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Genetic association studies aim to detect association
between one or more genetic polymorphisms and a trait,
which might be some quantitative characteristic or a
discrete attribute or disease. Association differs from
linkage in that the same allele (or alleles) is associated
with the trait in a similar manner across the whole
population, while linkage allows different alleles to be
associated with the trait in different families. However,
genetic associations arise only because human
populations share common ancestry and it has been
argued that association studies are really just a special
form of linkage study in which the extended family is the
wider population. In linkage analysis, data from
distantly related individuals are more powerful for
detecting small effects than data from closely related
individuals, but this advantage is offset by the fact that,
owing to increased possibility for linkage to be destroyed
by recombination, linkage extends over shorter distances
in distantly related individuals, necessitating a greater
density of markers. Association in apparently unrelated
people represents the extreme of this effect: association
analysis has greater power than linkage studies to detect
small effects, but requires many more markers to be
examined. The fact that association operates only over
short distances in the genome has for long guaranteed
association studies an important place in fine mapping
genetic loci initially detected by linkage. More recently, it
has been realised that genetic susceptibility to common
complex disorders probably involves many genes, most
of which have small effects. This fact, together with the
identification of large numbers of single nucleotide
polymorphisms (SNPs) throughout the genome and
rapidly falling genotyping costs, has led to the
importance of association studies in genetic
epidemiology. Indeed, it is possible to envisage the
search for disease susceptibility genes being done by
screening large numbers of SNPs across the whole
genome.1,2

Although family-based studies still have a place in the
study of population association (in addition to linkage),
such research has much more in common with classic
epidemiological studies of environmental and

behavioural risk factors than do linkage studies.
Consequently, issues of study design and analysis have
more in common with the rest of epidemiology.
Parallels with classic epidemiology are also clear if we
consider why association between a genetic
polymorphism and a trait might exist in a given
population: (1) the polymorphism has a causal role;
(2) the polymorphism has no causal role but is
associated with a nearby causal variant; or (3) the
association is due to some underlying stratification or
admixture of the population. In a mixed population in
which strata have different environmental exposures or
the founder populations entail different genetic risks,
any locus whose allele frequencies differ between strata
or founder populations will be associated with disease to
some extent, whether or not it is near to a causal locus. 

Direct association
The first of these forms of association is termed direct
association, and studies of direct association target
polymorphisms which are themselves putative causal
variants. This type of study is the easiest to analyse and
the most powerful, but the difficulty is the identification
of candidate polymorphisms. A mutation in a codon
which leads to an aminoacid change is a candidate
causal variant. However, it is likely that many causal
variants responsible for heritability of common complex
disorders will be non-coding. For example, such variants
may cause variation in gene regulation and expression,
or differential splicing. We do not know enough to
predict which variants may have such effects. Thus,
direct association studies only have the potential to
discover some of the genetic causes of disease and
disease-related traits. However, some 10 000–15 000
aminoacid changing SNPs with minor allele frequency
exceeding 1% in Europeans have been identified, and
screening of these in whole genome studies is feasible. 

Indirect association
In the second type of association, the polymorphism is a
surrogate for the causal locus and this type of association
allows us to search for causal genes in indirect
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We review the rationale behind and discuss methods of design and analysis of genetic association studies. There are

similarities between genetic association studies and classic epidemiological studies of environmental risk factors but

there are also issues that are specific to studies of genetic risk factors such as the use of particular family-based

designs, the need to account for different underlying genetic mechanisms, and the effect of population history.

Association differs from linkage (covered elsewhere in this series) in that the alleles of interest will be the same

across the whole population. As with other types of genetic epidemiological study, issues of design, statistical

analysis, and interpretation are very important.
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association studies. However, indirect associations are
even weaker than the direct associations they reflect, and
it will usually be necessary to type several surrounding
markers to have a high chance of picking up the indirect
association. Indirect association studies are more
difficult to analyse, and there is still debate as to the best
methods. They are also less powerful than direct studies.
Finally, by contrast with direct studies, until we can be
sure that we have adequately charted the polymorphisms
in a region, there cannot be a definitive negative result
since we cannot exclude the possibility that a causal
variant exists but is not picked up by the markers
chosen. The next phase of the Human Genome
Project—the International HapMap Project3—aims to
improve our knowledge in this respect. This project will
be discussed in more detail in a later paper in this
series.4 The imminent completion of the second phase of
this study, plus rapid recent advances in high
throughput genotyping technology, mean that screening
of perhaps 80% of the genome for disease associations is
becoming feasible, if costly. In the meantime, most
indirect association studies concentrate on candidate
genes identified either on the basis of their known
function or from animal models. Even as whole genome
studies are increasingly used, such candidate gene
studies will continue to play an important part. Such
studies will allow typing of markers more densely, not
only to improve detection of true causal associations but
also to increase confidence that negative findings
represent true negatives.

