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Allele Frequencies and Genotype Frequencies

How do allele frequencies relate to genotype frequencies in a
population?

If we have genotype frequencies, we can easily get allele
frequencies.
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Example

Cystic Fibrosis is caused by a recessive allele. The locus for the
allele is in region 7q31. Of 10,000 Caucasian births, 5 were found
to have Cystic Fibrosis and 442 were found to be heterozygous
carriers of the mutation that causes the disease. Denote the Cystic
Fibrosis allele with cf and the normal allele with N. Based on this
sample, how can we estimate the allele frequencies in the
population?

We can estimate the genotype frequencies in the population
based on this sample

5
10000 are cf , cf
442

10000 are N, cf
9553
10000 are N, N
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Example

So we use 0.0005, 0.0442, and 0.9553 as our estimates of the
genotype frequencies in the population. The only assumption we
have used is that the sample is a random sample. Starting with
these genotype frequencies, we can estimate the allele frequencies
without making any further assumptions: Out of 20,000 alleles in
the sample

442+10
20000 = .0226 are cf

1− 442+10
20000 = .9774 are N
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Hardy-Weinberg Equilibrium

In contrast, going from allele frequencies to genotype frequencies
requires more assumptions.

HWE Model Assumptions

infinite population

discrete generations

random mating

no selection

no migration in or out of population

no mutation

equal initial genotype frequencies in the two sexes
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Hardy-Weinberg Equilibrium

Consider a locus with two alleles: A and a

Assume in the first generation the alleles are not in HWE and
the genotype frequency distribution is as follows:

1st Generation
Genotype Frequency

AA u
Aa v
aa w

where u + v + w = 1

From the genotype frequencies, we can easily obtain allele
frequencies:

P(A) = u +
1

2
v

P(a) = w +
1

2
v
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Hardy-Weinberg Equilibrium

In the first generation: P(A) = u + 1
2v and P(a) = w + 1

2v

2nd Generation

Mating Type Mating Frequency Expected Progeny
AA× AA u2 AA
AA× Aa 2uv 1

2 AA : 1
2 Aa

AA× aa 2uw Aa
Aa× Aa v2 1

4 AA : 1
2 Aa : 1

4 aa
Aa× aa 2vw 1

2 Aa : 1
2 aa

aa× aa w2 aa

∗ Check: u2 + 2uv + 2uw + v2 + 2vw + w2 = (u + v + w)2 = 1

p ≡ P(AA) = u2 + 1
2(2uv) + 1

4v2 =
(
u + 1

2v
)2

q ≡ P(Aa) = uv + 2uw + 1
2v2 + vw = 2

(
u + 1

2v
) (

1
2v + w

)
r ≡ P(aa) = 1

4v2 + 1
2(2vw) + w2 =

(
w + 1

2v
)2
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Hardy-Weinberg Equilibrium

In the third generation:

P(AA) =

(
p +

1

2
q

)2

=

((
u +

1

2
v

)2

+

(
1

2

)
2

(
u +

1

2
v

)(
1

2
v + w

))2

=

((
u +

1

2
v

)[(
u +

1

2
v

)
+

(
1

2
v + w

)])2

=

((
u +

1

2
v

)
[(u + v + w)]

)2

=

((
u +

1

2
v

)
1

)2

=

((
u +

1

2
v

))2

= p

Similarly, P(Aa) = q and P(aa) = r for generation 3

Equilibrium is reached after one generation of mating under
the Hardy-Weinberg assumptions! Genotype frequencies
remain the same from generation to generation.
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Hardy-Weinberg Equilibrium

When a population is in Hardy-Weinberg equilibrium, the alleles
that comprise a genotype can be thought of as having been chosen
at random from the alleles in a population. We have the following
relationship between genotype frequencies and allele frequencies for
a population in Hardy-Weinberg equilibrium:

P(AA) = P(A)P(A)

P(Aa) = 2P(A)P(a)

P(aa) = P(a)P(a)
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Hardy-Weinberg Equilibrium

For example, consider a diallelic locus with alleles A and B with
frequencies 0.85 and 0.15, respectively. If the locus is in HWE,
then the genotype frequencies are:

P(AA) = 0.85 ∗ 0.85 = 0.7225

P(AB) = 0.85 ∗ 0.15 + 0.15 ∗ 0.85 = 0.2550

P(BB) = 0.15 ∗ 0.15 = 0.0225
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Hardy-Weinberg Equilibrium Example

