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The DGCgenetics package

The following exercises on genetic association studies accompanied a short course
given by David Clayton, assisted by Chris Wallace, as part of the 2005 and 2007
EEPE programmes (http://www.eepe.org/). The exercises use the genetics
package, written by Greg Warnes and Freidrich Leisch, together with some exten-
sions written by David Clayton. These extensions, together with the datasets used
in the exercises, are contained in the package DGCgenetics. The course also con-
tained an exercise on the use of the snpMatrix package and this exercise is included
as a vignette on this package.
To load the libraries and data:

> library(DGCgenetics)
NOTE:
The R-Genetics project has developed an set of enhanced genetics

packages that will shortly replace 'genetics'. Please visit the
project homepage at http://rgenetics.org for more information.



Exercise 1: Practical exercise: sibling recurrence
risk for leprosy

Introduction

Leprosy is a disease caused by infection with Mycobacterium leprae. Infection is
necessary for disease, but it is thought that only about 10% of infections lead to
clinical disease which may be manifested across a spectrum from paucibacillary
(PB) to multibacillary (MB) disease. MB patients harbour live bacilli and should,
therefore, be more infectious than PB patients, whose immune reaction kills the
bacilli (while giving rise to distinctive symptoms).

Development of disease depends not only on infection, but also varies according to
age (age-specific rates typically peak in teenagers and young adults) and vaccination
history (BCG vaccination reduces the incidence of disease by a factor of 2. There
is also evidence that host genetics affect the development of disease. Many linkage
and association studies have shown the involvement of the HLA region and recently
strong evidence has been found, in linkage analyses of sibling pairs from Indian
and Vietnamese populations, for susceptibility loci on chromosomes 6, 10 and 20.
Estimation of Ag by usual case-control methods would be expected to give biased
results of genetic effects since non-genetic risk factors, particularly exposure to the
infectious agent, tend to cluster in families.

The Karonga Prevention Study (KPS) conducted two total population surveys
between 1979 and 1989 in Karonga district, Northern Malawi, described by Pon-
nighaus et al. (1987). Current or past leprosy cases were identified by paramedical
leprosy control assistants and data were also collected about familial relationships
and non-genetic factors known to affect risk of disease. The data used in this prac-
tical concern prevalence of a history of leprosy at one of the cross-sectional surveys.
Note that age of onset of disease was not known/recorded. Thus, the data are
prevalence data and recurrence risks should be interpreted in terms of prevalence.
This is not ideal, but is all that is possible given the cross-sectional natuire of the
data. With some important assumptions, relative recurrence risks estimated from
prevalence, may not be very different from those estimated using incidence data.

A first look at the data

The data file contains a record for pairs of full siblings identified in the study. Get
the data file and carry out some initial tabulations:

> data(leprosy)
> summary (leprosy)

slsex slbcg slaff slpbcon
male :7034 negative/uncertain:8271  Min. :0.0000 No :10844
female:7363 positive 16126 1st Qu.:0.0000 Yes: 3553
Median :0.0000
Mean 0.2100
3rd Qu.:0.0000



simbcon slage s2sex
No :13793 0 - 9 :2424 male :6962
Yes: 604 10 - 19:5001  female:7435
20 - 29:3008
30 - 44:2145
45 - 74:1819

s2aff s2pbcon s2mbcon
Min. :0.0000 No :11005 No :13886
1st Qu.:0.0000 Yes: 3392 Yes: 511
Median :0.0000
Mean 0.1671
3rd Qu.:0.0000
Max. :1.0000
family size
Min. : 1 Min. :
1st Qu.:1907 1st Qu.:
Median :3883 Median :
Mean 13926 Mean .844
3rd Qu.:5891 3rd Qu.: 5.000
Max. : 7950 Max. :12.000

.000
.000
.000

a w w NN

> attach(leprosy)
> table(slaff, s2aff)

s2aff
slaff 0 1
0 9170 2203
1 2821 203

Max. :1.0000

s2bcg

negative/uncertain:8878

positive

s2age
0 -9 :4356
10 - 19:3430
20 - 29:2518
30 - 44:2255
45 - 74:1838

:5519

wt
Min. :
1st Qu.:
Median
Mean
3rd Qu.:
Max.

.00
.00
:20.
:13.
.00
:20.

00
10

00

All pairs in which leprosy was observed are included in the dataset , but only a
5% sample of those in which no leprosy was observed. Thus, to estimate population
frequencies, leprosy-free pairs in the sample should be given a “case weight” of 20.
This is an example of inverse probability weighting to correct for unequal sampling
— cases are weighted by the reciprocal of the probability of their being selected in
the sample. Recalculate the table using these weights:

> wtable(slaff, s2aff, weights = wt)

0 1
0 183400 2203
1 2821 203

Calculate the prevalence (per 1000): [[]

INote that you can use Ras a calculating machine; entering 2*2 will result in Rprinting out

the answer 4.



1. using data for sib 1 in each pair,
2. using data for sib 2 in each pair, and
3. using all siblings.

You could also calculate the first two prevalences by taking the mean of the 0/1
variables coding disease status:

> wmean (slaff, weights = wt)
[1] 0.01603164
> wmean (s2aff, weights = wt)

[1] 0.01275533

Sib’s 1 and 2 seem to have different prevalences. In fact, the only difference
between the two is that Sib 1 was the one ascertained first when the family was
enrolled. Sib 1 is, on average, slightly older than sib 2 and this might account for
their higher prevalence.

> wtable(slage, weights = wt)

0-910 - 19 20 - 29 30 - 44 45 - 74
44262 73743 37094 19587 13941

> wtable(s2age, weights = wt)

0-910 - 19 20 - 29 30 - 44 45 - 74
77601 47700 28282 21027 14017

Recurrence risks

Taking sib 1 as the proband, the following command calculates prevalences of leprosy
in “kin” (i.e. sib 2) by disease status of proband (sib 1):

> mean.table(s2aff, slaff, weights = wt)

0 1
0.01186942 0.06712963

What is the recurrence risk (where “risk” here is measured by prevalence)? Cal-
culate the relative recurrence risk. One could also use the odds ratio in the 2 x 2
table obtained by crossing disease status in the two sibs as a close approximation
to the sibling relative recurrence risk. You should check this using the numbers
obtained by:

> wtable(slaff, s2aff, weights = wt)



0 1
0 183400 2203
1 2821 203

You could also calculate this odds ratio using logistic regression. Taking sibling 1
as proband:

> logistic(s2aff ~ slaff, weights = wt)
Logistic regression: s2aff ~ slaff
Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
slaff 5.990703 5.164016 6.949732 23.62925 1.929156e-123

A few notes:

e Odds ratios and prevalence ratios are very close to one another (the “rare
disease” scenario)

e The odds ratio would be exactly the same if sib 2 were taken as proband and
sib 1 as kin (you should check this is so)

e The odds ratio is, on average, invariant under case—control sampling (com-
paring risk in kindred of probands with kindred randomly sampled healthy
controls)

Confounding

As before, taking sib 1 as proband, we can tabulate prevalence in kindred by age
and disease status of proband:

> mean.table(s2aff, s2age, slaff, weights = wt)

0 1
0 -9 0.0008423508 0.02064220

10 - 19 0.00985689155 0.07075472
20 - 29 0.0209739721 0.06196213
30 - 44 0.0281329923 0.07625899
45 - 74 0.0390525448 0.08875740

Relative recurrence risks are much stronger at younger ages.

We can also use simple tabulations to look for the possibility of confounding of
genetic and environmental effects. For example, BCG vaccination clusters within
sibships:

> wtable(slbcg, s2bcg, weights = wt)



negative/uncertain positive
negative/uncertain 64863 32347
positive 44658 46759

The odds ratio is just over 2. To look at prevalence by proband status and by
BCG vaccination status of both sibs:

> mean.table(s2aff, slaff, slbcg, s2bcg, weights = wt)

, , negative/uncertain

negative/uncertain positive
0 0.01857561 0.008656737
1 0.08457711 0.048192771
, », positive

negative/uncertain positive
0 0.00867488 0.007971656
1 0.04331450 0.051063830

You should be able to see that a relative recurrence risk substantially larger than
one exists regardless of BCG status of the pair of sibs.

