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The origin of interactions
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The complexity of complex diseases
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There are likely to be many
susceptibility genes each
with combinations of rare
and common alleles and
genotypes that impact
disease susceptibility
primarily through non-linear
interactions with genetic and
environmental factors

(Moore 2008)
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Factors complicating analysis of complex genetic disease

Locus Heterogeneity

Trait Heterogeneity

Gene-Gene Interaction

268000) - genetic variations in at least
fifteen genes have been associated
with RP under an autosomal recessive
model. Still more have been
associated with RP under autosomal
dominant and X-linked disease
models?
(http://www.sph.uth.tmc.edu/RetNet)

(ADCA, OMIM# 164500) - originally
described as a single disease, three different
clinical subtypes have been defined based
on variable associated symptoms 7 and
different genetic loci have been associated
with the different subtypes?®

Definition when two or more DNA variations in when a trait, or disease, has been defined when two or more DNA variations interact
distinct genetic loci are independently with insufficient specificity such that it is either directly (DNA-DNA or DNA-mRNA
associated with the same trait actually two or more distinct underlying traits | interactions), to change transcription or

translation levels, or indirectly by way of
their protein products, to alter disease risk
separate from their independent effects

Diagram Allelic Varianti  Allelic Variant ii — i A'g’;‘f_ varon A"(‘;'ficl_va”ag‘ I

Of Locus A Of Locus B ?cus i
1
v
: Disease X
Lissdse No Disease Disease X
Example Retinitis Pigmentosa (RP, OMIM# Autosomal Dominant Cerebellar Ataxia Hirschsprung Disease (OMIM# 142623) -

variants in the RET (OMIM# 164761) and
EDNRB (OMIM# 131244) genes have
been shown to interact synergistically such
that they increase disease risk far beyond
the combined risk of the independent
variants'2

Université
de Liege
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Factors complicating analysis of complex genetic disease

Gene-gene interactions

... when two or more DNA variations interact either directly to change
transcription or translation levels, or indirectly by way of their protein
product, to alter disease risk separate from their independent effects ...
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The “observed” occurrences of epistasis — model organisms
e Carlborg and Haley (2004):

- Epistatic QTLs without individual effects have been found in
various organisms, such as bird526’27, mammaI528_32, Drosophila

33 18,34
melanogaster ™ and plants™".

- However, other similar studies have reported only low levels of
epistasis or no epistasis at all, despite being thorough and

. . . 35-37
involving large sample sizes :

This clearly indicates the complexity with which multifactorial traits are
regulated; no single mode of inheritance can be expected to be the
rule in all populations and traits.
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Great expectations

e From an evolutionary biology perspective, for a phenotype to be
buffered against the effects of mutations, it must have an underlying
genetic architecture that is comprised of networks of genes that are
redundant and robust.

e The existence of these networks creates dependencies among the
genes in the network and is realized as gene-gene interactions or
(trans-) epistasis.

e This suggests that epistasis is not only important in determining
variation in natural and human populations, but should also be more
widespread than initially thought (rather than being a limited
phenomenon).

&
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Great expectations - empowering personal genomics

e Considering the epic complexity of the transcriptions process, the
genetics of gene expression seems just as likely to harbor epistasis as
biological pathways.

e When examining HapMap genotypes and gene expression levels from
corresponding cell lines to look for cis-epistasis, over 75 genes pop up
where SNP pairs in the gene's regulatory region can interact to
influence the gene's expression.

e What is perhaps most interesting is that there are often large
distances between the two interacting SNPs (with minimal LD
between them), meaning that most haplotype and sliding window
approaches would miss these effects. (Turner and Bush 2011)
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Complementing insights from GWA studies

Edges represent small gene—gene
interactions between SNPs. Gray nodes
and edges have weaker interactions.
Circle nodes represent SNPs that do not
have a significant main effect. The
diamond nodes represent significant
main effect association. The size of the

node is proportional to the number of

connections.