Confounded association
The final type of association is that due to confounding
by stratification and admixture (substructure) within the
population. Confounding, as in the rest of epidemiology,
raises the possibility both of generating false findings
(positive confounding) or obscuring true causal
associations (negative confounding). However, although
the problem of unobserved confounding is intractable in
classic epidemiology, dictating limits on the size of
causal effect that can be safely inferred from
observational studies,5 genetic epidemiology offers
possibilities for circumventing the difficulty. 

The most obvious way of avoiding this difficulty is to
measure association in well-mixed, outbred populations.
Failing this, any stratification and admixture effects
could be reduced by matching (in the design or the
analysis, or both) by geographical region and by any
markers of ethnic origin. In this manner, comparisons
can be made, as far as possible, within homogeneous
subpopulations. It has been argued that such devices
will avoid the small confounding effects expected to arise
from stratification and admixture.6 However, this view
has been questioned. Meta-analyses7 have indicated that
causal variants for complex disease might, when looked
at one at a time, have rather small effects and large
studies will be necessary to detect them.8 Against this

background, even modest confounding by stratification
and admixture could have important repercussions. It is
not yet known how serious this problem will be for
association studies in populations of European origin,
but it poses a grave difficulty in admixed populations
such as African Americans or Afro-Caribbeans.9

Admixture does present opportunities for gene mapping
by exploiting a back-crossing experiment of nature, but
such studies are beyond the scope of this article.

The first method for dealing with confounding by
population structure is matching by family; if
comparisons are made between siblings with the same
parents, confounding by population structure is
excluded. However, such studies are not always very
powerful and they are difficult, or even impossible, to
undertake on a sufficiently large scale to detect genetic
associations reliably. The role of such studies will
probably be to confirm findings generated by less
expensive methods and to answer more complex
secondary questions. 

The second method for dealing with the problem is to
seek genetic markers for population substructure, or
ancestry informative markers—loci whose allele
frequencies differ between the founder populations.9–12

Inevitably there will be some loss of power due to the
imperfect measurement of admixture proportions. This
loss of power might be modest for populations in which
founder populations are very different and there are
good markers of substructure, such as African
Americans,9 but it remains to be seen whether this
method can be applied efficiently to control for the
smaller differences which might exist, for example,
within European populations.

The third approach is genomic control.13–15

Confounding is regarded as a random process,
potentially affecting all loci, such that the effect of
positive confounding is to increase the type 1 error (false
positive) rate for association tests; although conventional
tests for association are correct if regarded as tests for
association within the population studied, they will have
an inflated false positive rate when judged as tests of
causal effects in the presence of stratification or
admixture (or both). Another perspective (more intuitive
to geneticists) is that, although people in a population-
based association study can be regarded as having been
independently sampled from the particular population
studied, they are not independently sampled when
regarded as a sample of all mankind; they are cryptically
related because they have been drawn from the same
population. As a result, when regarded as tests of the
causal null hypothesis, conventional �2 tests for
association have greater variance than they should and
use of conventional significance levels will lead to a
higher false-positive rate.

Genomic control is less ambitious than other methods
that control for confounding by substructure in that it
seeks only to control the false positive rate by increasing
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the threshold required for statistical significance. The
factor by which the variance is inflated by confounding
can be estimated by typing a large number of unselected
markers across the genome and estimating the variance
of association test statistics empirically. This method is
simple to do. However, no attempt is made to deal with
negative confounding, which increases the false negative
rate and reduces power. Use of more stringent test
criteria to control the false positive rate will accentuate
loss of power. It also remains to be empirically tested
whether the distribution of test statistics is inflated by
the same multiple, irrespective of allele frequency and
throughout the entire distribution. 

It remains to be seen whether correcting for
confounding by substructure by statistical modelling
will be more powerful than accepting some degree of
confounding and controlling the resultant type 1 error
rate. Much will depend on how serious the problem
turns out to be, and whether sufficiently informative
markers will be identified for the former approach to
work efficiently. However, the approaches could turn out
to be complementary, with gross effects addressed by
statistical models and surrogate measures of
substructure and more subtle effects, such as those due
to cryptic relatedness between cases and/or controls, left
to genomic control.

Direct association: patterns of
genotype–phenotype relationship
We shall consider a diallelic locus, directly related to either
a quantitative trait or to a discrete trait such as presence
(prevalence), or occurrence (incidence), of a disease.
Multiallelic loci lead to more complicated scenarios and
generate tests with many degrees of freedom. Even in the
simplest diallelic case, different patterns for the
genotype–phenotype relationship must be considered.
Since there are three possible genotypes, which have a
natural order (1/1, 1/2, and 2/2), the question of linearity
of the relationship must be considered.

