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Outline

e Setting the pace
e What’s in a name?
e Why should we bother?
e How to detect interactions?
- Are all methods equally useful?

- Interactions: A curse or a blessing?
- Gearing up to GWAI and GWEI studies

A minimal GWAIs protocol
e Validation and replication: An impossible task?

 Through the looking-glass
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Setting the pace
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Genetic architecture of complex diseases

* Goal in statistical genetics / genetic epidemiology:
- Unravel the biological mechanism underlying complex diseases
- We hope to improve public health or to get closer to personalized
medicine
* Achieving this goal is only possible with “appropriate tools” to
capture the “genetic architecture” of the disease
e Genetic architecture:
- The number of genes that impact disease susceptibility
- The distribution of alleles and genotypes at those genes

- The manner in which the alleles and genotypes impact disease

susceptibility
(Weiss 1993)
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The complexity of complex diseases
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(Weiss and Terwilliger 2000)
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There are likely to be many
susceptibility genes each
with combinations of rare
and common alleles and
genotypes that impact
disease susceptibility
primarily through non-linear
interactions with genetic and

environmental factors

(Moore 2008)
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What’s in a name?
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Genetic associations

A genetic association refers to statistical relationships in a population
between an individual's phenotype and their genotype at a genetic
locus.

 Phenotypes:
- Dichotomous
- Measured
- Time-to-onset
* Genotypes:

- Known mutation in a gene (CKR5-deletion heterozygotes progress slower
to AIDS, APOE €4 allele predicts faster cognitive decline)

- Marker or SNP with/without known effects on coding
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Gene-gene interactions defined ?

» Wikipedia (23/04/2012)

In genetics, epistasis is the phenomenon where the
effects of one gene are modified by one or several
other genes, which are sometimes called modifier
genes. The gene whose phenotype is expressed is
called epistatic ... Epistasis is often studied in relation
to Quantitative Trait Loci (QTL) and polygenic
inheritance...

... Epistasis and genetic interaction refer to different
aspects of the same phenomenon ...
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... Studying genetic
interactions can reveal
gene function, the nature
of the mutations,
functional redundancy,
and protein interactions.
Because protein
complexes are
responsible for most
biological functions,
genetic interactions are a
powerful tool ...
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Gene-gene interactions defined ?

© Original Artist
Feproduction rights obtainable fram
wwwy CartoonStock.com

(Via presentation C Amos)
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X — epidemiology
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Genetic epidemiology

e Aim of genetic epidemiology is to detect the inheritance pattern of a
particular disease, to localize the gene and to find a marker
associated with disease susceptibility

e Genetic epidemiology is highly dependent on the direct incorporation
of family structure and biology.

- The structure of families and chromosomes leads to major
dependencies between the data and thus to customized models
and tests.

- In many studies only indirect evidence can be used, since the
disease-related gene, or more precisely the functionally relevant
DNA variant of a gene, is not directly observable.
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Gene-gene interactions defined: “compositional epistasis”
e The original definition (driven by biology) refers to distortions of
Mendelian segregation ratios due to one gene masking the effects of

another; a variant or allele at one locus prevents the variant at

another locus from manifesting its effect (william Bateson 1861-1926).

e Example of phenotypes (e.g. hair colour) from different genotypes at

2 loci interacting epistatically under Bateson's (1909) definition:

Genotype at gg gG GG
locus B/G
bb White Grey Grey
bB Black Grey Grey
BB Black Grey Grey

The effect at locus B is masked by that of locus G: locus G is epistatic to locus B.
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Gene-gene interactions defined: “statistical epistasis”

* A later definition of epistasis (driven by statistics) is expressed in

terms of deviations from a model of additive multiple effects.

e This might be on either a linear or logarithmic scale, which implies

different definitions (Ronald Fisher 1890-1962).
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A slightly more complicated two-locus model

 Example of penetrance table for two loci interacting epistatically in a
general sense (fully penetrant: either O or 1)

Genotype |bb |bB |BB

aa 0 0 0
aA 0 1 1
AA 0 1 1

(Cordell 2002)

e Enumeration of two-locus models:

- Although there are 2°=512 possible models, because of
symmetries in the data, only 50 of these are unique.
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Enumeration of two-locus models

(Li and Reich 2000)
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Note 1: Heterogeneity

 Example of penetrance table for two loci acting together in a

heterogeneity model

Genotype

dd

aA

AA

— O 0O

= O 0O

===

e« Compare to model M27:

Genotype

dd

aA
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elielie)

NN )