We could measure the relative recurrence risk in terms of odds ratios as before,
and use logistic regression to allow for the confounding effect of BCG vaccination:

> logistic(s2aff ~ slaff + slbcg * s2bcg, weights = wt)

Logistic regression: s2aff ~ slaff + slbcg * s2bcg

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test
slaff 5.1829316 4.4619571 6.0204030 21.530608
slbcgpositive 0.4665043 0.4167539 0.5221936 -13.252295
s2bcgpositive 0.4650500 0.4097593 0.5278013 -11.855396
slbcgpositive:s2bcgpositive 1.99563891 1.6526041 2.4092751  7.183763
P-value
slaff 8.047058e-103
slbcgpositive 4.376155e-40
s2bcgpositive 2.017683e-32

slbcgpositive:s2bcgpositive 6.781841e-13

In this model, the odds of sib 2 is allowed to vary across the four categories of
sibship vaccination status, but the odds ratio by proband status is assumed constant.
Note that this odds ratio is now somewhat lower than the crude odds ratio we
calculated earlier; this is because we have now allowed for the confounding effect of
BCG vaccination.



Do not believe the tests and confidence intervals — these take no account of the
fact that we only have a 5% sample of disease-free sibships and have counted each
one 20 times. But the estimates for recurrence risk dolding BCG status constant
should not be misleadingﬂ

You might also like to look at the possible confounding effect of PB and MB
household contact

Effect modification

We can also use logistic regression to check for effect modification. That is, the
relative recurrence risk could vary as a function of BCG status of one or both
siblings:

> logistic(s2aff ~ slaff * slbcg * s2bcg, weights = wt)

Logistic regression: s2aff ~ slaff * slbcg * s2bcg

Odds ratios (1 unit change), lower and upper confidence limits, and tests:
OR Lower Upper z-test
slaff 4.8814061 4.0573616 5.8728129 16.8060705
slbcgpositive 0.4613643 0.4108457 0.5180948 -13.0739656
s2bcgpositive 0.4623398 0.4052474 0.5274754 -11.4721233
slaff:slbcgpositive 1.1878397 0.7232995 1.9507314 0.6801224
slaff:s2bcgpositive 1.0599169 0.6611413 1.6992189  0.2416497
slbcgpositive:s2bcgpositive 1.9903667 1.6379152 2.4186599  6.9222254
slaff:slbcgpositive:s2bcgpositive 1.0896257 0.4977628 2.3852406  0.2147319
P-value
slaff 2.202994e-63
slbcgpositive 4.638307e-39
s2bcgpositive 1.821347e-30
slaff:slbcgpositive 4.964270e-01
slaff:s2bcgpositive 8.090516e-01
slbcgpositive:s2bcgpositive 4.446031e-12
slaff:slbcgpositive:s2bcgpositive 8.299764e-01

in this output, the parameter slaff:slbcgpositive represents the (multiplica-
tive) effect of sibling 1 being BCG positive on the relative recurrence risk. You
should again check that the results of this analysis are not affected by interchanging
sibs 1 and 2.

Acknowledgement

Thanks are due to Prof. Paul Fine, coworkers, and collaborators in the Malawi
leprosy study for allowing me to use these data.

2There are ways of obtaining correct confidence intervals in these circumstances, but we will
leave these for another time.
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Exercise 2: Linkage analysis by affected relative
pairs

Prior IBD probabilities

What is the “prior” probability that the doubly framed members of each of the
pedigrees shown in Table [I| share 0, 1, or 2 copies of a gene identically by descent
(IBD). You should assume that founders are not inbred.

(a) (b)
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Table 1: Four pedigrees. calculate IBD probabilities for indicated relative pairs

O,

Posterior IBD probabilities

All except one of the pedigree members shown in Table [2| have been typed at a
4-allele marker locus. The missing typing is shown as 0/0. What is the “posterior”
probability that the doubly framed members of each of the following pedigrees share
0, 1, or 2 copies of the marker identically by descent (IBD). Again you should
assume that founders are not inbred and you should also assume that the marker



is not linked to any disease-susceptibility locus. You may need to know that the
marker allele frequencies are 1 =0.5,2=10.2,3=0.2 and 4 = O.IEI

IBD sharing scores and NPL statistics

1. Calculate the S;,;,. statistic for the affected relative pairs in Table [2, Each pair
contributes

1 x (Posterior probability 1-IBD)+ 2 x (Posterior probability 2-IBD)

2. Calculate its expected value under the null hypthesis (no linkage) by substi-
tuting the “prior” probabilities in the above

The z-score, sometimes called the NPL (“Non-Parametric Linkage”) score, is ob-
tained by dividing the observed minus “expected” Sp,;,, statistic by the square root
of its variance. Until recently, the variance was calculated in available programs
by treating the Sy, statistic as if it was a true count — i.e. as if all posterior
IBD assignments were certain. This gives too large a variance and, therefore, the
procedure is conservative. More recent software corrects the error.

The Haseman—Elston method for quantitative traits

In this practical exercise we will carry out Haseman—Elston quantitative trait linkage
analyses of a dataset concerning bone mineral density (BMD) in sibling pairs. We
shall be using Rto calculate the regressions of trait similarity on IBD status. Pos-
terior IBD probabilities given marker data must first be calculated using a standard
program such as GENEHUNTER or MERLIN, but I have done this in advance.
These programs estimate IBD status at several marker loci and, possibly, at points
in between. To load the data:

> data(bmd.sibs)
> summary (bmd.sibs)

pos ped mem. 1 mem. 2
Min. : 0.0 Min. : 1.00 Min. :3.000 Min. : 4.000
1st Qu.: 0.0 1st Qu.: 22.00 1st Qu.:3.000 1st Qu.: 5.000
Median : 7.5 Median : 49.00 Median :4.000 Median : 6.000
Mean :10.6 Mean : 55.26 Mean :4.143 Mean 6.258
3rd Qu.:24.3 3rd Qu.: 86.00 3rd Qu.:5.000 3rd Qu.: 8.000
Max. :24.3 Max. :118.00 Max. :9.000 Max. :10.000

sex.1 sex.?2 z0 z1

3 Hint for pedigree (f): The mother must be either homozygous (1/1) or heterozygous (1/x).
Work out the probability of the pedigree under each of these possibilities by first calculating the
probabilities of the founder genotypes, then multiplying by the probability of descendant genotypes
conditional on founders. These two numbers give the relative weight we should give to the two
possibilities when calculating the posterior IBD sharing probabilities.