(McKinney et al 2012)
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Epistasis and phantom heritability

(Maher 2008)
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Epistasis and phantom heritability

e Human genetics has been haunted by the mystery of “missing
heritability” of common traits.

e Although studies have discovered >1,200 variants associated with
common diseases and traits, these variants typically appear to
explain only a minority of the heritability.

e The proportion of heritability explained by a set of variants is the
ratio of (i) the heritability due to these variants (numerator),
estimated directly from their observed effects, to (ii) the total
heritability (denominator), inferred indirectly from population data.

e The prevailing view has been that the explanation for missing
heritability lies in the numerator — variants still to identify
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Epistasis and phantom heritability

e Overestimation of the total heritability can create “phantom
heritability.”
- estimates of total heritability implicitly assume the trait involves
no genetic interactions (epistasis) among loci

- this assumption is not justified

- under such models, the total heritability may be much smaller
and thus the proportion of heritability explained much larger.

e For example, 80% of the currently missing heritability for Crohn's
disease could be due to genetic interactions, if the disease involves
interaction among three pathways. (Zuk et al 2012)
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Traveling the world of interactions
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Nonlinear Effects e Most SNPs of interest will only

. The High-Hanging Fruit

be found by embracing the
complexity of the genotype-to-
phenotype mapping
relationship that is likely to be
characterized by nonlinear
gene-gene interactions, gene-
environment interaction and
locus heterogeneity.

Linear Effects
L, The Low-Hanging Fruit

e Few SNPs with moderate to

large independent and additive .
(Moore and Williams 2009)

main effects
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From GWA to GWAI studies ...

e Genome-Wide Association Interaction (GWAI) studies have not been
as successful as GWA studies:

- Possible negligible role of epistatic variance in a population?
(Davierwala et al 2005)

- Consequence of not yet available powerful epistasis detection
methods or approaches?

“ Gene-gene interactions are commonly found when properly investigated ”
(Templeton 2000)
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How to best build our working space
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Creating an atmosphere of “interdisciplinarity”

1
i
; A E -
Al S g i
- : 3 =
. o~ » e -
2 5 . =
i 2
H-5 "
J;j.}. "y
a:, 7t ;"f’y v
3 e oL TI B &
/(-'_'~ it -
i‘
=3
W
-4" -
s

(http://www.genome.gov: the future of human genomics) + harmonization of biobanks

B
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Creating an atmosphere of “integration”

with HTP omics data (J Thornton, EBI)
Genomes [ s s e Nucleotide sequence
(Sanger, EBI + ﬁ[!!!!!!!' Kl EMBL-Bank+Genbank+DDB;j
NCBI) e z
o, v KIO000 Protein sequence
Gene expression ey | UniProt(EBI/SIB/PIR)
ArrayExpress, GEO ?R
i —o—a— T - Protein structure
Protein families, g e WWPDB(RCSB,EBI,PDB;j)
motifs and domains P O el
InterPro

Chemical entities

(12 collaborators) ChEBI; PubChem

Protein interactions
IntAct with Imex,
PRIDE

Pathways

Kegg;
Reactome

Systems
BioModels
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Extending the toolbox

(Kilpatrick 2009)

Computational methods
for detecting statistical
epistasis
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Extending the toolbox

e Comes with a caveat: need for thorough comparison studies using
reference data sets!

e Several criteria exist to classify epistasis detection methods:

Exploratory versus non-exploratory

Testing versus Modeling

Direct versus Indirect testing

Parametric versus non-parametric

Exhaustive versus non-exhaustive search algorithms

... (Van Steen et al 2011)

.»,:‘:
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The “observed” occurrences of epistasis — humans
e Phillips et al (2008):

- There are several cases of epistasis appearing as a statistical
feature of association studies of human disease.

. . 63

- A few recent examples include coronary artery disease ",
. 64 . . . 65 . 66
diabetes™, bipolar effective disorder -, and autism .

- So far, only for some of the reported findings additional support
could be provided by functional analysis, as was the case for
multiple sclerosis (Gregersen et al 2006).

e More recent examples: e.g., breast cancer (Ashworth et al. 2011),
Alzheimer’s (Combarros et al 2009),
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Taking it a few steps back ... What’s in a name?
e Our ability to detect epistasis depends on what we mean by epistasis

“compositional epistasis”

e The original definition (driven by biology) refers to distortions of
Mendelian segregation ratios due to one gene masking the effects of
another; a variant or allele at one locus prevents the variant at
another locus from manifesting its effect (william Bateson 1861-1926).