NN )
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Note 1: Heterogeneity

e Dissecting trait heterogeneity

Locus Heterogeneity Trait Heterogeneity Gene-Gene Interaction
Definition when two or more DNA variations in when a trait, or disease, has been defined when two or more DNA variations interact
distinct genetic loci are independently with insufficient specificity such that it is either directly (DNA-DNA or DNA-mRNA
associated with the same trait actually two or more distinct underlying traits | interactions), to change transcription or
translation levels, or indirectly by way of
their protein products, to alter disease risk
separate from their independent effects
Diagram : N . — Allelic Variant i Allelic Variant ii
Allelic Varianti  Allelic Variant ii . .
Trait | Trait Il
Of Locus A Of Locus B - o Of L?c"'s A Of Locus B
1
¥
; Disease X
Lisaase No Disease Disease X
Example Retinitis Pigmentosa (RP, OMIM# Autosomal Dominant Cerebellar Ataxia Hirschsprung Disease (OMIM# 142623) -
One 268000) - genetic variations in at least (ADCA, OMIM# 164500) - originally variants in the RET (OMIM# 164761) and
fifteen genes have been associated described as a single disease, three different | EDNRB (OMIM# 131244) genes have
with RP under an autosomal recessive | clinical subtypes have been defined based been shown to interact synergistically such
model. Still more have been on variable associated symptoms &7 and that they increase disease risk far beyond
associated with RP under autosomal different genetic loci have been associated the combined risk of the independent
dominant and X-linked disease with the different subtypes® variants'?
models?
(http:/Amww . sph.uth.tmc edu/RetNet)

(Thornton-Wells et al. 2006)
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Note 2: Different degrees of epistasis

Penetrance = P(Disease | Genorype)
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Note 3: Incomplete penetrances

e Odds of disease for 2 loci under epistatic scenarios

Multiplicative within Two-locus interaction Two-kocus interaction
a and between loci multiplicative effects threshold efiects
bb Bb BB b 85 88 b Bb BE
as T af 1+5) (1 -1|'2:|2 aa X 2 ¥ aa ¥ * ¥
Aa | =(1+0,) w(1+0,)(1+05) o 140,)(140,)2 Aa | 2 (140} a1+ Aa | = al1+00) x(1441)
AA | a(1+6,)° al 140 o (1 005) w140, )3(1440,)° AA | = al 1402 af 140y A4 | = a1+ 1+l

Odds

ad

Lﬁcu_s T

(Marchini et al. 2005)
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Why should we bother?
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The true occurrences of epistasis

 From an evolutionary biology perspective, for a phenotype to be
buffered against the effects of mutations, it must have an underlying
genetic architecture that is comprised of networks of genes that are
redundant and robust.

e The existence of these networks creates dependencies among the
genes in the network and is realized as epistasis.

e Does suggests that epistasis is not only important in determining
variation in natural and human populations, but should also be more
widespread than initially thought (rather than being a limited
phenomenon).

Université
de Liege b



K Van Steen M2E2, Maastricht, 26 April 2012

The observed occurrences of epistasis — model organisms

e Carlborg and Haley (2004):

- Epistatic QTLs without individual effects have been found in

26,27 28-32

various organisms, such as birds™"", mammals , Drosophila

33 18,34
melanogaster™ and plants™".

- However, other similar studies have reported only low levels of
epistasis or no epistasis at all, despite being thorough and

. . . 35-37
involving large sample sizes :

- This clearly indicates the complexity with which multifactorial
traits are regulated; no single mode of inheritance can be
expected to be the rule in all populations and traits.
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The “observed” occurrences of epistasis — humans
 Phillips et al (2008):

- There are numerous cases of epistasis appearing as a statistical
feature of association studies of human disease.

. . 63

- A few recent examples include coronary artery disease
. 64 . . . 65 . 66
diabetes™, bipolar effective disorder ", and autism .

- So far, only for some of the reported findings additional support
could be provided by functional analysis, as was the case for
multiple sclerosis (Gregersen et al 2006).

 More recent examples, e.g., breast cancer (Ashworth et al. 2011)
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Power to Detect Association for 1,500 Individuals where Both Loci Are
Responsible for 5% of the Trait Variance

Two locus model
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Epistasis network from a hypothetical GWAS

McKi | 2012
(McKinney et al 2012) Edges represent small

T Y ALK gene—gene interactions
NS T between SNPs. Gray
nodes and edges have
weaker interactions.
Circle nodes represent
SNPs that do not have a
significant main effect.
The diamond nodes

represent significant

main effect association.
The size of the node is
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Epistasis as a source of missing heritability?

(Maher 2008)
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From GWAs to GWAIs

« Genome-Wide Association Interaction (GWAI) studies have not been
as successful as GWA studies:

- Possible negligible role of epistatic variance in a population?
(Davierwala et al 2005)

- Consequence of not yet available powerful epistasis detection
methods or approaches?

“ Gene-gene interactions are commonly found when properly investigated ”
(Templeton 2000)
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How to detect interactions?
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A growing toolbox

 The number of identified epistasis effects in humans, showing
susceptibility to common complex human diseases, follows a steady
growth curve (Emily et al 2009, Wu et al 2010), due to the growing number of
toolbox methods and approaches.

Epistatic Interactions ldentified by Year

B0 A

60

40

20+

MNurber of | nteraction Mo dels Found

T T T T T T T T T T
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Year

(Motsinger et al. 2007)
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Classification of epistasis detection methods (Kilpatrick 2009)




K Van Steen M2E2, Maastricht, 26 April 2012

Are all methods equally useful?

e Several criteria have been used to make such a classification:

the strategy is exploratory in nature or not,

modeling is the main aim, or rather testing,

the epistatic effect is tested indirectly or directly,

the approach is parametric or non-parametric,

the strategy uses exhaustive search algorithms or takes a reduced
set of input-data, that may be derived from

= prior expert knowledge or

= some filtering approach

“These criteria show the diversity of methods and approaches and complicates
making honest comparisons”.
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Epistasis : a curse or a blessing ?
The curse of dimensionality

* The curse of dimensionality refers to the fact that the convergence of
any parametric model estimator to the true value of a smooth
function defined on a space of high dimension is very slow (Bellman and
Kalaba 1959).

e This is already a problem for main effects GWAS, when trying to
assess those SNPs that are jointly most predictive for the disease or
trait of interest, but is compounded when epistasis screenings are
envisaged

“Parametric model (mis)specification is of major concern, especially in the
presence of high-dimensional confounders”
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Missing data

e For 4 SNPs, there are 81 possible combinations with even more
parameters to potentially model and more possible empty cells ...