Establishing the genetics of the ABO blood group system was one
of the first breakthroughs in Mendelian genetics. The locus
corresponding to the ABO blood group has three alleles, A, B and
O and is located on chromosome 9q34. Alleles A and B are
co-dominant, and the alleles A and B are dominant to O. This
leads to the following genotypes and phenotypes:

Genotype Blood Type

AA, AO A
BB, BO B

AB AB
OO O

Mendels first law allows us to quantify the types of gametes an
individual can produce. For example, an individual with type AB
produces gametes A and B with equal probability (1/2).
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Hardy-Weinberg Equilibrium Example

From a sample of 21,104 individuals from the city of Berlin, allele
frequencies have been estimated to be P(A)=0.2877,
P(B)=0.1065 and P(O)=0.6057. If an individual has blood type
B, what are the possible genotypes for this individual, what
possible gametes can be produced, and what is the frequency of
the genotypes and gametes if HWE is assumed?

If a person has blood type B, then the genotype is BO or BB.

What is P(genotype is BO|blood type is B)?

What is P(genotype is BB|blood type is B)?

What is P(B gamete|blood type is B)?

What is P(O gamete|blood type is B)?
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Hardy-Weinberg Equilibrium

With HWE: allele frequencies =⇒ genotype frequencies.

Violations of HWE assumption inclue:

Small population sizes. Chance events can make a big
difference.

Deviations from random mating.

Assortive mating. Mating between genotypically similar
individuals increases homozygosity for the loci involved in
mate choice without altering allele frequencies.

Disassortive mating. Mating between dissimilar individuals
increases heterozygosity without altering allele frequencies.

Inbreeding. Mating between relatives increases homozygosity
for the whole genome without affecting allele frequencies.

Population sub-structure

Mutation

Migration

Selection
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Testing Hardy-Weinberg Equilibrium

When a locus is not in HWE, then this suggests one or more
of the Hardy-Weinberg assumptions is false.

Departure from HWE has been used to infer the existence of
natural selection, argue for existence of assortive
(non-random) mating, and infer genotyping errors.

It is therefore of interest to test whether a population is in
HWE at a locus.

We will discuss the two most popular ways of testing HWE:

Chi-Square test
Exact test
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Chi-Square Goodness-Of-Fit Test

Compares observed genotype counts with the values expected
under Hardy-Weinberg. For a locus with two alleles, we might
construct a table as follows:

Genotype Observed Expected under HWE

AA nAA np2
A

Aa nAa 2npA(1− pA)
aa naa n(1− pA)2

where n is the number of individuals in the sample and pA is the
probability that a random allele in the population is of type A.

We estimate pA with p̂A = 2nAA+nAa
2n
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Chi-Square Goodness-Of-Fit Test

Test statistic is for Allelic Association is:

X 2 =
∑

genotypes

(Observed count− Expected count)2

Expected count

X 2 =

(
nAA − np̂2

a

)2
np̂2

a

+
(nAa − 2np̂a(1− p̂a))2

2np̂a(1− p̂a)
+

(
naa − n(1− p̂a)2

)2
n(1− p̂a)2

Under H0, the X 2 test statistic has an approximate χ2

distribution with 1 degree of freedom

Recall the rule of thumb for such χ2 tests: the expected count
should be at least 5 in every cell. If allele frequencies are low,
and/or sample size is small, and/or there are many alleles at a
locus, this may be a problem.
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HWE Exact Test

The Hardy-Weinberg exact test is based on calculating
probabilities

P(genotype counts|allele counts) under HWE.

Hardy-Weinberg Equilibrium



HWE Exact Test Example

Suppose we have a sample of 5 people and we observe
genotypes AA, AA, AA, aa, and aa.

If five individuals have among them 6 A alleles and 4 a alleles,
what genotype configurations are possible?