10
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Table 2: Marker genotypes in six pedigrees; calculate posterior IBD probabilities for
affected relative pairs
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Min. :1.000 Min. :1.000 Min. :0.00000 Min. :0.0000
1st Qu.:1.000 1st Qu.:1.000 1st Qu.:0.00000 1st Qu.:0.2067
Median :2.000 Median :2.000 Median :0.07946 Median :0.5270
Mean :1.519 Mean :1.508 Mean :0.24274 Mean :0.5168
3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:0.35297 3rd Qu.:0.8427
Max. :2.000 Max. :2.000 Max. :1.00000 Max. :1.0000
z2 bmd. 1 bmd. 2

Min. :0.0000 Min. : 0.5540 Min. :0.5440
1st Qu.:0.0000 1st Qu.: 0.7920 1st Qu.:0.7640
Median :0.0000 Median : 0.8825 Median :0.8650
Mean :0.2404 Mean : 0.8875 Mean :0.8632
3rd Qu.:0.4353 3rd Qu.: 0.9700 3rd Qu.:0.9630
Max. :1.0000 Max. : 1.3370 Max. :1.3340

NA's :39.0000 NA's :9.0000

This datset concerns IBD status at three loci. We shall only look at the VNTR
marker locus, which is at position 7.5. First extract this subset of the data and
attach it:

> at.vntr <- subset(bmd.sibs, pos == 7.5)
> attach(at.vntr)

The first step is to calculate the squared differences between BMD values for
eachpair:

> d2 <- (bmd.1 - bmd.2)"2

The next step is to calculate the expected number of copies shared by each sib
pair a posteriort:

> ibd <- 2 * z2 + z1
The Haseman-Elston method looks for correlation beyween these two quantities:

> plot(ibd, d2)

12
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> cor.test(ibd, d2)

Pearson's product-moment correlation

data: ibd and d2
t = -2.2994, df = 431, p-value = 0.02196
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
-0.20222662 -0.01601595
sample estimates:
cor
-0.1100872

On the face of it, there is significant linkage at this locus, albeit falling a long
way short of “genome-wide” significance. However, squaring differences can lead to

very influential outliers, as is demonstrated in the plot. It would be better to use a
rank correlation test:

> cor.test(ibd, d2, method = "spearman")

Spearman's rank correlation rho

13



data: ibd and d2
S = 14683858, p-value = 0.07639
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
-0.08525066

The “significance” is lost! An additional problem with this analysis is that it uses
all sib-pair comparisons for sibships of size > 2. These do not represent independent
data points. The analysis can be corrected to allow for this correlation.

Haseman—Elston revisited

Haseman and Elston later suggested a modification of their methodwhich uses a
different measure of trait similarity — namely the product of deviations of trait
values from their mean. First we must calculate the mean value:

> bmd.m <- mean(c(bmd.1, bmd.2), na.rm = TRUE)

(The argument na.rm=TRUE is an annoying feature of R. Without it, any missing
values in the argument(s) results in the mean also being regarded as missing — a
somewhat pedantic form of behaviour). We now calculate the products of differences
from the mean:

> prod <- (bmd.1 - bmd.m) * (bmd.2 - bmd.m)
To see how these relate to the squared distances, try

> plot(prod, d2)

14
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Why do you think that it might be better to use products rather than squared
differences? Using products, you can carry out the Haseman—Elston test (or the
non-parametric alternative) as before:

> cor.test(ibd, prod)

Pearson's product-moment correlation

data: 1ibd and prod
t = 1.5032, df = 431, p-value = 0.1335
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
-0.02217234 0.16532821
sample estimates:
cor
0.07221595

> cor.test(ibd, prod, method = "spearman")
Spearman's rank correlation rho

data: ibd and prod
S = 12637565, p-value = 0.1705

15



alternative hypothesis: true rho is not equal to O
sample estimates:

rho
0.06598621

The two Haseman-Elston methods turn out to use rather different parts of the
information and it has been shown that the optimal test is a weighted compromise
between the two methods. Special purpose software is available for this.
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Exercise 3: Linkage disequilibrium

Susan Service wrote the first version of this exercise for the MSc course at Erasmus
University, Rotterdam. David Clayton made minor alterations and converted it to
LaTeX and R. Thanks to the Diabetes and Inflammation laboratory for use of the
insulin dataset.

Calculating D/

The table below shows the frequency of haplotypes of two loci in 300 unrelated
subjects (although, in practice, you would not be able to observe these frequencies
directly). Calculate D’ between the two loci. What is the assumed order in which
these alleles arose in the population history?

Locus 1 Locus 2 allele

allele 1 2 Total
1 172 41 213
2 67 320 387

Total 239 361 600

Examining LD in different populations

Data for this exercise are taken from a paper by Gabriel et al. (2002). The data come
from a 200 kb region on chromosome ﬂ In the paper it is noted that populations
of African descent have less extensive LD than populations of European or Asian
ancestry. For this exercise we will use genotype data for 14 SNP markers from 50
African Americans and 42 Asians.

In the exercise below, we shall use Rfunctions from the genetics package pwld
which calculate various measures of LD, after first resolving phase using the EM
algorithm.

Start Rand get the data:

> data(Gabriel.etal)
> summary (AfAm)

id s641676 s495166 s586708
Length:50 1/1 :12 (24%) 1/1 :33 (66%) 1/1: 1 C 2%)
Class :character 2/1 :18 (36%) 1/2 :13 (26%) 2/1:13 (26%)
Mode :character 2/2 :18 (36%) 2/2 1 C2%) 2/2:36 (72%)
NA's: 2 ( 4%) NA's: 3 ( 6%)
s641662 s785900 s266619 s1077797 s474197
1/1: 5 (10%) 1/1 1 C 2% 1/1: 7 (14%) 1/1:36 (72%) 1/1
2/1:18 (36%)  2/1 :17 (34%) 2/1:23 (46%) 1/2:13 (26%) 2/1

: 3 ( 6%)
116 (32%)

2/2:27 (54%)  2/2 :30 (60%)  2/2:20 (40%)  2/2: 1 (2% 2/2 :24 (48))
NA's: 2 ( 4%) NA's: 7 (14%)
s474196 5376142 s785897 s51791 s785879

4They can be found at: http://www-genome.wi.mit.edu/mpg/hapmap/hapstruc.html#data
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1/1:27 (64%) 1/1 :29 (68%) 1/1 : 2 (4% 1/1 :23 (46%)

1/2:18 (36%) 1/2 :17 (34%) 2/1 :13 (26%) 1/2 :23 (46%)

2/2: 5 (10%) 2/2 : 2 ( 4%) 2/2 :33 (66%) 2/2 : 3 ( 6%)
NA's: 2 ( 4%) NA's: 2 ( 4%) NA's: 1 (C 2%)

s462060

1/1 2 ( 4%

2/1 :16 (32%)

2/2 :29 (58%)

NA's: 3 ( 6%)

> summary (Asian)

id s641676 s495166 s586708
Length:42 1/1 :12 (29%)  1/1 : 6 (14%)  1/1 :13 (31%)
Class :character 1/2 :21 (50%) 2/1 :20 (48%) 1/2 :22 (52%)
Mode :character 2/2 : 7 (17%) 2/2 :13 (31%) 2/2 : 6 (14%)

NA's: 2 ( 5%) NA's: 3 (C 7%) NA's: 1 ( 2%)

s641662 s785900 s266619 s1077797
1/1 1 C 2%) 2/1 :11 (26%) 1/1 :13 (31%) 1/1 : 8 (19%)
2/1 :14 (33%) 2/2 :30 (71%) 1/2 :22 (52%) 2/1 :20 (48%)
2/2 :26 (62%) NA's: 1 (C 2%) 2/2 : 6 (14%) 2/2 :13 (31%)
NA's: 1 C 2%) NA's: 1 (C 2%) NA's: 1 C 2%)
8474197 8474196 8376142 8785897
2/1 11 (26%) 1/1 :26 (62%) 1/1 :24 (57%) 1/1 : 2 ( 5%)
2/2 :25 (60%) 1/2 :14 (33%) 1/2 :11 (26%) 2/1 :15 (36%)
NA's: 6 (14%) 2/2 1 C2%) 2/2 : 2 ( 5%) 2/2 :23 (55%)

NA's: 1 (C 2%) NA's: 5 (12%) NA's: 2 ( 5%)
8785879 8462060
1/1: 6 (14%) 1/1: 8 (19%)
2/1:18 (43%) 2/1:15 (36%)
2/2:18 (43%)  2/2:19 (45%)
> summary (positions)

Min. 1st Qu. Median Mean 3rd Qu. Max.