SNP 3
CC Cc cc
SNP1 SNP1 SNP1
AA | Aa | aa AA [ Aa | aa A |Aa |aa
A
Do SNP1BB lelee@l|[BB| @) alel||B liele 0@
Bb g |B.|e|B? | Blce ~{ Bb 0 lcal@a
bb @ oo gp|lPh el \Bb\él 28lom
ﬁ AA | Aa |aa AA | Aa |aa A [Aaaa
A
P Dd SNP2EBloe| “—we{{BB fe aelel]||B =0| 08 ty Cell
4 Bb a@!| = i.': | B =] u_,e;_-.;
bb | g g@ [|PP |@e =0 H”W#gjé/-
AA | Aa | aa AA |Aa |aa | }—TA|Aa |aa
1BB BB oes®l 1B |2
dd| SNP el@ @ o0 o0 @ e |® .7
Bb g la| “[[Betal0|a] Bo g ..
bb o] @ “[[t0 |wolenl o[t 0e] o ¥

(slide: C Amos)

“A revision of LD based imputation strategies for GWAIs is needed”
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The multiple testing problem

e The genome is large and includes many polymorphic variants and
many possible disease models, requiring a large number of tests to
be performed.

* This poses a “statistical” problem: a large number of genetic markers
will be highlighted as significant signals or contributing factors,
whereas in reality they are not (i.e. false positives).

~500,000 SNPs span
80% of common

variation (HapMap)
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Data Integration: a solution?!

 The genome on its own has turned out to be a relatively poor source

of explanation for the differences between cells or between people
(Bains 2001)

 Broad definition (van Steen):
“Combining evidences from different data
resources, as well as data fusion with
biological domain knowledge, using a variety
of statistical, bioinformatics and
computational tools”.
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Data Integration: a solution?!

e Where in the GWAI process?

(slide: E Gusareva)

B
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Data Integration: a solution?!

Where?

How?

Comments

Data preparation / Quality
control

Impute using different data
resources

Filling in the gaps or
inducing LD-driven
interactions?

Variable selection

Use a priori knowledge
about networks and
genetical / biological
interactions (e.g., Biofilter)

Feature selection
(dimensionality reduction)
or loosing information?

Modeling

“Integrative” analysis

Obtaining a multi-
dimensional perspective or
combining/merging data in
a single analysis?

Interpretation (validation)

Use a posteriori knowledge
(e.g., Gene Ontology
Analysis, Biofilter — Bush et
al. 2009)

Targeting known
interactions or ruling out
possibly relevant unknown
interactions?

Université
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Gearing up to GWAIs and GWEIs

* Interactions are commonly assessed by regressing on the product
between both ‘exposures’ (genes / environment)

ElY |Gy, Gy, X) = By + B1G1 + B2Go + Bx X + BG1G;

with X a possibly high-dimensional collection of confounders.

 There are at least 2 concerns about this approach:
- Model misspecification = we need a robust method
- Capturing statistical versus mechanistic interaction = guard against

high-dimensional (genetic or environmental) confounding)
(adapted from slide: S Vansteelandt)
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Mechanistic interactions

e Tests for sufficient cause interactions to identify mechanistic
interactions aim to signal the presence of individuals for whom the
outcome (e.g., disease) would occur if both exposures were

“present”, but not if only one of the two were present.
(Rothman 1976, VanderWeele and Robins 2007)

« For E|Y|G,Go X) = B+ 511G + £2Go + Bx X + BG LG
a sufficient cause interaction is present if
5 > Do
 When both exposures have monotonic effects on the outcome, this
can be strengthened to

B> 0.

(X suffices to control for confounding of the estimation of G1, (5 effects)

Université
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Mechanistic interactions (adapted from slide: S Vansteelandt)

e |Sssues:

- Tests for sufficient cause interactions involve testing on the risk
difference scale

- Reality may show high-dimensional confounding

- Estimators and tests for interactions are needed that are robust
to model misspecification
e Possible solution:

- Semi-parametric interaction models that attempt to estimate
statistical interactions without modeling the main effects
« Comment: already hard in the case of two SNPs, using a theory of
causality that is not widely accessible.
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Multifactor Dimensionality Reduction (MDR)

(Ritchie et al 2001)

A model-free and non-parametric approach to epistasis detection
* Was proposed to overcome the problem that the type of encoding of

SNPs affects the results in generalized linear models; does not

assume a specific genetic model

 Measures the association between SNPs and disease risk using
prediction accuracy of selected multifactor models (relies on CV!!!).
—
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Model-Based Multifactor Dimensionality Reduction (MB-MDR)
e Graphical workflow
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Model-Based Multifactor Dimensionality Reduction (MB-MDR)
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Assessing significance of the k-factor models, hereby correcting for multiple testing.
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MB-MDR advantage 1

 Some important interactions could be missed by MDR due to pooling
too many cells together

Table 3: MB-MDR first step analysis for interaction between

Table 1: Two-locus interaction between snp40 and snp252 in the - .
sup40 and snp252 in the bladder cancer study.

bladder cancer study. Genotype distribution and MDR high-low
risk category.