Hardy-Weinberg Equilibrium



HWE Exact Test Example

aa Aa AA theoretical probability

2 0 3 0.048
1 2 2 0.571
0 4 1 0.381
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HWE Exact Test Example

Now suppose we have a sample of 100 individuals and we
observe 21 ”a” alleles and 179 ”A” alleles, what genotype
configurations are possible?
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HWE Exact Test Example

Note that specifying the number of heterozygotes determines the
number of AA and aa genotypes.

aa Aa AA theoretical probability

1 � .000001
3 � .000001
5 < .000001
7 .000001
9 .000047

11 .000870
13 .009375
15 .059283
17 .214465
19 .406355
21 .309604

Wiggington, Cutler, Abecasis (AJHG, 2005)
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HWE Exact Test Example

The formula is:

P(nAa|nA, na,HWE ) =
n!

nAA!nAa!naa!
× 2nAanA!na!

(2n)!

If we had actually observed 13 heterozygotes in our sample, then
the exact test p-value would be
≈ .009375 + .000870 + .000047 + .000001 = 0.010293 (To get
the p-value, we sum the probabilities of all configurations with
probability equal to or less that the observed configuration.)
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Comparison of HWE χ2 Test and Exact Test

The next slide is Figure 1 from Wigginton et al (AJHG 2005). The
upper curves give the type I error rate of the chi-square test; the
bottom curves give the type I error rate from the exact test. The
exact test is always conservative; the chi-square test can be either
conservative or anti-conservative.
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HWE TYPE I ERROR
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Comparison of HWE χ2 Test and Exact Test

The Exact Test should be preferred for smaller sample sizes
and/or multiallelic loci, since the χ2 test is not valid in these
cases (rule of thumb: must expect at least 5 in each cell)

The coarseness of Exact Test means it is conservative. In
Example 4, we reject the null hypothesis that HWE holds if 13
or fewer heterozygotes are observed. But the observed p-value
is actually 0.010293. Thus to reject at the 0.05 level, we
actual have to see a p-value as small as 0.010293.
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Comparison of HWE χ2 Test and Exact Test

The χ2 test can have inflated type I error rates. Suppose we
have 100 genes for which HWE holds. We conduct 100 χ2

tests at level 0.05. We expect to reject the null hypothesis
that HWE holds in 5 of the tests. However, the results of
Wiggington et al (AJHG, 2005) say, on average, it can be
more than 5 depending on the minor allele count. Although it
is not desirable for a test to be conservative (Exact Test), an
anti-conservative test is considered unacceptable.

Wiggington et al (AJHG, 2005) give an extreme example with
a sample of 1000 individuals. At a nominal a=0.001, the true
type I error rate for the χ2 test exceeds 0.06.
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Comparison of HWE χ2 Test and Exact Test

The χ2 test is a two-sided test. In contrast, the Exact Test
can be made one-sided, if appropriate. Specifically, one can
test for a deficit of heterozygotes (if one suspects inbreeding
or population stratification); test for an excess of
heterozygotes (which indicate genotyping errors for some
genotyping technologies).

Exact test is more computationally intensive
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Linkage Equilibrium

Consider two linked loci

Locus 1 has alleles A1,A2, . . . ,Am occurring at frequencies
p1, p2, . . . , pm

locus 2 has alleles B1,B2, . . . ,Bn occurring at frequencies
q1, q2, . . . , qn in the population.

How many possible haplotypes are there for the two loci?

The possible haplotypes can be denote as
A1B1,A1B2, . . . ,AmBn with frequencies h11, h12, . . . , hmn

The two linked loci are said to be in linkage equilibrium (LE),
if the occurrence of allele Ai and the occurrence of allele Bj in
a haplotype are independent events. That is, hij = piqj for
1 6 i 6 m and 1 6 j 6 n.

Two loci are said to be in linkage (or gametic) disequilibrium
(LD) if their respective alleles do not associate independently

Notice that linkage equilibrium/disequilibrium is a
population-level characteristic
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Linkage Disequilibrium

Consider two bi-allelic loci.

There are four possible haplotypes: A1B1,A1B2,A2B1, and
A2B2.

Suppose that the frequencies of these four haplotypes in the
population are 0.4, 0.1, 0.2, and 0.3, respectively.

Are the loci in linkage equilibrium?

Which alleles on the two loci occur together on haplotypes
than what would be expected under linkage equilibrium?
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Measures of Linkage Disequilibrium

The Linkage Disequilibrium Coefficient D is one measure of
LD.