86290000 86350000 86360000 86370000 86380000 86470000

> summary(distances)

Min. 1st Qu.
10610

338

Median
28770

47810

Mean 3rd Qu.
85410

Max.
176900

1/1 :

2 (4%

2/1 :15 (30%)
2/2 :29 (58%)
NA's: 4 ( 8%)

s51791

1/1:18 (43%)
1/2:21 (50%)
2/2: 3 C 7%

There are 14 markers in each dataset so that, with 14 loci there are a total of
91 pairwise measures of LD to calculate. The variable positions holds the marker
locations (in base pairs) on chromosome 2 and distances holds the inter-marker
spacings. To calculate several measures of LD, we use the function LD(). For the
African Americans:
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> 1dAfAm <- LD(AfAm)
To list D' values:
> summary (1dAfAm, which = "D'")

Pairwise LD

5495166  s586708 s641662 s785900 5266619 s1077797

5641676 D' 0.6335219 0.6450313 0.3355714 0.5426163 0.2987093 0.6450313
s495166 D' 0.9994609 0.9982947 0.9979989 0.9992808 0.9994609
586708 D' 0.9985480 0.9980888 0.9992808 0.9994669
5641662 D' 0.9996563 0.9992432 0.9985480
8785900 D' 0.9993311 0.9980888
5266619 D' 0.9992808
s1077797 D'
s474197 D'
5474196 D'
5376142 D'
785897 D'
sb51791 D!
s785879 D'

5474197  s474196  s376142  s785897 851791  s785879
5641676 D' 0.0564148 0.2576432 0.6770152 0.6187540 0.5875759 0.1011929
5495166 D' 0.9982288 0.9986317 0.2544834 0.2971593 0.9985684 0.1989184
586708 D' 0.9982288 0.9985480 0.3802254 0.2159466 0.9986805 0.1729565
s641662 D' 0.9996111 0.9499408 0.9990462 0.9983818 0.1374880 0.0218593
8785900 D' 0.9996675 0.9187777 0.9988687 0.9977106 0.9991637 0.1115945
5266619 D' 0.9992432 0.9992432 0.9992782 0.9987754 0.9996148 0.4493375
81077797 D' 0.9982288 0.9985480 0.3802254 0.2159466 0.9986805 0.1729565
s474197 D' 0.9682083 0.9989561 0.9982288 0.1401305 0.0676433
s474196 D' 0.9990462 0.9983818 0.0547397 0.1170825
8376142 D' 0.9994200 0.9351441 0.0635456
5785897 D' 0.9993565 0.1399910
s51791 D! 0.1244568
s785879 D'

5462060
641676 D' 0.3205039
495166 D' 0.3803745
586708 D' 0.3604253
5641662 D' 0.7396193
s785900 D' 0.8773779
266619 D' 0.8191677
1077797 D' 0.3604253
s474197 D' 0.6820881
5474196 D' 0.6642623
376142 D' 0.9990037
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785897 D' 0.9978704
s51791 D' 0.9991152
785879 D' 0.9986524

You can also see a matrix of correlation coefficients values by giving r instead
of D’ in the above command. Other (less useful) measures are available. A useful
graphical display is a colour coded table:

> LDtable(1dAfAm, which = "D'")

Linkage Disequilibrium
$495166 $785900 s474197 s785897 $462060

02087 1012

06450

s641676

$641662

Marker 1
s1077797

s376142

s785879

Marker 2

This shows D' by default but can show other indices.
Let’s see how the LD pattern looks for the Asian sample.

> ldAsian <- LD(Asian)
> summary(ldAsian, which = "D'")

Pairwise LD

5495166  s586708 s641662  s785900 5266619 s1077797
5641676 D' 0.6995223 0.6824916 0.0820022 0.0199831 0.6824916 0.5901584

5495166 D' 0.9997043 0.8668312 0.7900676 0.9997043 0.9996915
586708 D' 0.9995823 0.9992659 0.9997043 0.9996915
5641662 D' 0.9994661 0.9995823 0.9995641
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s785900
5266619
s1077797
s474197
s474196
376142
5785897
551791
8785879

5641676
5495166
5586708
5641662
5785900
5266619
s1077797
s474197
5474196
8376142
s785897
51791
5785879

5641676
5495166
586708
5641662
5785900
8266619
s1077797
s474197
5474196
5376142
8785897
s51791
s785879

Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl

Dl
DI
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl

Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl
Dl

O O O O O O O

O O O O O O O OO O o oo

s474197

.2754686
.9992317
.9992259
.9994371
.8241965
.9992259
.9991923

5462060

.5468145
.5142088
.5025932
.1583654
.3769195
.5025932
.5507966
.0075276
.1583654
.8827266
.8182224
.3042517
.8797896

O O O O O O O o

5474196

.0820022
.9995854
.99956823
.9996962
.9994661
.9995823
.9995641
.9994371

O O O O O O O O O

> LDtable(ldAsian, which = "D'")

5376142

.9995514
.9995721
.8664553
.9982248
.9970929
.8664553
.8691663
.9977647
.9983749
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5785897

.9995022
.99952562
.89368563
.9983823
.9974529
.8936853
.8886525
.9980922
.9983823
.9996691

0.9992659 0.9992339

O O O O O O O O O oo

s51791

.6528869
.8209953
.9090600
.0985087
.2872698
.9090600
.9057579
.99856274
.0406933
.9996282
.9995873

0.

O O O O O OO OO o oo

9996915

5785879

.6668566
.6472038
.6201138
.1065445
.1443847
.6201138
.5511399
.5789169
.3156654
.9992935
.9992159
.6444150



Linkage Disequilibrium
s495166 s785900 s474197 s785897 $462060
| |

069052

s641676

$641662

Marker 1
s1077797

s376142

s785879

Marker 2

Does it look like there is more or less LD than in the African American sample?
It’s hard to see from these graphs. To look more carefully, we’ll capture the D’
values:

> dpAA <- summary(1dAfAm, which = "D'")
> dpAs <- summary(ldAsian, which = "D'")

If you look at the contents of these arrays, you will see that only half the matrix
has values — the rest are missing (NA). To get rid of these:

> dpAA <- dpAA[!is.na(dpAA)]
> dpAs <- dpAs[!is.na(dpAs)]

We’ll now create a scatter plot with a line of equality:

> plot(dpAA, dpAs)
> abline(0, 1)
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Is there a suggestion that more or less points lie above the line? What is the
interpretation of this, and is this what you would have expected to find? It is
interesting to note that the correlation in this plot is not strong — pairs of markers
taht are in strong LD in one population are not necessarily in strong LD in the

other.

To plot the values of D’ against the inter-marker distances, the genetics package
has the function LDplot. To plot D’ values against distances from the first marker,

and then from the second marker and so on:

> LDplot (1dAfAm, distance = positions, which = "D'",
> LDplot(1dAfAm, distance = positions, which = "D'",
> LDplot(1dAfAm, distance = positions, which = "D'",
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and so on. It can be seen that, whereas D’ does fall away with distance, it does
so in a highly variable manner. Although this is partly due to the small sample size,
it is mainly due to the random nature of the recombination history. You should try
running these commands for the Asian data also. Is there any suggestion that the
extent of LD differs between these populations?

By dropping the marker= argument in the above commands you will get all
plots superimposed. You can try it but almost certainly you won’t find it very
useful. Instead let’s plot D’ values against the inter-marker distances, using different
plotting symbols. This is still not very clear, so we will superimpose [owess smoothed
lines:

> plot(distances, dpAA)

> points(distances, dpAs, pch = 2)
> lines(lowess(distances, dpAA))
> lines(lowess(distances, dpAs))
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The difference between the populations is now apparent! The “half-life” of LD
has been defined as the distance at which the mean level of D’ drops below 0.5.
What is the approximate half-life of LD in these two populations?