- . supd0 x snp262  Affected Unaffected p-value Category
supd0 x snp252  Affected  Unaffected  A/U ratio  MDR risk I I ¢ I S

Genotypes (Cases) (Controls) category GCHOE}"}.)C
cl = (0,0) 88 77 1.14 H cl = (0,0) =S 77 0.9303 0
&=l s - e - 2 = (0,1) 102 114 0.0562 L
c3 = (0.2) 38 3 : 0 fn . o L -
ot = (10) %0 i 084 I e3 = (0.2) 38 34 1.0000 0
5 = (1,1) 96 37 2.59 H cd = (1,0) 50 59 0.1229 0
ob = (1.2) 18 28 0.64 L c5 = (1,1) 06 37 0.0000 H
T = (2,0) 12 G 2.00 H o ; -
ol 5 5 ol - c6 = (12) 18 28 0.0675 L
0 = (2.2) 6 6 1.00 L c? = (2,0) 12 §] 0.3399 0
- 8 = (2,1) 14 18 0.3668 0
TOTAL 124 379 1.12 cH = (2,2) 6 6 1.0000 0

H: High risk: L: Low risk
H: High risk; L: Low risk; 0: No evidence

(Calle et al 2008)
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MB-MDR advantage 2

 MDR has difficulties with main effects and confounding factors

corrections, as well as non-dichotomous outcomes

Pred

50 52

45

first order

second
order

third erder

farth
order

60

Acc

Fig. 1. Average Balanced Training accuracy (Acc) versus Average Balanced
Predictive accuracy (Pred) for the 100 models with higher balanced training

accuracy for the whole sample. First, second, third and forth order

interactions are considered.
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Table 2. First, second and third order
significant interactions identified by MDR in
the bladder cancer study

Interaction order SNP1  SNP2 SNP3

2 151 21
169 145
179 145
151 T2
145 129
209 145

3 230 G4 L7
239 179 145
263 bt 81
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MB-MDR advantage 3 (Cattaert et al 2010)
« MDR has low performance in the presence of genetic heterogeneity

Ritchie Model 1 (p=0.5) Ritchie Model 3 (p=0.25) Ritchie Model 5 (p=0.1)
T T o
=t 2 b
5] 5] &
a S e e e e e i g a
P T T e
- - ‘_—_-—_-_-.._=.—__,__,:_____:,.._..:———"""'=_-_"‘ -
Dhﬁ DI'I DIE DIS '|I 0.05 DIW DI2 D‘S 'II |]|I:|5 DI'I DIQ Dlﬁ 1‘
Pe Pe Pe
Ritchie Model 2 (p=0.5) Ritchie Model 4 (p=0.25) Ritchie Model 6 (p=0.1)

o o o
[ =~ 4 L
= = =
g - — Hwsl g o
o =t =~ max(Hvs LO, Lvs HO) o =
s= max(Hvs LHvs LO, Lvs HO)
-+ MDR
{e) uw
™ ™
= =
— Both pairs
— First pair
— Atleast one pair
= =
T T T T ! T T T T q T T T T |
0.05 01 02 05 1 0.05 01 0.2 05 1 0.05 01 0.2 05 1

Pe Pe Pe
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MB-MDR advantage 4 (Cattaert et al 2010)

 Maximize power for the already “difficult” epistasis screens

Ritchie Model 1 (p=0.5) Ritchie Model 3 (p=0.25) Ritchie Model 5 (p=0.1)
- s - -
H
3 = -
o = o
x o x :
o w o o o w
g2 g1 g
a a a
& & &
o ) o 1
= e
o o2 o
T T T T 1 T T T T 1 T T T T 1
0.05 0.1 0.2 0.5 1 0.05 01 0.2 05 1 0.05 0.1 0.2 0.5 1
Pe Pe Pe
Ritchie Model 2 (p=0.5) Ritchie Model 4 (p=0.25) Ritchie Model 6 (p=0.1)
- 2 -
o = o
& — iR . =
2w == max(Hvs LO, Lvs HO) L) 2w
8‘:’ «=- maxiHvs LHwvs LO, Lws HO) 8‘:' 8‘:’
<+ MDR
[Tl Wy 0 —
o — Error-free = gl ====""=-- '—‘—"-\—.-..;__—;:_______
— Missingness e = i N
— Genotyping errar
— Phenocopy
o o2 o
T T T T 1 T T T T 1 T T T T 1
0.05 0.1 0.2 0.5 1 0.05 01 0.2 05 1 0.05 0.1 0.2 0.5 1
Pe Pe Pe