For ease of notation, we define D for two biallelic loci with
alleles A and a at locus 1; B and b at locus 2:

DAB = P(AB)− P(A)P(B)

What about DaB? Note that

DaB = P(aB)− P(a)P(B)

= P(aB)− (1− P(A))P(B)

= P(aB)− P(B) + P(A)P(B)

= P(aB)− (P(AB) + P(aB)) + P(A)P(B)

= P(aB)− P(aB)− P(AB) + P(A)P(B)

= −P(AB) + P(A)P(B) = −DAB

Linkage Disequilibrium



Linkage Disequilibrium Coefficient

Can similarly show that DAb = −DAB and Dab = DAB

LD is a property of two loci, not their alleles.

Thus, the magnitude of the coefficient is important, not the
sign.

The magnitude of D does not depend on the choice of alleles.

The range of values the linkage disequilibrium coefficient can
take on varies with allele frequencies.
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Linkage Disequilibrium Coefficient

By using the fact that pAB = P(AB) must be less than both
pA = P(A) and pB = P(B), and that allele frequencies cannot
be negative, the following relations can be obtained:

0 6 pAB = pApB + DAB 6 pA, pB

0 6 paB = papB − DAB 6 pa, pB

0 6 pAb = pApb − DAB 6 pA, pb

0 6 pab = papb + DAB 6 pa, pb

These inequalities lead to bounds for DAB :

−pApB ,−papb 6 DAB 6 papB , pApb
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Normalized Linkage Disequilibrium Coefficient

What is the theoretical range of the linkage disequilibrium
coefficient DAB and its absolute value |DAB | under the follow
scenarios?

P(A) = 1
2 , P(B) = 1

2

P(A) = .95, P(B) = .95

P(A) = .95, P(B) = .05

P(A) = 1
2 , P(B) = .95?

Under what circumstances might DAB reach its theoretical
maximum value? Suppose DAB = P(a)P(B). What does this
imply? Why does this make sense?
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Normalized Linkage Disequilibrium Coefficient

We have just seen that the possible values of D depend on
allele frequencies. This makes D difficult to interpret. For
reporting purposes, the normalized linkage disequilibrium
coefficient D ′ is often used.

D ′AB =

{
DAB

max(−pApB ,−papb)
if DAB < 0

DAB
min(papB ,pApb)

if DAB > 0
(1)
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Estimating D

Suppose we have the N haplotypes for two loci on a
chromosomes that have been sampled from a population of
interest. The data might be arranged in a table such as:

B b Total

A nAB nAb nA

a naB nab na

nB nb N

We would like to estimate DAB from the data. The maximum
likelihood estimate of DAB is

D̂AB = p̂AB − p̂Ap̂B

where p̂AB = nAB
N , p̂A = nA

N , and p̂B = nB
N

So the population frequencies are estimated by the sample
frequencies
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Estimating D

The MLE turns out to be slightly biased. If N gametes have
been sampled, then

E
(
D̂AB

)
=

N − 1

N
DAB

The variance of this estimate depends on both the true allele
frequencies and the true level of linkage disequilibrium:

Var
(
D̂AB

)
=

1
N

[
pA(1− pA)pB(1− pB) + (1− 2pA)(1− 2pB)DAB − D2

AB

]
Suppose we have the N haplotypes for two loci on a
chromosomes that have been sampled from a population of
interest. The data might be arranged in a table such as:
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Testing for LD with D

Since DAB = 0 corresponds to the status of no linkage
disequilibrium, it is often of interest to test the null hypothesis
H0 : DAB = 0 vs. Ha : DAB 6= 0 .

One way to do this is to use a chi-square statistic. It is
constructed by squaring the asymptotically normal statistic z:

Z 2 =

 D̂AB − E0

(
D̂AB

)
Var0

(
D̂AB

)
2

where E0 and Var0 are expectation and variance calculated
under the assumption of no LD, i.e., DAB = 0

Under the null, the test statistic will follow a Chi-Squared
(χ2) distribution with one degree of freedom.
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Measuring LD with R2

Define a random variable XA to be 1 if the allele at the first
locus is A and 0 if the allele is a.

Define a random variable XB to be 1 if the allele at the
second locus is B and 0 if the allele is b.