Linear dose-response modelling
In classic mendelian genetics of fully penetrant discrete
traits, the description of an allele as dominant implies
that the corresponding phenotype will occur irrespective
of the number of copies of the allele carried. A recessive
allele requires both copies to be present for the
phenotype to be evident. In a diallelic system, if neither
allele is dominant, 1/2 heterozygotes will display an
intermediate phenotype. Fisher16 used the term
dominance in a different way to describe the related
concept of linearity of the genotype–phenotype
relationship for quantitative traits. He defined absence
of dominance to imply the linear relationship: 

where x codes genotypes 1/1, 1/2, and 2/2 as 0, 1, and 2
respectively and � is the additive effect of each copy of

the 2 allele. Since this model predicts that the trait mean
for heterozygotes will lie precisely midway between the
means for the two types of homozygote, it is easy to see
why Fisher identified linearity with absence of
dominance, but this idea is based on a stronger model
than the earlier concept.

The importance of a simplifying model such as the
linear dose-response model above is that the strength of
genotype–phenotype relationship is expressed in a
single parameter (�) and statistical tests for existence of
such a relationship only have one degree of freedom. To
extend the model to allow a quite general pattern of
relationship we must introduce an additional parameter
to measure deviation from linearity. For example, we
might introduce a variable z coded as 0 for homozygotes
and 1 for heterozygotes, to give the following model: 

� is then said to represent a dominance effect. In this
extended model, all patterns of relationship between
phenotype mean and the three genotypes are possible,
but two parameters now code the association and
statistical tests have two degrees of freedom.
Consideration of this broader class of models inevitably
carries the penalty of reduced power if the pattern of
relationship truly is linear. Some have argued that in
most cases we would wish to constrain the two-
parameter model so that the trait mean for heterozygotes
cannot lie outside the range delimited by the means for
homozygotes. This approach leads to tests that are
intermediate between conventional tests with one and
two degrees of freedom.17 In any situation, the choice of
the most powerful test depends on the pattern of
association that actually exists and, unless we are simply
doing confirmatory studies, this pattern is unknown a
priori—a ubiquitous problem for statistical analysis.
Perhaps for most complex disease genetics the model in
which heterozygote risk is constrained to lie within the
range defined by the two homozygote risks is the best
compromise between generality and parsimony.
However, such a model is little used, perhaps because of
lack of software implementations.

To model gene effects on binary qualitative traits that
are not fully penetrant, Wright18 introduced the notion of
an underlying, unobserved, and normally distributed
quantitative trait (liability) governed by Fisher’s linear
model; the discrete trait is assumed to manifest when
liability exceeds some threshold value. The predictions
from Wright’s model are very close to those from the
logistic regression model, which is the mainstay of
statistical analysis in the rest of epidemiology.19,20 With this
approach, absence of dominance means that the log odds
of response for 1/2 heterozygotes is midway between that
for 1/1 and 2/2 homozygotes, and so each allele
contributes multiplicatively to the odds. For uncommon
traits (as most diseases are), this model is nearly the same
as the model of multiplicative effects of each allele on risk.
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The multiplicative risk model could be argued to be the
natural model for lack of dominance in this context. The
multiplicative risk model has one particularly useful
property. Hardy-Weinberg equilibrium is defined by
genotype frequencies consistent with the two alleles being
independently sampled from a population of alleles.
Genotypes of controls, in a case-control study, should
therefore be in Hardy-Weinberg equilibrium. But if
disease risk is related to genotype multiplicatively, such
that genotype risk can be decomposed into a product of
effects of the two alleles, then genotypes of the cases of
disease are also expected to be in Hardy-Weinberg
equilibrium, with alleles being independently drawn from
a population in which the frequency of high risk alleles is
increased. This result justifies the common practice of
counting alleles rather than genotypes in statistical
analyses.21

Epistasis
The general issue of dominance relates to the extent to
which the joint effect of two alleles at a single autosomal
locus might be different from the sum (or product in a
multiplicative model) of the effects anticipated for each
allele independently. A related issue is the degree to
which the combined effect of alleles at two or more loci
can reasonably be modelled by the individual locus
contributions. The fact that inheritance of some traits
could only be explained by joint action of two unlinked
loci was first demonstrated by Bateson,22 who termed the
effect epistasis. In these first examples, variation of
phenotype with genotype at one locus was only apparent
in those with certain genotypes at the second locus;
others would show no effect. Thus epistasis was defined
as one locus masking the effect of another. Fisher16 used
a similar term, epistacy, to refer to a statistical
interaction meaning deviation from additive effects of
the two loci upon the trait mean. The term epistacy soon
evolved into epistasis,23 and in modern genetics the two
uses of the word coexist, often causing confusion.24,25