Université
de Liege b




K Van Steen M2E2, Maastricht, 26 April 2012

MB-MDR advantage 5

e False positive percentages under alternatives (Cattaert et al 2010)
Model 1 Model 6
Error MB-MDR MDR|{MB-MDR MDR
None 6 9 5 23
Genotyping Error 2 14 |4 23
Genetic Heterogeneity|4 7 2 17
Phenocopies 6 8 3 11
Missing Genotypes 7 16 |7 24

Family-wise error rates (FWER) are shown for MB-MDR (MB) with p. = 0.1 using the T =
| Tu| test approach and MaxT multiple testing correction and for MDR screening first-to-
fifth-order models. Model 1: pure epistasis, MAF=0.5; Model 6: pure epistasis, MAF=0.10
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The MB-MDR Software

Downloads

e A simplified version of MB-MDR is available in the free software R as
an mbmdr package (http://cran.r-project.org/) and described in Calle
et al (2010)

A comprehensive MB-MDR executable file of an efficient C++
implementation is available from K Van Steen
(kristel.vansteen@ulg.ac.be) or via www.statgen.be

Features

e Continuous, dichotomous, censored; univariate and multivariate
e Covariate correction on-the-fly

e Population-based and family-based designs
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The MB-MDR Software

e Multiple testing (memory
usage)

o / e Parallel run on 50 quad-core
/ AMD opteron 2.1 GHz

500 000

°|da|€orithn/
. MEMDR 2.6.2 MEBYDR 2.5.2
250 000 &
/ Sheg Palrs oF SNP Sequential run Perallel run
new algorithm

—— . . 10 £5 -t 1sec

4] 100 200 300 400 S00 600 700 200 300 1000

100 1,950 1 min 23 sec 1 58c

10,000 49,905 000 = O days

B
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A minimal GWAIs protocol
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K Van Steen

GWAIs protocol

OUTLIME OF THE AMALYSIS

Sample collection and genotyping

HWE test (in founders or controls), marker call rate » 95%, marker frequency (MAF > 0.05)

Sample and marker quality control

uses biological information about gene-gene relationships and
gene-disease relationships to construct multi-5NP models before conducting any

statistical analysis. Model production is gene centric.

Markers prioritization lat
: - The Kyoto Encyclopedia of Genes and Genomes, - SOUrce
of curated immune signaling and cancer pathways, PFAM - Protein Families Database,
- database of curated core pathways and reactions in human biclogy,
[P - The Database of Interacting Proteins
-
Marker LD pruning Window size 52 bp, window increment 1 bp, LD r*2 threshold 0,75
L
Phen I'll E_adjustment for covariates and For continuous traits we apply polygenic model with covariates and then
norma _Eatm n . : . normaliz the residuals by rmtronsform; For binary traits - this step is skiped.
. Removing population stratification
i Ge I WMEBE-MDR,, is a semi-parametric data mining technique for fast identification of
for main affect SHPs single-5NP assocations, without the need to make restrictive assumptions about the
. modes of inheritance
f is a dimension reduction method
Genome-wide epistasis screening for exploring pair-wise gene-gene interactions beyond potential main effects of the pair's
constituents.

Biological interpretation of the statistical findings
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A GWAIs protocol in action

METHOD OUTLIME OF THE AMNALYSIS
'l

Sample collection and genotyping

L

-

Sample and marker quality control

Marker LD pruning

Genome-wide screaning
for main effect SNPs

Genome-wide epistasis screening

HWE test (P = 10e-06) = done in controls: marker frequency (MAF = 0.05)

120 candidate genes** and 160 groups selected using key words “crohn®, “enteritis”,

“inflam"™, “autoimmune”
“intestine”, “lleocolic”,

511209018
rs2201841
rs7546245%
rs11209039
rs1933641
rs13126272
rs13361189
517116117
rs2076756
rs8060558
rs734271%
rs7234029

rs2513574
rs2515200
rs11936062
rs1713671
rs4338056
rs1217414

1p3t1.3
1p3L.3
1p3L.3
1p3L.3
1gd1
4q35.1
Sg33.1
11q23.2
16q12.1
16q12.1
16q12.1
18p11.21

rs17116117
rs17116117
rs13126272
rs17116117
rs17116117
rs12853584

23R

IL23R

between IL23R/IL12RB2
between IL23R/IL12RB2
RRP15

ACSL1

IRGM

HTR3B

NOD2

CYLD

CYLD

PTPM2

“immune™, “bowel”, “gastrointest”
diarrhea”, “stenosis”, and “cytokine™

Ajf0.497
G/ 0.345
c/0.350
G/ 0.439
T/ 0.053
T/ 0.342
c/o.082
G/0.052
G/ 0.270
C/ 0.207
Af0.488
&/0.174
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Main challenge: Assess which findings to pursue ~ interpretation
e Challenges:
1.Same chromosome or not?

2.What are the LD-friends related to our pairs of interest?

3.Target pairs that can be replicated by different methodologies?

= Different steps in the GWAI process
= Different approaches within one step

4.Target pairs that can be mapped to underlying biological epistasis
networks or pathways?