ﬁﬂ& (Carlborg and

Haley 2004)

Dominant white
genotype (KIT)

Exten3|on genotype MC1 F?
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Taking it a few steps back ... What’s in a name?

“statistical epistasis”

e A later definition of epistasis (driven by statistics) is expressed in
terms of deviations from a model of additive multiple effects.

e This might be on either a linear or logarithmic scale, which implies
different definitions (Ronald Fisher 1890-1962).

e It seems that the interpretation of GWAIs is hampered by undetected
false positives
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Model-Based Multifactor

Dimensionality Reduction
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Historical notes about MB-MDR

e Knowledge:
- Parametric model (mis)specification is of major concern,
especially in the presence of high-dimensional confounders
- Small n big p problems may give rise to curse of dimensionality
problems (Bellman 1961)
- A lot more knowledge needs to be discovered, naturally giving
rise to “data mining” type of strategies
e Alerts:
- Data snooping: statistical bias due to inappr. use of data mining!

- Biological knowledge integration

‘:j:
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Historical notes about MB-MDR

e Multifactor Dimensionality Reduction by MD Ritchie et al (2001)
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Historical notes about MB-MDR
e Model-Based MDR by Calle et al (2007)

Unlike other MDR-like /

methods, MB-MDR breaks —l o

with the tradition of cross- //
validation to select optimal “ {:ﬁ -
multilocus models with significant e 2
accuracy estimates <:H‘j?/ YfHT;}B
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e Model-Based MDR by Calle et al (2007)

- Rather, computation time is invested in optimal association tests
to prioritize multilocus genotype combinations and statistically
valid permutation-based methods to assess joint statistical
significance

- Results of association tests are used to “label” multilocus
genotype cells (for instance: increased / reduced risk, based on
sign of “effect”) and to “quantify” the multilocus signal wrt the

trait of interest, “above and beyond lower order signals”

&
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Historical notes about MB-MDR

e Model-Based MDR by Calle et al (2007, 2008)

Table 3. MB-MDR first step analysis for interaction between SNP 40

and SNP 252 in the bladder cancer study

SNP 40 x SNP 252 Cases Controls OR p-value Category

genotypes

¢l =1(0,0) 88 77 1.01 0.9303 0
c2=(0,1) 102 114 0.73 0.0562 L
c3=(0,2) 38 34 0.98 1.0000 0
cd=(1.0) 50 59 0.76 0.1229 0
cS= (11 96 37 2.68 0.0000 H
c6=(12) 18 28 0.55 0.0675 L
c7=(2,0) 12 6 1.99 0.3399 0
c8=(2,1) 14 18 0.67 0.3668 0
c9=(22) 6 6 0.84 1.0000 0

H: High risk: L: Low risk; 0: No evidence
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Fig. 1. Average Balanced Training accuracy (Acc) versus Average Balanced
Predictive accuracy (Pred) for the 100 models with higher balanced training
accuracy for the whole sample. First, second, third and forth order

interactions are considered.
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Historical notes about MB-MDR

e Model-Based MDR by Cattaert et al (2010)
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- Pooling “alike” (for instance, all low-risk and all high-risk)

multilocus genotypes leads to statistic distribution that is

different from the theoretical distribution (data snooping)

- Score tests, one multilocus p-value and permutation-based

strategy (Cattaert et al 2010), rather than Wald tests, and relying on

MAF dependent reference distributions (Calle et al 2008)

SEB
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Historical notes about MB-MDR
e Model-Based MDR by Cattaert et al (2010)

Model 2, p = 0.5 ' Model 6,p = 0.1
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Historical notes about MB-MDR

e Model-Based MDR by Cattaert et al (2010) — maximizing power
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Historical notes about MB-MDR

e Model-Based MDR by Van Lishout et al (2012 — under review) — speed
- MaxT algorithm Vv