Epistasis in Fisher’s sense is dependent on scale and,
in general, does not have a clear interpretation in terms
of mechanism. The interpretation of the causal
implications of statistical interaction in epidemiology
has been vigorously debated over at least three
decades.26,27 A similar debate continues in relation to
interaction between genes and environmental risk
factors. Some have argued that the interaction of genes
and environment will become a major influence on the
epidemiological study of disease causation and on public
heath interventions,28–30 whereas others have been more
sceptical.31

If interpretation of statistical interaction between
genes is problematic, an important reason to consider
such interaction relates to our ability to discover the
genes related to complex diseases in the first place. If
such genes act together, epistatically, with several genes
acting in the same pathway, the marginal effect of each

gene on its own might be small, but might reflect much
larger effects of collections of genes.32,33 Some have even
postulated scenarios in which marginal effects are
absent altogether.34 But this hypothesis requires one
gene to reverse the direction of effect of another, which
although possible, is perhaps unlikely to happen widely.
Such arguments have led these same researchers to
suggest that the analysis of association studies should
move away from analysis of genes one at time, focusing
instead on pairs or even larger constellations of genes. It
is not yet clear whether the gains in effect size realised in
practice by consideration of several genes at a time will
be sufficient to compensate for the requirement for
more stringent correction for the number of hypotheses
to be tested.35 A further debate concerns the relative
merits of recursive partitioning methods, which derive
from the automatic interaction detection methods of
Sonquist and Morgan,36 originating in the social sciences
but now widely used in the computer science and
bioinformatics communities, over more standard
regression-based approaches.

Indirect association: patterns of linkage
disequilibrium
The mapping of susceptibility genes for common
complex disorders and genes for other common traits by
the indirect method depends on the existence of
association, at the population level, between the causal
variants and nearby markers. Such association, because
of the proximity of loci on the genome, is termed linkage
disequilibrium. (Some use this term to describe any
population-wide association between loci, whether due
to proximity or to another reason such as population
stratification and admixture. We prefer the term allelic
association for this more general circumstance. The
term gametic phase disequilibrium is also used to
describe allelic association due to proximity). Success of
this strategy depends upon some understanding of
patterns of linkage disequilibrium and the forces that
determine them—mutation, recombination, and
population history.

The figure shows the genealogy of the same small
segment of eight versions of the same chromosome. It is
assumed that they will be descended from a common
ancestor, and that the segment is so small that no
recombination will have arisen within the segment. This
latter assumption is necessary because the
recombination in the sample history is an important
complication: an adjacent segment separated by
recombination will have an entirely different genealogy
above this point. We assume that a mutant allele cannot
revert back to wild type (lightning does not strike twice),
and every copy of the mutant allele in the population is
descended from the same ancestral mutation. The scale
for the height of the genealogy is meioses (ie,
generations). In this example there are four haplotypes.
Labelling the initial allele at each locus as 1 and the new
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allele created by mutation as 2 these are 111 (individuals
6, 7, and 8), 122 (individuals 4 and 5), 211 (individuals 1
and 2), and 121 (individual 3). Alleles that are common in
the sample are older mutations, and the number of
different haplotypes increases in direct proportion to the
number of polymorphisms, unless some polymorphisms
correspond to mutations on the same branch of the
genealogy. Less obvious is that fact that, even under these
simplifying assumptions, the pattern and strength of
association between polymorphisms is very variable. 

The situation in the figure represents complete linkage
disequilibrium between the three loci. This fact is
apparent when looking at loci two at a time; each pair of
loci define only three haplotypes. Table 1 shows the two-
locus haplotype frequencies as 2�2 contingency tables.
Complete linkage disequilibrium between pairs of loci is
evident because at least one cell of the corresponding
table is zero, since this is the maximum degree of
association possible given the row and column totals.
Linkage disequilibrium decays for three reasons: (1)
recombination(s) in the genealogy occurring at some
point between the two loci; (2) recurrence of the same
mutation; and (3) gene conversion (transfer of
information between alleles or loci).37 The first reason is
the most important for this decay. Since the probability
of recombination increases with the distance between
the loci, the strength of linkage disequilibrium is
expected to decline with distance. 

Various different measures of pairwise linkage
disequilibrium have been proposed,38 including
Lewontin’s D�,39 which has also been termed the
“association probability”.40 Lewontin’s D� is an
important measure for identification of regions in which
there has been little recombination and, therefore, in
which there is the potential to map causal loci by indirect
association studies. However, this measure does not
directly determine the power of indirect association
studies. Formally, the power of tests for indirect
association depends largely on the index r2, the square of
the conventional correlation coefficient between the
allele at the typed locus, scored 1 or 2, and the allele at
the causal locus, scored similarly. The dependence of
power on r2 rather than on any other measure of
association is complete for quantitative traits in the
absence of a dominance variance component due to the
causal locus.41 The nature of the relationship between r2

and the power to detect association is such that, if B is
causal, we would require a sample size 2·8 times as
large (0·56/0·2) to detect the indirect association with A
than to detect the association with C. The panel shows
that, even when loci are in complete disequilibrium
(D�=1), the pairwise r2 values can vary widely, because
they are related to the allele frequencies and to the
position of the corresponding mutations in the
genealogy. 