Université
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Challenge 1

e Same chromosome or not? (Composites in LD = haplotype analysis)

r2=0.110
r2=0.047
r2=0.022

r2=0.027

r2=0.027

Université
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SNP SNP position Gene  Main effect MAF
rs17116117 chr11:113801591 HTR3B 0,001 0,052
rs2513574 chr11:113681305 USP28 >0.05 0,123
rs2519200 chr11:113684809 usp28 >0.05 0,238
rs1713671 chr11:113674838 USP28 >0.05 0,416
rs4938056 chr11:113786539 HTR3B >0.05 0,400
rs11936062 chr4:185721370 SLED1 >0.05 0,165
rs13126272 chr4:185731940 ACSL1 0,001 0,342
rs1217414 chrl:114412667 PTPN22 >0.05 0,273
rs12853584 chr13:31279946  between USPL1/ALOX5AP >0.05 0,272
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Challenge 2
 What are the LD-friends related to our pairs of interest?

LD plots (r?) - before LD pruning:

| ALOX5AP
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chromosome 13

chromosome 1

Synergy Disequilibrium (SD) plots: LD # interaction

K Van Steen
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Challenge 3
* Different steps in the GWAI process

- What is the danger / benefit of filtering?
Application on WTCCC Rheumatoid Arthritis (RA)

g%& Before Biofilter: 388 pairs

N After Biofilter: G517 pairs

W Overlap: 223 palrs

165 “lost” pairs i
contain 191 SNPs: K§§§§
— 18 of them passed AN
the Biofilter. f\\\\§§§§ §
— 173 did not: Wff\ﬂ%‘ :
* 55 can be mapped to %&&& ;
genes. H%%ﬁﬁ 289 new pairs after
* 118 in intergenic X\Qﬁk\\\ Biofilter: is Bonferroni
regions. ' - correction too severe?
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* Different approaches within a single step of the GWAI process

- On the same Bio-filtered data, up-scaled logistic regression
software (wan et al. 2010) reports 512 significant pairs and MB-MDR

401: 395 significant pairs in common for RA ...

Irteraclion

i

[
L

B

Université D
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L |
o -
(]

i

o -
: gl
o . o -
e 3
R
ey
I I | | I
G & 100 120 140

ME-MER Chi 5

117 pairs detected by BOOST but not by MB-MDR!
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More

- SD between SNPs in pairs detected by both BOOST only

false positives by regression approaches?
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- For the aforementioned unfiltered CD data, BOOST finds 26
additional significant pairs, compared to MB-MDR on Bio-filtered
data: What to believe?

MB-MDR rank First SNP Second SNP  Position SNP1 Position SNP2 Gene 1 Gene 2
rs11938418 rs1553460  chr4:18194943 chr4:18195861
rs10901198  rs302925 chr9:135559249 chr9:135573396 GTF3C4 BOOST
rs1324132  rs6921387  chr6:93748699 chr6:93804582 Ivsis:
rs2772006  rs302925 chr9:135573396 chr9:135573396 GTF3C4 analysis:
rs1553460  rs1503880  chr4:18195861 chr4:18202168 32 SNP pairs
1 rs2513574  rs17116117 chr11:113681305  chr11:113801591  USP28 HTR3B
2 rs2519200  rs17116117 chr11:113684809  chr11:113801591  USP28 HTR3B p-value < 0.05
rs17116117 rs12150025 chr11:113801591  chrl17:52932154 HTR3B near TOM1L1 (Bonferroni)
rs1324132  rs16870683 chr6:93748699 chr6:93788145
rs1324132  rs7769656  chr6:93748699 chr6:93757068
3 rs11936062 rs13126272 chr4:185721370 chr4:185731940 SLED1 ACSL1
rs17116117 rs10483456 chr11:113801591  chr14:36036167 HTR3B RALGAPA1
rs1525791  rs17116117 chr7:39156558 chr11:113801591  POU6F2 HTR3B
rs17523800 rs1553460  chr4:18194174 chr4:18195861
rs10500979 rs10219185 chr11:24493876 chr11:24504903
rs10018675 rs1553460  chr4:18117532 chr4:18195861
rs6663717  rs1782127  chrl:90267116 chr1:90280342 LRRC8D
rs1525791  rs10483456 chr7:39156558 chr14:36036167 POU6F2 RALGAPA1
rs1553460  rs16896754 chr4:18195861 chr4:18243532
rs4471699  rs11863150 chr16:30320307 chr16:30385503 LOC595101 MYLPF
a rs1713671  rs17116117 chr11:113674838  chr11:113801591  rs1713671  HTR3B
5 rs4938056  rs17116117 chr11:113786539  chr11:113801591  HTR3B
rs4698216  rs1553460  chr4:18129723 chr4:18195861
rs1525791  rs12150025 chr7:39156558 chr17:52932154 POU6F2 near TOM1L1
rs7260296  rs4134816  chr19:7635689 chr19:7693751 PNPLAG LOC100131801
rs4319541  rs17116117 chr11:113451055  chr11:113801591 HTR3B
rs2320289  rs1553460  chr4:18162104 chr4:18195861
rs3797203  rs17116117 chr5:93788579 chr11:113801591  C5orf36 HTR3B
rs10483456 rs12150025 chr14:36036167 chr17:52932154 RALGAPA1  near TOM1L1
rs4130345  rs17116117 chrl11:113436487  chr11:113801591 HTR3B
rs765534 rs17116117 chr11:91590686 chr11:113801591 HTR3B
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Different approaches within a single step of the GWAI process
(continued)