Examining many loci in one population

Now we’ll look at the pattern of LD in a 70kb region around the insulin gene.
Approximately 70 SNP markers are typed in 868 subjects (not all subjects have
data for all SNPs). First fetch the data:

> data(insulin)
> summary (insulin)

familyid member father mother sex
Min. : 1.0 Min. :1.0 Mode:logical Mode:logical Min. :1
1st Qu.:123.0 1st Qu.:1.0 NA's:868 NA's:868 1st Qu.:1
Median :254.5 Median :1.5 Median :1
Mean :263.7 Mean :1.5 Mean 01
3rd Qu.:381.0 3rd Qu.:2.0 3rd Qu.:2
Max. :523.0 Max. :2.0 Max. 12

tid 11 12 13

Min.  :1.000 1/1 :572 (66%) 1/1 :191 (22%) 1/1 :182 (21%)
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1st Qu.:
Median
Mean

3rd Qu.:
Max.

14
1/1 : 33
2/1 :291
2/2 :494
NA's: 50

18
1/1 7
2/1 :167
2/2 :667
NA's: 27

112
1/1 :180
2/1 :433
2/2 :187
NA's: 68

116
1/1 :460
1/2 :179
2/2 : 30
NA's:199

120
1/1 :268
1/2 :284
2/2 : 94
NA's:222

1.000

:1.000
:1.063

1.000

:2.000

C 4%)
(34%)
(57%)
( 6%)

C 1%)
(19%)
77%)
C 3%)

(21%)
(50%)
(22%)
C 8%)

(53%)
(21%)
C 3%)
(23%)

(31%)
(33%)
(11%)
(26%)

1/2 :240 (28%)

2/2

21 ( 2%)

NA's: 35 ( 4%)

15
1/1 :362
1/2 :335
2/2 . 87
NA's: 84

19
1/1 :365
1/2 :380
2/2 : 73
NA's: 50

113
1/1 : 23
2/1 :222
2/2 :571
NA's: 52

117
1/1 : 28
2/1 :175
2/2 :459
NA's:206

121
1/1 : 96
2/1 :293
2/2 :260
NA's:219

(42%)
(39%)
(10%)
(10%)

(42%)
(44%)
( 8%)
( 6%)

( 3%
(26%)
(66%)
( 6%)

( 3%)
(20%)
(53%)
(24%)

(11%)
(34%)
(30%)
(25%)

1/2 :397 (46%)
2/2 :174 (20%)
NA's:106 (12%)

16
1/1 :191
2/1 :444
2/2 :191
NA's: 42

110
1/1 :152
2/1 :404
2/2 :248
NA's: 64

114
1/1 :251
1/2 :399
2/2 :144
NA's: 74

118
1/1 :459
1/2 :176
2/2 : 28
NA's:205

122
1/1 :277
1/2 :264
2/2 : 76
NA's:251

26

(22%)
(51%)
(22%)
( 5%)

(18%)
47%)
(29%)
C7h)

(29%)
(46%)
(7%
¢ 9%)

(63%)
(20%)
( 3%
(24%)

(32%)
(30%)
¢ 9%)
(29%)

2/1 :408 (47%)
2/2 :182 (21%)
NA's: 96 (11%)

17
1142
1/2 :331
2/2 :136
NA's:259

1/1

111
1/1 :632
1/2 :159
2/2 : 10
NA's: 67

115
1/1 . 37
2/1 :248
2/2 :523
NA's: 60

119
1/1 :461
1/2 :179
2/2 : 15
NA's:213

123
1/1 :285
1/2 :280
2/2 : T4
NA's:229

(16%)
(38%)
(16%)
(30%)

(73%)
(18%)
C 1%
( 8%)

C 4%
(29%)
(60%)
C 7%

(53%)
21%)
C 2%
(25%)

(33%)
(32%)
¢ 9%
(26%)



124
1/1 : 15
2/1 :177
2/2 :473
NA's:203

128
1/1 :564
1/2 :101
2/2 7T
NA's:196

132
1/1 :525
1/2 :196
2/2 : 14
NA's:133

136
1/1 :541
1/2 :201
2/2 : 15
NA's:111

140
1/1 :614
1/2 :228
2/2 : 19
NA's: 7

144
1/1 : 10
2/1 :145
2/2 :510
NA's:203

C 2%)
(20%)
(54%)
(23%)

(65%)
(12%)
C 1%)
(23%)

(60%)
(23%)
C 2%)
(15%)

(62%)
(23%)
C 2%)
(13%)

(71%)
(26%)
C 2%)
¢ 1%)

¢ 1%)
(17%)
(59%)
(23%)

125

122/106:111

122/110:
122/118:
106/110:
122/122:
(Other)
NA's
129
1/1 : 1
2/1 : 19
2/2 :642
NA's:206

133
1/1 :536
1/2 :276
2/2 : 32
NA's: 24

137
1/1 21
2/1 :233
2/2 :407
NA's:207

141
2/1 : 56
2/2 :636
NA's:176

145
1/1 :141
2/1 :366
2/2 :296
NA's: 65

1334
:136

(13%)
(10%)
( 8%)
( 8%)
C 7%
(38%)
(16%)

85
72
71
59

¢ 0%)
¢ 2%)
(74%)
(24%)

(62%)
(32%)
C 4%)
¢ 3%

¢ 2%)
(27%)
47%)
(24%)

( 6%)
(73%)
(20%)

(16%)
(42%)
(34%)
C7h)

126
1/1
2/1
2/2
NA's:

130
1/1 :654
1/2 . 17
NA's:197

134
1/1 :523
1/2 :200
2/2 : 14
NA's:131

138
1/1 :480
1/2 :177
2/2 : 11
NA's:200

142
1/1 : 45
2/1 :256
2/2 :376
NA's:191

146
1/1 :227
1/2 :282
2/2 :106
NA's:253

27

1118 (14%)
:307 (35%)
1222 (26%)

221 (25%)

(75%)
¢ 2%
(23%)

(60%)
(23%)
¢ 2%
(15%)

(65%)
(20%)
C 1%
(23%)

( 5%)
(29%)
(43%)
(22%)

(26%)
(32%)
(12%)
(29%)

127
1/1
2/1
2/2
NA's:

131
1/1 :432
1/2 :278
2/2 : 30
NA's:128

135
1/1 :618
1/2 : 62
NA's:188

139
1/1 :457
1/2 :178
2/2 : 9
NA's:224

143
1/1 :641
1/2 : 40
2/2 1
NA's:186

147
1/1 ¢ 1
2/1 : 46
2/2 :617
NA's:204

:139 (16%)
:305 (35%)
1157 (18%)

267 (31%)

(50%)
(32%)
( 3%
(15%)

(71%)
C7h
(22%)

(63%)
(21%)
(Y9
(26%)

(74%)
( 5%)
( 0%
(21%)

C 0%
( 5%
(71%)
(24%)



148
1/1 :622
1/2 : 54
NA's:192

152
1/1 :140
1/2 :315
2/2 :126
NA's:287

156
1/1 :567
1/2 :101
2/2 . 4
NA's:196

160
1/1 : 42
2/1 :287
2/2 :344
NA's:195

164
1/1 . 27
2/1 :132
2/2 :160
NA's:549

168
1/1 :171
1/2 :314
2/2 :158

(72%)
( 6%)
(22%)

(16%)
(36%)
(15%)
(33%)

(65%)
(12%)
¢ 0%)
(23%)

( 5%)
(33%)
(40%)
(22%)

¢ 3%)
(15%)
(18%)
(63%)

(20%)
(36%)
(18%)

149
1/1 : 2
2/1 : 29
2/2 :607
NA's:230

153
1/1 : 99
2/1 :301
2/2 :273
NA's:195

157
1/1 : 43
2/1 :271
2/2 :361
NA's:193

161
1/1 : 6
2/1 : 92
2/2 :548
NA's:222

165
1/1 :152
2/1 :306
2/2 :164
NA's:246

169
1/1 :170
1/2 :318
2/2 :162

C 0%)
¢ 3%
(70%)
(26%)

(11%)
(35%)
(31%)
(22%)

( 5%)
(31%)
(42%)
(22%)

¢ 1%)
(11%)
(63%)
(26%)