Linkage disequilibrium is also relevant to the more
recent discussion of “haplotype blocks”.42 Genetic loci

across large areas of the genome were suggested to
divide into blocks characterised by little disequilibrium
between blocks and limited haplotype diversity within
blocks. These two aspects of blocks, physical extent and
haplotype diversity are, in a sense, reflected by the
measures D� and r2, respectively. However, they are not
necessarily linked since they are determined by the
different random processes of recombination and
mutation; both the extent and haplotype diversity of
blocks are extremely variable. Further, haplotypic
diversity almost inevitably increases as more
polymorphisms are discovered. 
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Figure: Genealogy of a sample of eight chromosomes, showing ancestry of
three SNPs
Crosses=mutations, each of which will generate new (diallelic) polymorphism.

Locus A Locus B Locus C Locus B Locus C Locus A

1 2 Total 1 2 Total 1 2 Total

1 3 3 6 1 5 1 6 1 4 2 6
2 2 0 2 2 0 2 2 2 2 0 2
Total 5 3 Total 5 3 Total 6 2
r2=0·2 r2=0·56 r2=0·11

Lewontin’s D�=1·0 in all cases.

Table 1: Pairwise linkage disequilibrium for the eight-chromosome genealogy 
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There has been some discussion as to whether blocks
have clear boundaries, coincident with so-called
recombination hot spots, or whether they arise as a
result of purely random forces.43,44 Sperm-typing
experiments show the existence of hot spots45 but,
random forces undoubtedly also have an important role.
This debate is important in relation to the stability of
block structures across populations and to the sharpness
of block boundaries. If the extent of haplotypes is
determined by random recombination, then all
haplotypes encompassing a given point in the genome
will not be the same length and we should not be
surprised to see a few high values of D� extending well
outside the main block of linkage disequilibrium.

The idea of haplotype blocks tends to be linked with the
idea of haplotype tagging SNPs,46 largely because the
ideas were published simultaneously. However, the idea
of haplotype tagging SNPs arose from studies of
candidate genes after it was noted that, after discovering
large numbers of SNPs by a combination of searching
databases and exon resequencing, there is usually
substantial redundancy—a few haplotype tagging SNPs
capture, in some sense, most of the polymorphism of the
gene. Many different methods have been proposed for
the choice of such SNPs.46–50 Consideration of the power
to detect indirect association via haplotype tagging SNPs
suggest that the important criterion is the coefficient of
determination, a generalisation of r2 to multiple

regression models and usually denoted by R2. This
quantity measures the ability of a set of tag SNPs to
predict another dimorphism.48,51 The R2 values with which
tag SNPs predict the remaining known polymorphisms
provide an estimate of the likely ability to predict a causal
variant, but, with our limited knowledge of human
polymorphism, its accuracy cannot be guaranteed.

Study designs
Familiar epidemiological designs such as population-
based case-control or cohort designs19,52 are often used for
genetic association studies and the data are analysed
much the same way too, risk factors such as smoking and
obesity etc, being replaced by the presence or absence of
a particular genetic polymorphism. Risk can be
considered in terms of either a predisposing allele or
genotype, or in terms of multiple categories of disease
risk such as the risks associated with different alleles at a
multiallelic genetic locus, or the risks associated with the
three possible genotypes 1/1, 1/2, 2/2 at a single diallelic
locus.

Other designs have been specifically proposed for
genetic studies. Family-based designs such as the case-
parent triad design,53,54 case-parent-grandparent design,55

or analysis of general pedigrees have been proposed to
counteract confounding due to population stratification
that can occur in case-control or other population-based
designs.56 In family designs, alleles or genotypes
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Details Advantages Disadvantages Statistical analysis method

Cross-sectional Genotype and phenotype (ie, note disease status Inexpensive. Provides estimate of Few affected individuals if Logistic regression, �2 tests of 
or quantitative trait value) a random sample from disease prevalence disease rare association or linear regression
population

Cohort Genotype subsection of population and follow Provides estimate of disease Expensive to follow-up. Survival analysis methods
disease incidence for specified time period incidence Issues with drop-out

Case-control Genotype specified number of affected (case) and No need for follow-up. Requires careful selection of Logistic regression,
unaffected (control) individuals. Cases usually Provides estimates of exposure controls. �2 tests of association
obtained from family practitioners or disease effects Potential for confounding
registries, controls obtained from random (eg, population stratification)
population sample or convenience sample