 Which epistasis detection method to choose?
 We have chosen MB-MDR and BOOST but there is an abundance of
epistasis methods (Van Steen 2011) and even a larger compendium
of “comparison papers” is available ... Was our choice a clever one?
e Two criteria that help making a choice are:
- power

- Type | error (false positive rate)
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Power (pure epistasis scenario’s)

Model R1, no GH Model R2, no GH Model R3, no GH Model R4, no GH Model RS, no GH Model REG, no GH
Lo 10 14 14 1.0 L0
0.2 B2 - O 4 &8 1 G A oA
ne b - i nE- 0E 0k
04 0d- (T 047 0.4 04
iz 0z- 0z o2 02 02
0o oo 0 1 il 041 0.0 00

Model R1, GH both

Model R2, GH both

Maodel R3, GH both

Model R4, GH both

Model RS, GH both

Model RE, GH both
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BOOST (dark blue)

EpiCruncher optimal options (light blue)

MB-MDR (green)
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PLINK epistasis (dark yellow)

PLINK fast epistasis (light yellow)

EPIBLASTER (red)
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Type | Error (pure epistasis scenario’s)

Model R1, no GH Wiodel RZ, no GH Model B3, no GH Model R4, no GH Model R3, no GH Model R6, no GH
015 016 015 046 0145 346
’ - . . - i
e o v Lo o

Model R1, GH Model R2, GH Model R3, GH Model R4, GH Model RS, GH Model RG, GH
- - s - -
mrmoinnrrmerommorom
BOOST (dark blue) PLINK fast epistasis (light yellow)

EpiCruncher optimal options (light blue)

MB-MDR (green)

EPIBLASTER (red)

PLINK epistasis (dark yellow)
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e (Concerns:

- Are the comparisons “honest”?
- What is the “core” (the ABC) of the method?
= A: Pre-processing (screening); B: core; C: multiple testing

EpiCruncher
Bonferroni Permutations = E
LR test Score test LR test Score test ® |22
Test P-value Test P-value Test P-value Test P-value % = LZ’
statistic statistic statistic statistic » =
M=1| M=5|M=1|M=5|M=1|M=5|M=1|M=5|M=1|M=5|M=1|M=5|M=1|M=5| M=1| M=5
rs17116117 | rs2513574 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs2519200 X X X X X X X X X X X X X X X X X X X
rs17116117 | rs4938056 X X X X X X X X X X X X X X X X X X
rs17116117 | rs1713671 X X X X X X X X X X X X X X X X X
rs13126272 | rs11936062 X X X X X X X X X X X X X X X X X
rs17116117 | rs7126080 |G X | X | x x | x | x | «x
rs3770132 rs1933641 X X X X
rs12339163 | rs1933641 X X X X
rs12853584 | rs1217414 | X X x | x
rs17116117 | rs1169722 X
number significant 6 6 6 6 7 5 7 5 6 7 6 6 7 6 7 6 6 3 3
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Université

- Only by investigating the “information overlap” and “information
complement” induced by different methodologies applied to the
same data, one is able to either “interpret” different findings
using different methods as a “pain” or a “confirmation”.

Ranks — same input WTCCC CD dataset based on 7,072 SNPs

Epistasis Detection Method

SNP Pair MBMBDR  EpiCruncher BOOST PLINK EpiBlaster
rs17116117 rs2513574 1 1 1 1 1
rs17116117 rs2519200 2 2 2 2 2
rs11936062 rs13126272 3 3 3 179 100
rs17116117 rs1713671 4 4 4 5 100
rs17116117 rs4938056 5 5 5 3 100
rs1217414 rs12853584 6 6 7 251 100
rs1169722 rs17116117 7 7 9 82 4
rs17116117 rs7126080 8 8 6 81 100
rs13126272 rs4862419 9 9 8 198 100
rs1933641 rs6099309 10 309 308 297 100
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Challenge 4

e Target pairs that can be mapped to underlying biological epistasis

networks or pathways?

- Criteria for assessing the functional significance of a variant

Criteria

Muclectide sequencs

Evolulicrery
congarvation

Fopulation genetics

Expetimental evidence

Exposures (for example,
genctype—environment
imeraction studies)

Epidemiclogical
evidenca

Strong support for

functional significance

Variant disrupts a known furctional
or structural rmotf

Cronsislenl evicenices o ollipls
approaches for conservation across
specias ard miltigens families

In the abeence of laboratory error, strong
clendations from expecied population
freqLencies in cases and/or controls in a
particular ethnicity

Consistent effecs from mulipls lines of
expaimental evidence: effect in human
context is establshed; effec: in target
tizsu= is knoen

Varient is known to affect the
metebolism of the exposurein
the relevart target tissue

Consistent and reproducible eports of

Moderate support for

functional signifizance

Variantis amissense change or disrupts a

putative functional motif; changes to protsin

tructure micht oocur

Eviclenue [ur conssrvalion suross specics
ar muligene families

In the ebsence of labaorecory evor, moderate
to smal deviations from sxpeded population
frequencies in cases and/cr controls; effects

ere notwell characterized by ethniciy

Zome possibly inconsistent) evidence for
function from exparimeantal daa; effectin
hurnan context or target tissue is unclear

variant might affec: metabolism of the
exposure or one of ite componsnts;
effect in target tissue might not be known