(18%)
(35%)
(19%)
(28%)

(20%)
(37%)
(19%)

150
1/1 :289
1/2 :306
2/2 : 78
NA's:195

154
2/1 : 5
2/2 :680
NA's:183

158
2/1 : 28
2/2 :651
NA's:189

162
1/1 : 17
2/1 :112
2/2 :200
NA's:539

166

1/1 :178
1/2 :325
2/2 :163
NA's:202

170
1/1 :182
1/2 :319
2/2 :159

28

(33%)
(35%)
¢ 9%
(22%)

C 1%)
(78%)
(21%)

(¢ 3%
(75%)
(22%)

¢ 2%)
(13%)
(23%)
(62%)

(21%)
(37%)
(19%)
(23%)

(21%)
(37%)
(18%)

151
1/1 :108
1/2 :256
2/2 :103
NA's:401

155
1/1 :575
1/2 :101
2/2 : 3
NA's:189

159
1/1 :571
1/2 :104
2/2 : 6
NA's:187

163
1/1 : 13
2/1 :102
2/2 :206
NA's:547

167
1/1 :593
1/2 : 51
2/2 1
NA's:223

171
1/1 :168
2/1 :332
2/2 :172

(12%)
(29%)
(12%)
(46%)

(66%)
(12%)
( 0%
(22%)

(66%)
(12%)
C 1%
(22%)

C 1%
(12%)
(247%)
(63%)

(68%)
C 6%)
C 0%
(26%)

(19%)
(38%)
(20%)



NA's:225 (26%) NA's:218 (25%) NA's:208 (247%) NA's:196 (23%)

172 173 174
1/1 :168 (19%) 1/1 : 50 ( 6%) 1/1 : 49 ( 6%)
2/1 :329 (38%) 2/1 :161 (19%) 2/1 :158 (18%)
2/2 :170 (20%) 2/2 :106 (12%) 2/2 :108 (12%)
NA's:201 (23%) NA's:551 (63%) NA's:553 (64%)

Now calculate the LD measures (this could take quite a long time unless your
computer is very fast):

> ldins <- LD(insulin)
Finally we’ll plot the colour-coded D’ table:

> LDtable(ldins, which = "D'")

Linkage Disequilibrium
2 17 112 118 124 131 137 143 149 I55 161 167 173
LLLLLELLLLLLLLLELLLL it Ll LLLLLLLLLLLLLLL)

EESEss

14

19

116

123

131

Marker 1

145

152

159

166

138
LLLLLD LD L L]

173

Marker 2

The plot shows distinct regions where many markers are nearly in complete LD,
separated by regions of low LD. there is a suggestion that there are five LD (or
haplotype) “blocks”; although the middle three have some degree of LD between
them.
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Exercise 4: Population—based association studies

The data

The data for this practical exercise concern a population—based case—control study of
the association between a disease and four closely linked single nucleotide polymor-
phisms (SNPs). The data are in the GE03.2005 package as an Rdataframe (popn).
You can load and print a brief summary of the dataframe contents as follows:

> data(popn)

> summary (popn)

sex
Male : 383
Female: 1037
NA's : 116

D
1/1 :296 (19%)
2/1 :691 (45%)
2/2 :454 (30%)
NA's: 95 ( 6%)

Case

affected

Control:864
1672
subject

Min. :
1st Qu.: 38
Median : 76
Mean : 76
3rd Qu.:115
Max. :153

A
1/1 :541 (35%)
1/2 :704 (46%)
2/2 :244 (16%)
NA's: 47 ( 3%)

.0
.8
.5
.5
.2
.0

DN O 00

B
1/1 :531 (35%)
1/2 :734 (48%)
2/2 :234 (15%)
NA's: 37 ( 2%)

C
1/1 :507 (33%)
1/2 :696 (45%)
2/2 :278 (18%)
NA's: 55 ( 4%)

Each of the loci A, B, C and D are held as genotype variables. The file also contains
variables coding sex and case/control status. We'll first attach the dataframe and
do some simple tabulations:

> attach(popn)

> table(affected)

affected
Control Case
864 672

> table(sex)

sex
Male Female
383 1037

The following command does a chi-squared test for association between disease

status and sex

> chisq.test(sex, affected)
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Pearson's Chi-squared test with Yates' continuity correction

data: sex and affected
X-squared = 80.1396, df = 1, p-value < 2.2e-16

There is a highly significant association between disease and sex (the Pearson
chi-squared test is the “score” test for association). Alternatively, we can create a
table of disease status by sex and apply the chisq.test() function to the table:

> sbyd <- table(sex, affected)

> sbyd
affected
sex Control Case
Male 277 106
Female 471 566

> chisq.test (sbyd)
Pearson's Chi-squared test with Yates' continuity correction

data: sbyd
X-squared = 80.1396, df = 1, p-value < 2.2e-16

Genotype counting and allele counting

There are two simple ways of testing for association between disease and a genetic
variant. The first is to simply count genotypes in cases and controls and compare
them using a chi-squared test. For marker A,

> abyd <- table(A, affected)

> abyd
affected
A Control Case
1/1 261 280
1/2 406 298
2/2 161 83

> chisq.test (abyd)
Pearson's Chi-squared test

data: abyd
X-squared = 23.7385, df = 2, p-value = 7.003e-06
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The association is highly significant. Note that this is a two degree of freedom test
reflecting the fact that there are two dimensions in which the genotype distributions
could differ.

Another commonly used analysis counts alleles (or chromosomes) rather than
genotypes (people). The function allele.table() expects its first argument to be
a genotype variable and counts alleles — otherwise it is the same as table():

> abyd <- allele.table(4, affected)

> abyd
affected
A Control Case
1 928 858
2 728 464

> chisq.test (abyd)
Pearson's Chi-squared test with Yates' continuity correction

data: abyd
X-squared = 23.6881, df = 1, p-value = 1.133e-06

The chi-squared test now has one degree of freedom. This test is powerful against
the more restrictive alternative hypothesis in which the effect (broadly defined) on
risk of genotype 1/2 vs 1/1 is the same as for genotype 2/2 vs 1/2 — the model
of generalized additive effects of alleles. This strategy of counting alleles and treat-
ing them as independent samples from a population also assumes Hardy-Weinberg
equilibrium (HWE)

This seems an appropriate point to mention that you could test for HWE by:

> HWE.chisq(4)

Pearson's Chi-squared test with simulated p-value (based on 10000
replicates)

data: tab
X-squared = 0.3449, df = NA, p-value = 0.5833

However, it would usually be more appropriate to test for HWE only in controls.
This brings us to an important mechanism for selecting subsets of data. We first gen-
erate an object, control, which contains either TRUE or FALSE according to whether
or not the subject is a control. We then use square brackets, as in A[control], to
select the genotypes for controls only:

> control <- (affected == '"Control")
> table(control)
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control
FALSE TRUE
672 864

> HWE.chisq(A[control])

Pearson's Chi-squared test with simulated p-value (based on 10000
replicates)

data: tab
X-squared = 0.0191, df = NA, p-value = 0.9417

You might like to try some of these commands on the other marker loci in these
data.

Logistic regression

Analysis at the genotype (person level) is safer, since there is no need to assume
HWE. A flexible way of carrying out such tests is by use of logistic regression. An
additional bonus of this approach is that it provides estimates of the size of genotype
effects.

The general approach is to carry out a logistic regression which (rather counter-
intuitively) treats disease status as the outcome variable and genotype as an ex-
planatory variable. However, there are several ways in which the genotype can be
entered into the regression. This can be controlled by setting an attribute of the
genotype variable:

> gcontrasts(A) <- "additive"

This attribute causes the genotype variable AE] to be entered into the logistic
regression as a single indicator variable coded 0, 1 or 2 (the number of copies of
allele “2”). This is the model of generalized additive allelic effects and, for the
logistic model, corresponds to a multiplicative model for the odds ratio case:control.
In a case/control study the measure of effect is then equivalent to the relative risk
for each copy of allele “2”. To fit this mode]ﬁ

> logistic(affected ~ A)

Logistic regression: affected 7 A
Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
A:a:2 0.6911957 0.595188 0.8026901 -4.840603 1.294457e-06

5Actually this command makes a copy of A in the global environment (position 1) and it is this
copy that has the attribute set. The original version remains in the attached dataframe (position 2)
and is unchanged.