Extreme values Genotype individuals with extreme (high or low) Genotype only most informative No estimate of true genetic Linear regression, non-parametric, 
values of a quantitative trait, as established from individuals hence save on effect sizes or permutation approaches
initial cross-sectional or cohort sample genotyping costs

Case-parent triads Genotype affected individuals plus their parents Robust to population stratification. Less powerful than case- Transmission/disequilibrium test, 
(affected individuals determined from initial Can estimate maternal and control design conditional logistic regression or 
cross-sectional, cohort, or disease-outcome imprinting effects log-linear models
based sample)

Case-parent- Genotype affected individuals plus their parents Robust to population stratification. Grandparents rarely available Log-linear models
grandparent septets and grandparents Can estimate maternal and 

imprinting effects
General pedigrees Genotype random sample or disease-outcome Higher power with large families. Expensive to genotype. Pedigree disequilibrium test, 

based sample of families from general population. Sample may already exist from Many missing individuals family-based association test, quantitative 
Phenotype for disease trait or quantitative trait linkage studies transmission/disequilibrium test

Case-only Genotype only affected individuals, obtained Most powerful design for Can only estimate interaction Logistic regression, �2 tests of 
from initial cross-sectional, cohort, or disease- detection of interaction effects effects. Very sensitive to association
outcome based sample population stratification

DNA-pooling Applies to variety of above designs, but genotyping Potentially inexpensive compared Hard to estimate different Estimation of components of variance
is of pools of anywhere between two and 100 with individual genotyping (but experimental sources of 
individuals, rather than on an individual basis technology still under variance

development)

Table 2: Study designs for genetic association studies
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transmitted to affected individuals are compared with
untransmitted alleles or genotypes, providing a control
sample that is inherently matched to the case sample
with regard to population structure. An alternative
approach is to use population–based studies and correct
for population stratification.11–13 However, these methods
involve typing of either a large number of unselected
markers or a panel of markers chosen to be highly
informative for the type of admixture in the study
population. Such corrections will only be possible in
large studies. The case-parent triad design typically
requires the same number of triads (consisting of a case
and two parents) to be typed as the number of cases
required in a case-control design (assuming an equal
number of controls), to give the same power. Thus a
sample of 500 case-parent triads will have roughly the
same power as 500 cases and 500 controls, but the case-
parent triad design requires 1·5 times the amount of
genotyping, and could also be more difficult to obtain
(except when family samples had already been collected
for previous linkage study). For this reason, many prefer
the case-control approach; however, family-based
approaches provide a useful complementary strategy
because of their robustness to population stratification
and because they allow estimates of effects due to direct
maternal genotype or maternal-fetal interaction and
parent-of-origin (imprinting) effects.57–60 Case-parent triad
designs allow such effects to be estimated at the expense
of rather weak assumptions concerning population
distributions of parental genotypes. These assumptions
may be avoided by use of the case-parent-grandparent
design (but such families may be difficult to obtain in
practice).

Some designs try to reduce the genotyping effort, for
instance by only typing individuals at the extremes of the
phenotype distribution. DNA pooling studies61 reduce the
amount of genotyping by typing DNA pooled from a
group of individuals as opposed to genotyping each
person separately. With the haplotype tagging approach,46

genotypes from an initial sample (say 32 people) are used
to select loci to genotype in the larger sample. This
strategy essentially exploits the indirect association
approach to gene mapping. Further cost savings and
efficiency can be obtained by a staged strategy.62,63

Various different designs are commonly used in
genetic association studies (table 2). Methods and
programs have been developed for power and sample
size calculations (table 3).2,52,64–74

Statistical analysis
The analysis of data depends crucially on the study
design. In the simplest case, familiar methods such as
logistic regression, �2 tests of association, and odds
ratios may be suitable. At a single marker, the issue
arises as to whether to analyse on the basis of allele
counts or genotype counts. Suppose we have case and
control data for a single diallelic genetic locus (table 4). A

simple �2 test for independence has 2 degrees of
freedom. Two odds ratios can be calculated: af/be (for
genotype 2/2 vs 1/1) and cf/de (for 1/2 vs 1/1).
Alternatively, if there is a reason to expect dominance or
recessiveness in the effect of allele 2, we could group the
top two rows or bottom two rows together to provide a �2

test with 1 degree of freedom and an odds ratio of
(a+c)f/(b+d)e or a(d+f)/b(c+e), respectively. Another
approach might be a test of trend, with a dose-response
effect in regard to the number of copies of the 2 allele. A
similar test could be done by uncoupling the alleles
within a genotype and constructing a test in terms of
case and control chromosomes (table 5). A �2 test of
association with 1 degree of freedom on the data in
table 4 assumes that chromosomes or alleles are
independent units,21 which essentially means Hardy-
Weinberg equilibrium (and, for estimation of effects
under the alternative hypothesis, multiplicative effects of
alleles). All of these tests can be done with statistical
software.