Feports of association exist;

modlzrate-to-large magnitude associations replicafion studies are naot availalle

Evidence against
functional significance

Varnant disrusts a non-cading
ragion with ro known functioral or
structiral motif

Fucleolide cr arnino-scid residus
rot conserved

Populetion genetics data indicates
ro dedations from expectad
proportions

Experimentsl evidence consistently
indicatze no functional effect

Variant doss not afect metabdizm
of exposure of interest

Pricr sludies show no efiect of
variant

Université
de Liege b
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- Criteria for assessing the functional significance of gene-gene
interaction patterns are largely lacking
= Would involve overlaying “statistical” epistasis networks with
“biological” networks

I”

= Would involve linking hubs in “statistical” epistasis networks

to functional groups or pathways

Université
de Liege b
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Replication and validation of GWAIs:
An impossible task?
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(Mission Impossible @ google)
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de Liége b’




K Van Steen M2E2, Maastricht, 26 April 2012

Replication

e Replicating an association is the “gold standard” for “proving” an
association is genuine

e Most epistasis signals underlying complex diseases will not be of
large effect. It is unlikely that a single study will unequivocally
establish an association without the need for replication

e Guidelines for replication studies include that these should be of
sufficient size to demonstrate the effect ... and should involve the
same SNPs for testing ....

Université
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Optimal conditions for interaction replication
* Showing modest to strong statistical significance
* Having common minor allele frequency (>0.05)

 Modest to strong genetic effect sizes (parametric paradigms)

Effect size
50.0

1]

Modest

Low

Rare variants of
small effect
very hard to identify
by genetic means

Low-frequency
variants with
intermediate effect

Université
de Liége b’

0.001

—— 0.005 0.05
Pee] i) [

Allele frequency

Compare to the
diagonal focus region

of GWAs
(Manolio et al. 2009)
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Validation
e Validation is not replication:

Random variation

F

Original
study

&

Sample

G”Qh Systematic variation

population

. Different
population

Sample

L

Replication Validation

(Igl et al. 2009)
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Through the looking-glass
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Meta-GWAI studies

e Given the availability of a comprehensive meta-analysis toolbox, it
may be surprising that hardly any meta-GWAIs have been published
as the core topic of the publication.

e This may in part be explained by the absence of strict guidelines or
best practices for epistasis analysis, and the fact that new epistasis
screening approaches arise every day.

e Additional complicating factors include:

- Traditional meta-analysis methods in genetic association studies
usually assume a specific genetic model of action to summarize
the effect of genetic markers on a phenotype.

- GWA imputation strategies ensure that different data sets are
made comparable, but most be revised in the context of GWAIs.

Université
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Population based registries integrated with HTP omics

Literature andontologies
CitExplore GO

Genomes

Ensembl Ensembl
Genomes, EGA

Nucleotide sequence
EMBL-Bank

Proteomes
UniProt PRIDE

) —a= : ) Protein structure
Protein families, L_______:-:" e &5 '-% = PDBe
motifs and domains { Mty TR

i J Chemical entities

InterPro ' 4
. ;.+¢ <) ChEBI ChEMBL
Protein interactions *;” =)
| IntAct /

- #
Pathways
Reactome F’.
- .

Systems
BioModels

Gene expression ——
ArrayExpress F

(www.elixir-europe.org 2010)
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Omics integrative approaches for GWAIs and GWEIs
Example in GWAIs
e Before and after modeling using e.g. Biofilter
. Assess and incorporate “optimal” scoring systems to
accumulate evidence from these data bases
- Allow for uncertainty involved in the data source entries
. Acknowledge the complementary characteristics of each of the
available data sources
- Allow for different assignment strategies from genetic variants
to genes
Example in GWEIs
e When environmental epigenetic effects are operating, a heavily
biology assistant-driven approach is required

Université
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K Van Steen

Integration of technologies

i [=5LY
Miater lals

E-SCiE":E Physical Sclences o

Materal Sciences S
Theoretical Chamistry Aihin

Transport = T Thearatical Physics .

Resourcas & i
" Molecular

Engineering : Databaka ;
Sclences and i Techinology ~ Parallal 508 bioscionce
Algorithms & §

Environment | Intaraction &
Performamca
Bio-

Medical imaging, N Visualization 2 |
Fluid physics, Clirmates . optimization |

modeling Informatics

: \ , Life Sciences

Mumearical | Mathematical SiGintonmatics

CHmate 1 ; s : O ]
“ | B Analysis | Modeling S jiolecular Medicine

A d 5F Brain Science
Medical Cancer

Technology

Meure-

sClance

(Harmonising biobank research — Brussels 2009)
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THE

YOURE TRYING TO PREDICT THE BEHAVIOR
OF ? JUST MOPEL
ITAS A - AND THEN ADD
SOME. SECONDARY TERMS To ACCOUNT PR

\
EASY, RIGHT?
}
50, WHY DOES NEED
A WHOLE. ToURNAL, ANYWAY?

£ |

i3

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES,
BUT THERES NMOTHING MORE QBNOXIOUS THAN
A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

END
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