- Association test statistics (parametric and non-parametric) V +

SNPs MBMDR-3.0.2 MBMDR-3.0.2 MBMDR-3.0.2 MBMDR-3.0.2
sequential execution sequential execution parallel workflow parallel workflow
Binary trait Continuous trait Binary trait Continuous trait
100 45 sec 1 min 35 sec <lsec <lsec
1,000 1 hour 16 minutes 2 hours 39 minutes 38 sec 1 min 17 sec
10,000 5 days 13 hours 11 days 19 hours 1 hour 3 min 2 hours 14 min
100,000 ~ 1.5 year ~ 3 vears 4 days 9 hours ~ 9 days

The parallel workflow was tested on a cluster composed of 10 blades, containing each four
Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz.
The sequential executions were performed on a single core of this cluster.
The results prefixed by the symbol "=" are extrapolated.
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Historical notes about MB-MDR

e Model-Based MDR by Van Steen lab (2012 and +)
- Lower order effects correction (omit at cell-labeling step) V +

- Two-locus effect modifiers V
- Different faces of “dimensions” in dimensionality reduction
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Historical notes about MB-MDR
e Model-Based MDR by Van Steen lab (2012 and +)

Original Paper

Human Hum Hered 2004;58:82-92 Aacelved: June 30, 2004

-
T A
Heredll} DOI: 10.1159/000083029 Accepted after revision: September 23, 2004

MDR and PRP: A Comparison of
Methods for High-Order
Genotype-Phenotype Associations

L. Bastonea M. ReillyP D.J. RaderP A.S. Foulkese

2Division of Biostatistics, "Cardiovascular Division and Center for Experimental Therapeutics,
University of Pennsylvania School of Medicine, Philadelphia, Pa., and *Department of Biostatistics,
School of Public Health and Health Sciences, University of Massachusetts, Amherst, Mass., USA
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Historical notes about MB-MDR
e Model-Based MDR by Van Steen lab (2012 and +)

Original Paper

Human Hum Hered 2004;58:82-92 Aacelved: June 30, 2004

-
T A
Heredll} DOI: 10.1159/000083029 Accepted after revision: September 23, 2004

MDR and PRP: A Comparison of

Methods for High-Order
Genotype-Phenotype Associatiol

) ) ) . Statistical methods suc
as multifactor dimensionality reduction (MDR), the comr

L. Bastone@ M. Reilly® D.J. Rader® A.S.Foulkes® !;}lnatonal partitioning method {CPM}, recursive partitior
ing (RP), and patterning and recursive partitioning (PRF
2Division of Biostatistics, PCardiovascular Division and Center for Experimental Therapeutics, are designed to uncover complex relationships withot

University of Pennsylvania School of Medicine, Philadelphia, Pa., and *Department of Biostatis| relying on a specific model for the interaction, and ar
School of Public Health and Health Sciences, University of Massachusetts, Amherst, Mass., U therefore well-suited to this data setting. However, th
theoretical overlap among these methods and their relz
tive merits have not been well characterized. In thi
paper we demonstrate mathematically that MDR is
special case of RP
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Historical notes about MB-MDR

e Model-Based MDR by Van Steen lab (2012 and +)
- Dimension (1,2) = (SNP1,SNP2) V
- Dimension (1,2) = (SNP1, “categorized” continuous variable) V +

- Dimension (1,2) = (SNP1, genomic region with rare variants) +

Mk12345678

(Shi et al 2006, unsupervised clustering

with RFs)
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Historical notes about MB-MDR

e Model-Based MDR by Van Steen lab (2012 and +)
- Dimension (1,2) = (SNP1, genomic region with rare variants) +

- Dimension (1,2) = +

0~00—0~0-0—0—0

Feature

Continuous i O—~0—0—0—0—0—0—(

High Dimensional
Tnput Space

&p&&&w&o
by /
O-A—0—0—-0—0—0—0

i V__O_.C_A\‘_O_»__ C’“ O"'O |
0~0~0~0—0—0—0—0
Discrete

Low Dimensional
QOutput Space

(SOMs: Bullinaria 2004)
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An example on Alzheimer’s disease
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First hurdle: Selection of most appropriate method

e Honest methods comparisons should / can highlight the “core” (the
ABC) of each method:

A: Pre-processing (screening); B: core; C: multiple testing

EpiCruncher
. Bonferroni Permutations 5
(Va n Stee n Ia b ' LR test Score test LR test Score test f;g" 2| 2
in prepa ration) Test P-value Test P-value Test P-value Test P-value % = E
statistic statistic statistic statistic » =
M=1|M=5|M=1|M=5|M=1|M=5|M=1|M=5|M=1|M=5|M=1|M=5|M=1| M=5| M=1 | M=5
rs17116117 | rs2513574 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs2519200 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs4938056 X X X X X X X X X X X X X X X X X X
rs17116117 rs1713671 X X X X X X X X X X X X X X X X X
rs13126272 | rs11936062 X X X X X X X X X X X X X X X X X
rs17116117 | rs7126080 - X X X X X X X
rs3770132 rs1933641 X X X X
rs12339163 | rs1933641 X
rs12853584 | rs1217414 | X X x | x
rs17116117 | rs1169722 X
number significant 6 6 6 6 7 5 7 5 6 7 6 6 7 6 7 6 6 3 3
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Protocol for GWAI analysis

Alzheimerdisease (AlzD):
2259 cases [ 6017 controls

0. Genotyping and genotypes calling: “\/
582,892 SNPs

| v

1. Sample 5 quality control: v
HWE test (P> 8.6e-08)
marker allele frequency (MAF > 0.05) 474,893 SNPs

call rate » 98% T~

Exhaustive epistasis screening ‘ ‘ Selective epistasis screening

' ¥

2.1.aLD pruning (e.g.5W57.5): 2.1.b Markers prioritization (Biofilter): \/’ 2.1.b Selection of SNPs
312,480 SNPs window size 52 bp, wingpw increment1 bp 1?’7 canlclil'dategenes collected :"Alzheimer 29,091 SNPs basingon theirfunctio 3,689 SNPs
LD "2 threshold 0.75 disease" KEEG pathway v (SNPper-SNP Finder)
2.2.a Exhaustive genome-wide screening 2.2.b LD pruning (e.g. SV57.5): [~~__—"] | 2.1bSelection of SNPs
for pair-wise SNP interactions window size 52 bp, window increment 1 bp 19.331 sNps | | fromcandidate genes
(BOOST analysis) LDr*2 threshold 0.75 ’ 234 SNPs

v (datafrom literature)
|

2.3.b Genome-wide screening for pair-wise
SNPinteractions (adjusted for the main effects)
(MB-MDR,p analysis)

3. Replication analysis with alternative

methods for epistasis detection: follow up
# theselected setof markers

(MB-MDR, analysis, SD plot, logistic

regression-based methods)

4. Replication of epistasis in the independent
data and biological validation
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Available “knowledge” about epistasis:

candidate genes

Gene Gene name Function Location Epistatic SNPs Main effect for AlzD Population (N cases/N controls) Reference
INS Insulin Glucose metabolism 11p15.5 rs689 no Germans (104/123) Brune et al., 2003
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22913.31 rs1800206 yes Northern Europeans (336/2426) Kélsch et al., 2012
receptor alpha
IL1A Interleukin 1 alfa Inflammatory cytokine 2q13 rs3783550 no Northern Europeans (336/2426) Heun et al., 2012
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22913.31 rs1800206 yes
receptor alpha
IL1B Interleukin 1 beta Inflammatory cytokine 2q13 rs16944 no Northern Europeans (336/2426) Heun et al., 2012
PPARA  Peroxisome proliferator-activated  Glucose and lipid metabolism 22913.31 rs1800206 yes
receptor alpha
IL10 Interleukin 10 Inflammatory cytokine 1g32.1 rs1800896 yes Northern Europeans (336/2426) Heun et al., 2012
PPARA  Peroxisome proliferator-activated = Glucose and lipid metabolism 22913.31 rs4253766 no
receptor alpha
IL1A Interleukin 1 alfa Inflammatory cytokine 2q13 rs1800587 no Northern Europeans (336/2426) Combarros et al., 2010
DBH b-Hydroxylase Onverts dopamine to norepinephrine inthe  9q34.2 rs1611115 yes
synaptic vesicles of postganglionic
sympathetic neurons
TF Transferrin Iron metabolism 3g22.1 rs1049296 no UK (191/269) Robson et al., 2004
HFE Hemochromatosis 6p22.2 rs1800562 yes Caucasians USA (1166/1404) Kauwe et al., 2010
North Europeans (336/2426) Lehmann et al., 2012
TF Transferrin Iron metabolism 3022.1  rs1130459 no North Europeans (336/2426) Lehmann et al., 2012
HFE Hemochromatosis 6p22.2 rs1799945 yes
MTHFR Methylenetetrahydrofolate Homocysteine metabolism useful for normal 1p36.22 rs1801131 yes Indians (80/120) Mansoori et al., 2012
reductase brain functioning
IL6 Interleukin 6 Pro-inflammatory cytokine 7p15.3 rs1800795 no
IL10 Interleukin 10 Limit inflammation in the brain 1932.1  rs1800871 yes North Spains (232/191), Infante et al., 2004
L6 Interleukin 6 Pro-inflammatory cytokine 7p15.3 rs2069837 yes North Europeans (336/2426) Combarros et al., 2009
ABCA1  ATP-binding cassette transporter  Intracellular cholesterol transport and 9g31.1 rs2422493 no Spanish (631/731) Rodriguez-Rodriguez et al., 2010
Al maintance of cell cholesterol balance
NPC1 Niemann-Pick C1 18q11.2 rs18050810 no
rs4800488
rs2236707
rs2510344

Université
de Liege




K Van Steen

Nijmegen— November 2012

LRP1 low density lipoprotein receptor-  Neuronal uptake of cholesterol 12g13.3  rs1799986 no Spanish (246/237) Vazquez-Higuera et al., 2009
related protein 1
MAPT  Microtubule-associated protein tau 17921.33 rs2471738 no
GSK3B  Glycogen synthase kinase-3 beta Abnormal hyperphosphorylation of tau, 3913.33  rs334558 no Spanish (246/237) Vazquez-Higuera et al., 2009
neuronal uptake of cholesterol

CDK5R1 Cyclindependent kinase 5 17911.2  rs735555

NRIH2 Liver X receptor beta Cholesterol metabolism 19g13.33 rs1052533 no Spanish (414/442) Infante et al., 2010
rs1405655

HMOX1 Heme oxygenase-1 22q12.3 rs2071746

Different levels

® Genetic marker
® Locus

® Gene

e Window including either one of the previous

e Pathway
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Revised analysis for candidate gene pairs

e MB-MDR analysis: 294 SNPs selected from France_AlzD panel of SNPs

MTHFR IL10 ILIA Jl11B TF HFE Il6 ABCA1 DBH INS LRP1 CDK5R1 MAPT NPC1 NRIHZ HMOX1 PPARA

+ ns + + + + + + + + ns + + + ns + MTHFR
+ + + ns ns + + ns + ns + ns ns + + IL10
ns + + + + ns + ns ns + ns ns ns + IL1A
+ ns ns + ns ns + ns + + ns ns ns IL1B
+ + + + ns + ns + + + + + TF
+ + ns + + ns + + + ns + HFE
+ ns ns ns + + + + + IL6
+ ns + + + + + ABCA1
+ ns + + ns + + DBH
"+" - at least one SNP pair from the oo oo™ * e
ns + ns ns + + LRP1
corresponding genes was s ons ns ns ns | CDK5R1
+ ns + + MAPT
associated with AlzD ns s + | nea
ns ns NRIHZ2
(the marginal p-value < 0.05 for the o

MB-MDR;,p analysis)

Replication is highlighted by green;
no replication is highlighted by red.
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Replication and validation of GWAIs:
An impossible task?
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(Mission Impossible @ google)
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