Table 6 lists some sources for statistical methods com-
monly used in genetic association studies.20,52,54,57–61,71,74–91

Although many can be done in standard packages, some
(particularly for family data) require special software.
Some are designed to be simple, others require some
specialist knowledge.

The simplest and most powerful statistical analyses
arise in the direct association studies in which causal
hypotheses, and hence analyses, are specific to single,
typed polymorphisms. However, in indirect studies,
which exploit linkage disequilibrium between typed
markers and causal variants, analysis of marker loci one
at a time might not be ideal—the r2 between single
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Reference URL

Analytical calculation 52, 2, 64, 65
QUANTO 66, 67 http://hydra.usc.edu/gxe
Genetic power calculator 68 http://statgen.iop.kcl.ac.uk/gpc/index.html
Stata power and sample size programs 69, 70 http://cruk.leeds.ac.uk/katie
TDTPOWER 71 http://www.uni-bonn.de/~umt70e/soft.htm
TDTASP 72, 73 http://odin.mdacc.tmc.edu/anonftp/
TDT-PC 74 http://www.biostat.jhsph.edu/~wmchen/pc.html

Table 3: Resources for power and sample size calculations

Cases Controls

2/2 a b
1/2 c d
1/1 e f

Table 4: Counts of genotypes in case-control study

Chromosomes

Allele Cases Controls

2 2a�c 2b�d
1 2e�c 2f�d

Table 5: Counts of chromosomes in case-control study
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markers and the causal locus could be much lower than
the R2 for prediction of the causal locus from a group of
markers. For such studies, therefore, it will be preferable
to use multilocus approaches to analysis. However, these
methods are still at an early stage of development.

Multilocus approaches are generally assumed to
involve consideration of haplotypes. Analysis at the
haplotype level can reveal an effect marked by an
ancestral haplotype but has two main drawbacks: since
the number of haplotypes could be large, the potential
gain might be offset by an excessive increase in the
degrees of freedom in the test; and haplotype phase will
often be uncertain. 

There are several ways in which the first problem
might be approached. The simplest, and most common
is to pool rare haplotypes, which will certainly sacrifice
some information. Instead some have proposed
grouping strategies based on cladistic considerations.93

However, for markers in regions in which linkage
disequilibrium is strong, it is questionable whether the
use of any haplotype information is worth the increase
in degrees of freedom since, in such circumstances, a
simple multiple regression equation with one parameter
per marker can achieve prediction of untyped loci with
R2 only slightly worse than haplotype-based
predictions.48,51 This finding suggests testing for indirect
associations either by regression of trait on marker loci,
without inclusion of the interaction terms, or by an
appropriate variant of Hotelling’s T2 statistic.48,51,94,95

These analyses have the additional attraction of not

requiring resolution of haplotype phase and can often be
done with conventional statistical packages. 

When linkage disequilibrium is less strong, haplotype
analyses remain important, especially for fine mapping
(eg, in a stepwise logistic regression strategy).80 Long
haplotypes, spanning several blocks of linkage
disequilibrium, are particularly important for
identifying rare variants,96 although these would have to
have large effects to be detectable. The resolution of
phase can then present a serious practical problem.
Various computational algorithms address the phase-
estimation problem, both in unrelated individuals97–99

and in families.100 In a two-stage procedure (whereby
haplotype scoring based on a first haplotype analysis
stage are used in a second stage test of association),
these algorithms can be satisfactory in population-based
studies since significance can be assessed by
permutation arguments. For estimation of relative risks,
however, association and haplotype phase must be
considered simultaneously.101 In family studies, too,
simple two-stage approaches break down since
information about association is given by transmission
patterns, which are relevant to haplotype phase
resolution. Even for transmission/disequilibrium
studies in which both parents of cases are genotyped
successfully at all loci, care is necessary since simply
restricting analysis to families in which phase can be
assigned can cause bias.78 This problem can be avoided
by judicious selection of the information used in the
analysis,80 albeit with some loss of information.
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Approach Reference Software URL

Logistic regression Model log odds of disease as linear function of 20, 74, 20 Standard statistical package http://www.stata.com/
underlying genotype variables (eg, Stata, SAS, S-Plus, R) http://www.sas.com/

http://www.insightful.com/products/splus/
http://www.r-project.org/

�2 test of association Test for independence of disease status and 20 Standard statistical package See above
genetic risk factor

Linear regression Model quantitative trait as linear function of 75 Standard statistical package See above
underlying genotype variables