Then the correlation between these random variables is:

rAB =
COV (XA,XB)√
Var(XA)Var(XB)

=
DAB√

pA(1− pA)pB(1− pB)

It is usually more common to consider the rAB value squared:

r2
AB =

D2
AB

pA(1− pA)pB(1− pB)
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Measuring LD with R2

R2 has the same value however the alleles are labeled

Tests for LD: A natural test statistic to consider is the
contingency table test. Compute a test statistic using the
Observed haplotype frequencies and the Expected frequency if
there were no LD:

X 2 =
∑

possible haplotypes

(Observed cell− Expected cell)2

Expected cell

Under H0, the X 2 test statistic has an approximate χ2

distribution with 1 degree of freedom

It turns out that X 2 = Nr̂2
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R2 or D ′

If two loci both have very rare alleles but the loci are not in
high LD, it is possible for D ′ to be 1 and r2 to be small.

D ′ is problematic to interpret with rare alleles, and r2 is a
better measure for this situation.

Linkage Disequilibrium
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Why does linkage disequilibrium occur?

Genetic drift: In a finite population, the gene pool of one
generation can be regarded as a random sample of the gene
pool of the previous generation. As such, allele and
haplotypes frequencies are subject to sampling variation
random chance. The smaller the population is, the larger the
effects of genetic drift are.

Mutation: If a new mutation appears in a population, alleles
at loci linked with the mutant allele will maintain linkage
disequilibrium for many generations. LD lasts longer when
linkage is greater (that is, the recombination fraction is much
smaller than 1

2 - very close to 0).
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Why does linkage disequilibrium occur?

Founder effects: Applies to a population that has grown
rapidly from a small group of ancestors. For example, the
5,000,000 Finns mostly descended from about 1000 people
who lived about 2000 years ago. Such a population is prone
to LD.

Selection: When an individuals genotype influences his/her
reproductive fitness. For example, if two alleles interact to
decrease reproductive fitness, the alleles will tend to be
negatively associated, i.e., they tend not to appear together
on haplotypes.

Stratification: Some populations consist of two or more
subgroups that, for cultural or other reasons, have evolved
more or less separately. Two loci that are in linkage
equilibrium for each subpopulation may be in linkage
disequilibrium for the larger population.
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Linkage disequilibrium example

Consider a population with three subpopulations.

Consider two biallelic loci, the first locus with alleles A and a;
the second locus with alleles B and b.

Are the three subpopulations in linkage equilibrium?

Is the population as a whole in linkage equilibrium?

N A allele freq. B allele freq. AB haplotype freq.

1000 0.3 0.5 0.15
2000 0.2 0.4 0.08

10000 0.05 0.1 0.005
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Linkage Disequilibrium Decay

How is LD maintained in a population?

Selection
Non-random mating (e.g., population stratification)
Linkage

Consider again two linked loci

Locus 1 has alleles A1,A2, . . . ,Am occurring at frequencies
p1, p2, . . . , pm

locus 2 has alleles B1,B2, . . . ,Bn occurring at frequencies
q1, q2, . . . , qn in the population.

The haplotypes are A1B1,A1B2, . . . ,AmBn with frequencies
h0
11, h

0
12, . . . , h

0
mn in generation 0.

Let θ be the recombination fraction for locus 1 and locus 2.

What is h1
ij , the frequency of haplotype AiBj in the next

generation is we assume random mating in the population?
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Linkage Disequilibrium

h1
ij = P(haplotype1 = AiBj)

= P(haplotype1 = AiBj |no recombination)P(no recombination)

+P(haplotype1 = AiBj |recombination)P(recombination)

= P(haplotype1 = AiBj |no recombination)(1− θ)

+P(haplotype1 = AiBj |recombination)θ

= h0
ij(1− θ) + piqjθ
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Linkage Disquilibrium

So h1
ij = h0

ij(1− θ) + piqjθ

From this, we can obtian the difference in haplotype frequency
between the two generations is:

h1
ij − h0

ij = θ(piqj − h0
ij)

When will this difference be 0? That is, when are the
haplotype frequencies stable?

Answer: θ = 0 or no linkage disequilibrium.

We can also characterize the difference between the true
haplotype frequency at generation 1 and what the haplotype
frequency would be under linkage equilibrium

h1
ij − piqj = (1− θ)(h0

ij − piqj)

Can extend this to the kth generation

hk
ij − piqj = (1− θ)k(h0

ij − piqj)
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Linkage Disequilibrium

Another way to write this is as follows

D1
ij = (1− θ)D0

ij

Dk
ij = (1− θ)kD0

ij

On the following slide is a figure that shows the decline of
linkage disequilibrium in a large, randomly mating population
for various values of θ
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Linkage Disequilibrium
Figure:
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Linkage Disequilibrium

What can you say about the LD between the SNPs below?