6Those with some previous knowledge of Rshould be aware that logistic is a simple wrapper
for the generalized linear model function, glm, which fits a variety of regression models.
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The relative risk bestowed by each copy of the “2” allele is 0.69.

In order to test for deviation, we need to include a “dominance” indicator in the
model. Its effect here is to allow the risk for the 1/2 genotype to differ from the
(geometric) mean of that for the two homozygous genotypes (1/1 and 1/2). We do
this as follows:

> gcontrasts(4) <- "dominance"
> logistic(affected ~ A)

Logistic regression: affected ™ A
Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
A:a:2 0.6932140 0.5924985 0.8110496 -4.5746506 4.770154e-06
A:d:1:2 0.9869732 0.7946085 1.2259069 -0.1185474 9.056339e-01

There is now an extra coefficient (A:d:1:2) which tests this. It is not significantly
different from its value under the null hypothesis (1.0). However, if it had been
significant, this parametrisation would have been hard to interpret. Instead we
might prefer to report the genotype relative risks. To obtain these,

> gcontrasts(A) <- "genotype"
> logistic(affected ~ A)

Logistic regression: affected ™ A

0dds ratios (1 unit change), lower and upper confidence limits, and tests:
OR Lower Upper z-test P-value

A1/1 1.4615958 1.1666750 1.8310690 3.300675 0.0009645264

A2/2 0.7023636 0.5181763 0.9520208 -2.276865 0.0227942791

This output gives the genotype relative risks with the most common genotype
as baseline. If we wanted to use a different baseline, say “2/2”:

> gcontrasts(A, base = "2/2") <- "genotype"
> logistic(affected ~ A)

Logistic regression: affected ™ A
0dds ratios (1 unit change), lower and upper confidence limits, and tests:
OR Lower Upper z-test P-value

A1/1 2.080968 1.520216 2.848561 4.574651 4.770154e-06
A1/2 1.423764 1.050397 1.929845 2.276865 2.279428e-02
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More advanced analyses
Incorporating extraneous variables

There are two reasons why you might wish to include an extraneous variable in such
analyses:

1. you may be concerned that such a variable could confound the association
between genotype and disease, and/or

2. you may wonder if a variable could modify the association.

An important example of confounding might be region of residence in a national
study. In the United Kingdom, for example, there are known to be geographical
variations of allele frequencies for a range of variants, variation in the population
ancestry. In such studies we would wish to compare cases and controls within geo-
graphical regions — an approach which is sometimes called post-stratification. This
can be simply carried out in logistic regression simply by including the stratification
in the model. In our example, taking sex as such a variable (although we would
not expect it to confound the association, since allele frequencies should not vary by
sex), we would carry out the analysis as follows

> gcontrasts(A) <- "additive"
> logistic(affected ~ sex + A)

Logistic regression: affected ™ sex + A

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
sexFemale 3.2764342 2.5221434 4.2563088 8.890011 6.110275e-19
A:a:2 0.6782981 0.5786404 0.7951196 -4.787809 1.686118e-06

You will see that the odds ratio for the genetic association is scarcely changed;
as, expected, sex did not confound the association.

If we had needed to apply a two degree of freedom test, it is a little more com-
plicated. Firts we can select appropriate contrasts (dominance or genotype):

> gcontrasts(A) <- "genotype"
> logistic(affected ~ sex + A)

Logistic regression: affected ™ sex + A

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
sexFemale 3.2760877 2.5219032 4.2558139 8.889576 6.134263e-19
A1/1 1.4552493 1.1426498 1.8533679 3.040796 2.359540e-03
A2/2 0.6649649 0.4824297 0.9165652 -2.492128 1.269804e-02
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But this gives us two one degree of freedom tests. We can’t simply add the chi-
squared values since they are not independent. The solution is to save the logistic
regression results in a variable, rA2 say, and carry out an analysis of deviance:

> rA2 <- logistic(affected ~ sex + A)
> anova(rA2)

Analysis of Deviance Table
Model: binomial, link: logit
Response: affected

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 1373 1902.80
sex 1 84.87 1372 1817.93
A 2 23.38 1370 1794.55

The table obtained here shows the changes in the deviance (basically twice the
log likelihood) obtained by adding successive terms to the model. These changes in
deviance are, in large samples and under the hypothesis that the added term really
has no effect, distributed as chi-squared with the indicated degrees of freedom. The
first test considers the effect of adding sex to the null model. This is highly sig-
nificant (X2 = 84.87 on 1 df), indicating strong association between sex and disease
status (as we learnt earlier). This could be due to real differences in disease rates
between males and females or to a selection bias. The second test considers addition
of A to the model which includes sex. This is the stratified test and remains signif-
icant (X2 =23.36 on 2 df). Note that the sequence of tests depends on the order in
which you entered the terms in the model; if you had specified the model as A + sex
you would have performed a test for the effect of sex stratified by genotype — not
a very sensible thing to do. Incidentally, you can calculate P-value corresponding to
the deviance chi-squared as follows:

1 - pchisq(23.38, 2)

To test whether a variable such as sex modifies the affect of the genetic variant,
we must include terms called statistical interactions. For example:

> gcontrasts(A) <- "additive"
> logistic(affected ~ sex + A + sex:A)

Logistic regression: affected ™ sex + A + sex:A

Odds ratios (1 unit change), lower and upper confidence limits, and tests:
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OR Lower Upper z-test P-value
sexFemale 2.2958663 1.573498 3.3498631 4.311637 1.620504e-05
A:a:2 0.4552335 0.317843 0.6520122 -4.293388 1.759675e-05
sexFemale:A:a:2 1.6591061 1.110567 2.4785844 2.472062 1.343364e-02

The last coefficient is the statistical interaction term and it is statistically sig-
nificant at a modest level. The precise interpretation of the coefficient is that the
(multiplicative) effect of the “2” allele is 1.66 stronger in females than in males. This
could be of considerable interest.

This is the way in which we study gene—environment interaction. However we
must take care about the interpretation of statistical interactions. They have a
precise but limited mathematical interpretation, which may be some distance from
biological interaction in the mechanistic sense.

Multiple marker analyses

Logistic regression can also be used to examine further the nature of the relationship
between disease and genotype. All four markers in this dataset are associated with
disease and this is surely due to the fact that there is extremely strong linkage
disequilibrium (LD) between them. The causal variant may be one of these markers
or, it may be a quite different variant which is in LD with all of them. To print
common measures of LD in the popn dataset:

> LD(popn)

Pairwise LD

B C D
AD -0.1570897 0.2255614 0.2168532
A D' 0.9788660 0.9761177 0.9764719
A Corr. -0.6542138 0.9319561 0.8905700
A X"2 1260.0193694 2539.6175093 2261.9636245
A P-value < 2.2204e-16 < 2.2204e-16 < 2.2204e-16
An 1472 1462 1426
B D -0.1690608 -0.1768417
B D' 0.9975868 0.9907845
B Corr. -0.6983191 -0.7260514
B X2 1427.8377394 1503.4334970
B P-value < 2.2204e-16 < 2.2204e-16
Bn 1464 1426
CD 0.2338012
C D' 0.9969490
C Corr. 0.9523311
C X°2 2568.4383385
C P-value < 2.2204e-16
Cn 1416
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It can be seen that Lewontin’s D' measure is universally high, reflecting rather
rare ancestral recombination in the region. The correlation coefficients are also high,
indicating that the mutations which created the variants occurred on closely related
haplotypes.