Survival analysis Model survivor function or hazard as function of 20, 52 Standard statistical package See above
underlying genotype variables

Transmission/ Test departure of transmission of alleles from 71, 76–78 Various (eg, Genehunter, RC-TDT, http://fhcrc.org/labs/kruglyak/Downloads/index.html
disequilibrium test heterozygous parents to affected offspring Genassoc, Transmit, Unphased http://www.uni-bonn.de/~umt70e/soft.htm

from null hypothesis of half http://www-gene.cimr.cam.ac.uk/clayton/software/
http://www.mrc-bsu.cam.ac.uk/personal/frank/

Conditional logistic Calculate conditional probability of affected 54, 60, 79, 80 Genassoc http://www-gene.cimr.cam.ac.uk/clayton/software/
regression offspring genotypes, given parental genotypes Unphased http://www.mrc-bsu.cam.ac.uk/personal/frank/
Log linear models Model counts of genotype combinations for 57, 58, 59 Standard statistical package See above

mother, father, and affected offspring
Pedigree  Test departure of transmission of alleles to 81, 82 Pedigree disequilibrium test http://www.chg.duke.edu/software/pdt.html
disequilibrium test affected pedigree members from null expectation Unphased http://www.mrc-bsu.cam.ac.uk/personal/frank/
Family-base Tests for association or linkage between disease 83–86 Family-based association test http://www.biostat.harvard.edu/~fbat/fbat.htm
association test phenotypes and haplotypes by utilising 

family-based controls
Quantitative transmission/ Linkage disequilibrium analysis of quantitative 87, 88 Quantitative transmission/ http://www.sph.umich.edu/csg/abecasis/QTDT/
disequilibrium test and qualitative traits based on variance components disequilibrium test 
DNA pooling Test for differences in allele frequencies in 61, 89–91 Standard statistical package See above

different pooled samples while estimating 
components of variance due to experimental error

Table 6: Statistical methods for genetic association studies
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Alternatively, as in population–based studies, phase
uncertainty can be accounted for explicitly in the
association analysis.77 The problem of uncertain phase
can be avoided altogether by use of molecular methods
for haplotyping,102,103 but such methods usually have
lower throughput and are more expensive than those
that yield only the diplotype.

In addition to associations between phenotypes and
single genes, interaction effects between genes or
between genes and environment can also be studied.
After taking account of the vast increase in the number
of potential tests, the expected power to detect
interactions is low. However, power can be increased if
we can safely assume independence between genes, or
between a gene and an environmental exposure, within
the population as a whole and, therefore, within
controls. Evidence for statistical interaction can then be
obtained from examination of cases only.104,105 However,
as we have emphasised, the relationship between
statistical and biological interactions (eg, functional
interaction between proteins) is complex. Such analyses
are more relevant to prediction of disease risk than to
elucidation of the underlying trait pathogenesis.25–27

Significance and importance
The standards of statistical proof that have become
acceptable in the general biomedical literature are not
appropriate for genetic association studies. Something
akin to a multiple testing problem pervades the
discipline, although there has been no clear consensus
about how it should be dealt with. Approaches such as
the Bonferroni correction are not appropriate because it
is not the number of tests in any one investigation that is
important. Rather it is that the vast majority of loci tested
will not be associated, so that even a small false positive
probability will mean that most positive results will turn
out to be false. Thus, it is the a-priori probability of
association that needs to be accounted for, rather than
the number of tests. Thus, it has been suggested that
Bayesian methods are more appropriate;106,107 when prior
probability of association is known, they allow
calculation of the posterior probability that an
association is genuine. However, the mathematics
require knowledge not only of the prior probability of
association but also of the distribution of the size of
effects that will be encountered.

In gene expression array studies, so many tests are
done simultaneously that these unknowns can be
estimated within the experiment, and empirical Bayes
methods can be used.108,109 When genome-wide
association studies with many thousands of SNPs
become feasible, such methods will become appropriate
for association studies,110 but in the meantime, studies of
candidate regions will dominate, and here the prior
probabilities that determine appropriate standards of
evidence remain largely subjective. However, such
considerations show that, given the small a-priori

probability that any genetic locus is associated with
disease and the small effect sizes that seem to be typical
and the inadequate study sizes that have also been
typical, it should not be at all surprising that most
findings judged positive with conventional levels of
statistical significance have not been replicated.6

Some would respond by pointing to the very low
population attributable fractions that correspond to
these small genetic effects and asking whether there is
any utility in their discovery. However, no one would
claim that the interventions that will follow from
advances in genetic epidemiology will simply correct the
less beneficial genetic variation. Instead, the important
role of such studies will be the elucidation of
mechanisms. In epidemiology, the role of genetic
variation can be important in establishing the causal
nature of environmental associations in which
intervention could have major effects.111
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