Figure:

Individual SNP1 SNP2 SNP3 SNP4

1 A C A T

A C A T

2 A C A G

G T A G

3 A C A T3 A C A T

G T C G

4 A C A G

A C A G

5 G T C G

G T C T
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Tag SNPs using Linkage Disequilibrium Measures

It is possible to identify genetic variation without genotyping
every SNP in a haplotype block.

By genotyping only the ”Tag SNPs”, it is possible to record
most of the genetic variation in a haplotype block, with the
fewest number of SNPs.
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Tag SNPs using Linkage Disequilibrium Measures
Figure:

Choosing Tag SNPs

SNP

Individ: 1 2 3 4 5

1 A A T A G

2 A A T A G

3 A A T A G

Block 1 Block 2

3 A A T A G

4 A A T A G

5 G T G A T

6 A A T C T

7 G T T A G

8 A A T A G

9 G T T C T

10 G T T C T
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Factors affecting Linkage Disequilibrium

LD information is useful for deciding which polymorphisms to
genotype.

LD information across the whole genome can be used in a
variety of ways.

However...LD depends on population history.

Which LD database to look at depends on which population
your study individuals are from.
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Nonrandom Mating

HWE assumes that mating is random in the population

Most natural populations deviate in some way from random
mating

There are various ways in which a species might deviate from
random mating

We will focus on the two most common departures from
random mating:

inbreeding
population subdivision or substructure

Population Structure



Nonrandom Mating: Inbreeding

Inbreeding occurs when individuals are more likely to mate
with relatives than with randomly chosen individuals in the
population

Increases the probability that offspring are homozygous, and
as a result the number of homozygous individuals at genetic
markers in a population is increased

Increase in homozygosity can lead to lower fitness in some
species

Increase in homozygosity can have a detrimental effect: For
some species the decrease in fitness is dramatic with complete
infertility or inviability after only a few generations of
brother-sister mating
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Nonrandom Mating: Population Subdivision

For subdivided populations, individuals will appear to be
inbred due to more homozygotes than expected under the
assumption of random mating.

Wahlund Effect: Reduction in observed heterozygosity
(increased homozygosity) because of pooling discrete
subpopulations with different allele frequencies that do not
interbreed as a single randomly mating unit.

Population Structure



Wright’s F Statistics

Sewall Wright invented a set of measures called F statistics
for departures from HWE for subdivided populations.

F stands for fixation index, where fixation being increased
homozygosity

FIS is also known as the inbreeding coefficient.

The correlation of uniting gametes relative to gametes drawn
at random from within a subpopulation (Individual within the
Subpopulation)

FST is a measure of population substructure and is most
useful for examining the overall genetic divergence among
subpopulations

Is defined as the correlation of gametes within subpopulations
relative to gametes drawn at random from the entire
population (Subpopulation within the Total population).
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Wright’s F Statistics

FIT is not often used. It is the overall inbreeding coefficient of
an individual relative to the total population (Individual within
the Total population).
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Genotype Frequencies for Inbred Individuals

Consider a bi-allelic genetic marker with alleles A and a. Let p
be the frequency of allele A and q = 1− p the frequency of
allele a in the population.

Consider an individual with inbreeding coefficient F . What are
the genotype frequencies for this individual at the marker?

Genotype AA Aa aa

Frequency
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Generalized Hardy-Weinberg Deviations

The table below gives genotype frequencies at a marker for
when the HWE assumption does not hold:

Genotype AA Aa aa

Frequency p2(1− F ) + pF 2pq(1− F ) q2(1− F ) + qF

where q = 1− p

The F parameter describes the deviation of the genotype
frequencies from the HWE frequencies.

When F = 0, the genotype frequencies are in HWE.

The parameters p and F are sufficient to describe genotype
frequencies at a single locus with two alleles.
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Fst for Subpopulations

Example in Gillespie (2004)

Consider a population with two equal sized subpopulations.
Assume that there is random mating within each
subpoulation.

Let p1 = 1
4 and p2 = 3

4

Below is a table with genotype frequencies

Genotype A AA Aa aa

Freq. Subpop1
1
4

1
16

3
8

9
16

Freq. Subpop2
3
4

9
16

3
8

1
16

Are the subpopulations in HWE?

