.

For each eigenvector, and individual in the sample has a value

The top principal components are viewed as continuous axes
of variation that reflect subpopulation genetic variation in the
sample.

Individuals with ”similar” values for a particular top principal
component will have ”similar” ancestry for that axes.
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EIGENSTRAT

The top principal components (highest eigenvalues) are used
as covariates in a multi-linear regression.

Ys = β0 + β1X + β2PC1 + β3PC2 + β4PC3 + · · ·+ ε

H0 : β1 = 0 vs. Ha : β1 6= 0
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