What are the genotype frequencies for the entire population?

What should the genotypic frequencies be if the population is
in HWE at the marker?
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Fst for Subpopulations

From the table below it is clear that there are too many
homozygotes in this population.

Genotype A AA Aa aa

Freq. Subpop1
1
4

1
16

3
8

9
16

Freq. Subpop2
3
4

9
16

3
8

1
16

Freq. Population 1
2

5
16

3
8

5
16

Hardy-Weinberg Frequencies 1
2

1
4

1
2

1
4

To determine a measure of the excess in homozygosity from
what we would expect under HWE, solve

2pq(1− FST ) =
3

8

What is Fst?
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Fst for Subpopulations

The excess homozygosity requires that FST = 1
4

For the previous example the allele frequency distribution for
the two subpopulations is given.

At the population level, it is often difficult to determine
whether excess homozygosity in a population is due to
inbreeding, to subpopulations, or other causes.

European populations with relatively subtle population
structure typically have an Fst value around .01 (e.g., ancestry
from northwest and southeast Europe),

Fst values that range from 0.1 to 0.3 have been observed for
the most divergent populations (Cavalli-Sforza et al. 1994).
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Fst for Subpopulations

Fst can be generalized to populations with an arbitrary
number of subpopulations.

The idea is to find an expression for Fst in terms of the allele
frequencies in the subpopulations and the relative sizes of the
subpopulations.

Consider a single population and let r be the number of
subpopulations.

Let p be the frequency of the A allele in the population, and
let pi be the frequency of A in subpopulation i , where
i = 1, . . . , r

Fst is often defined as Fst =
σ2

p

p(1−p) , where σ2
p is the variance

of the pi ’s with E (pi ) = p.
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Fst for Subpopulations

Let the relative contribution of subpopulation i be ci , where
r∑

i=1

ci = 1.

Genotype AA Aa aa

Freq. Subpopi p2
i 2piqi q2

i

Freq. Population
∑r

i=1 cip
2
i

∑r
i=1 ci2piqi

∑r
i=1 ciq

2
i

where qi = 1− pi

In the population, we want to find the value Fst such that
2pq(1− Fst) =

∑r
i=1 ci2piqi

Rearranging terms:

Fst =
2pq −

∑r
i=1 ci2piqi

2pq

Now 2pq = 1− p2 − q2 and∑r
i=1 ci2piqi = 1−

∑r
i=1 ci (p

2
i + q2

i )
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Fst for Subpopulations

So can show that

Fst =

∑r
i=1 ci (p

2
i + q2

i )− p2 − q2

2pq

=

[∑r
i=1 cip

2
i − p2

]
+
[∑r

i=1 ciq
2
i − q2

]
2pq

=
Var(pi ) + Var(qi )

2pq

=
2Var(pi )

2p(1− p)

=
Var(pi )

p(1− p)

=
σ2

p

p(1− p)
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Estimating Fst

Let n be the total number of sampled individuals from the
population and let ni be the number of sampled individuals
from subpopulation i

Let p̂i be the allele frequency estimate of the A allele for the
sample from subpopulation i

Let p̂ =
∑

i
ni
n p̂i

A simple Fst estimate is F̂ST1 = s2

p̂(1−p̂) , where s2 is the
sample variance of the p̂i ’s.
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Estimating Fst

Weir and Cockerman (1984) developed an estimate based on
the method of moments.

MSA =
1

r − 1

r∑
i=1

ni (p̂i − p̂)2

MSW =
1∑

i (ni − 1)

r∑
i=1

ni p̂i (1− p̂i )

Their estimate is

F̂ST2 =
MSA−MSW

MSA + (nc − 1)MSW

where nc =
∑

i ni −
∑

i n
2
i∑

i ni
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GAW 14 COGA Data

The Collaborative Study of the Genetics of Alcoholism
(COGA) provided genome screen data for locating regions on
the genome that influence susceptibility to alcoholism.

There were a total of 1,009 individuals from 143 pedigrees
with each pedigree containing at least 3 affected individuals.

Individuals labeled as white, non-Hispanic were considered.

Estimated self-kinship and inbreeding coefficients using
genome-screen data
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COGA Data

Histogram for Estimated Self−Kinship Values

Estimated Self Kinship Coefficient
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Historgram for Estimated Inbreeding Coefficients

Estimated Inbreeding Coefficient
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