If these four markers are “tags” which, hopefully, reflect causal variants(s) in the
same region of strong LD, a good method for testing for a causal variant somewhere
in the region is to test the effect of including all of them in the logistic regression:

> gcontrasts(A) <- "additive"

> gcontrasts(B) <- "additive"

> gcontrasts(C) <- "additive"

> gcontrasts(D) <- "additive"

> anova(logistic(affected ~ A + B+ C + D))
Analysis of Deviance Table

Model: binomial, link: logit

Response: affected

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 1385 1908.43
A 1 22.42 1384 1886.01
B 1 1.01 1383 1885.01
C 1 6.39 1382 1878.61
D 1 0.74 1381 1877.87

The test for adding all four SNPs is X2 = 22.42 + 1.01 +6.39 4+ 0.74 = 30.56
on four degrees of freedom. This example is a poor one, however; the correlation
between these four loci is so strong that all of them could not rationally have been
chosen as “tags” — they mostly carry the same information.

A rather different use of logistic regression is for fine mapping, when we are
attempting to discriminate between possibly causal variants. For example, if A and
C were both likely causal variants, what do you think would be the implication of
the following:

> anova(logistic(affected ~ A + C))
Analysis of Deviance Table
Model: binomial, link: logit

Response: affected
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Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 1461 2008.77
A 1 24.03 1460 1984.75
C 1 7.60 1459 1977.15

> anova(logistic(affected =~ C + A))
Analysis of Deviance Table

Model: binomial, link: logit
Response: affected

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 1461 2008.77
C 1 30.88 1460 1977.90
A 1 0.75 1459 1977.15
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Exercise 5: Design of indirect association studies

The two most important design decisions in an indirect association study are choice
of markers and choice of sample size. We shall start with the first of these.

Tagging

The following data were generated by sequencing the CD25/IL2RA region (a 60kb
candidate region for type 1 diabetes) in a small panel of CEPH subjects.

> data(CD25)
> summary (CD25)

boxp wellp familyID member
CEPHSE32V0204:32  Min. :1.00 CEPH1340: 4 Min. : 9.00
1st Qu.: 8.75 CEPH1362: 4 1st Qu.:11.00
Median :16.50 CEPH1454: 4  Median :12.00
Mean :16.50 CEPH1459: 4 Mean :12.38
3rd Qu.:24.25 CEPH1341: 2 3rd Qu.:13.25
Max. :32.00 CEPH1344: 2  Max. :16.00
(Other) :12
father mother sex tid DIL8204
Mode:logical Mode:logical  Min. :1.0 Min. :1 1/1 :26 (81%)
NA's:32 NA's:32 1st Qu.:1.0 1st Qu.:1 1/2 4 (12%)
Median :1.5 Median :1 NA's: 2 ( 6%)
Mean :1.5 Mean 01
3rd Qu.:2.0 3rd Qu.:1
Max. :2.0 Max. 01
DIL4613 DIL4612 DIL4611 DIL4610 DIL4609

1/1:17 (53%)
1/2:13 (41%)
2/2: 2 ( 6%)

DIL8203
2/1: 1 (3%
2/2:31 (97%)

DIL8201
2/1 :

5 (16%)

1/1:25 (78%)
1/2: 6 (19%)
2/2: 1 ( 3%

DIL4608
1/1: 1 (C 3%)
2/1: 4 (12%)
2/2:27 (84%)

DIL8200
2/1

1/1:28 (88%)
1/2: 4 (12%)

: 3 (9%

DIL4607
2/1: 4 (12%)
2/2:28 (88%)

DIL8199
1/1
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:28 (88%)

1/1 7 (22%)
2/1 :11 (34%)
2/2 :12 (38%)
NA's: 2 ( 6%)

DIL8202
2/1: 3 (9%
2/2:29 (91%)

DIL4605

1/1: 8 (25%)
1/2:17 (53%)

1/1:17 (53%)

2/2: 7 (22%)

DIL4606

1/1: 2 ( 6%)
2/1: 4 (12%)
2/2:26 (81%)

DIL8198

1/1:28 (88%)



2/2 :26
NA's: 1

(81%)
( 3%)

DIL4604
1/1 : 1
2/1 : 4
2/2 :12
NA's:15

( 3%
(12%)
(38%)
47%)

DIL4601

1/1: 2 ( 6%)
2/1:14 (44%)
2/2:16 (50%)

DIL4589
2/1: 5 (16%)
2/2:27 (84%)

DIL8175

1/1 :26 (81%)
1/2 : 3 (9%
NA's: 3 ( 9%)

DIL8164

1/1:23 (72)
1/2: 8 (25%)
2/2: 1 (3%

2/2 :25 (78%)
NA's: 4 (12%)

DIL8195

1/1 1 C 3%)
2/1 : 5 (16%)
2/2 :19 (59%)
NA's: 7 (22%)

DIL4600

1/1 :21 (66%)
1/2 : 2 ( 6%)
NA's: 9 (28%)

DIL4588
2/1: 5 (16%)
2/2:27 (84%)

DIL4585

1/1:12 (38%)
1/2:11 (34%)
2/2: 9 (28%)

DIL8163

2/1 : 2 ( 6%)
2/2 :29 (91%)
NA's: 1 ( 3%

1/2 : 3 ( 9%)
NA's: 1 ( 3%)

DIL8194

1/1 :28 (88%)
1/2 1 ( 3%
NA's: 3 ( 9%)

DIL4599

1/1 :19 (59%)
1/2 : 2 ( 6%)
2/2 1 (3%
NA's:10 (31%)

DIL8187
1/1:29 (91%)
1/2: 3 C 9%)

DIL4584

1/1: 2 ( 6%)
2/1:11 (34%)
2/2:19 (59%)

DIL8162

1/1:19 (59%)
1/2:11 (34%)
2/2: 2 ( 6%)
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1/2:13 (41%)
2/2: 2 ( 6%)

DIL4603
2/1: 8 (25%)
2/2:24 (75%)

DIL8193

2/1 : 1 ( 3%
2/2 :21 (66%)
NA's:10 (31%)

DIL8186
2/1: 5 (16%)
2/2:27 (84%)

DIL8166
1/1:30 (94%)
1/2: 2 ( 6%)

DIL4583

1/1: 9 (28%)
2/1:11 (34%)
2/2:12 (38%)

1/2: 4 (12%)

DIL4602

1/1:30 (94%)
1/2: 2 ( 6%)

DIL4593
1/1:

DIL8176
/1 1 C 3%
2/1 : 5 (16%)

2/2 :19 (59%)
NA's: 7 (22%)

DIL8165
2/1: 2 ( 6%)
2/2:30 (94%)

DIL8161
2/1: 1 (3%
2/2:31 (97%)

1 C 3%
2/1: 6 (19%)
2/2:25 (78%)



DIL4581
1/1 :10
1/2 :10
2/2 : 9
NA's: 3

(31%)
(31%)
(28%)
¢ 9%

DIL8091
1/1 1
2/1 : 4
2/2 :26
NA's: 1

(¢ 3%
(12%)
(81%)
( 3%)

DIL4575

1/1:10 (31%)
1/2:13 (41%)
2/2: 9 (28%)

DIL8144
1/1 :28
1/2 : 1
NA's: 3

(88%)
C 3%)
¢ 9%)

DIL4579
2/1 : 2
2/2 :29
NA's: 1

( 6%)
(91%)
C 3%)

DIL4574
1/1:11 (34%)
1/2:17 (53%)
2/2: 4 (12%)

DIL8112
/1.1 (3%
2/1: 1 ( 3%)
2/2:30 (94%)

DIL8090

1/1:11 (34%)
1/2:17 (53%)
2/2: 4 (12%)

DIL8087

1/1 1 (C 3%
2/1 : 2 ( 6%)
2/2 :16 (50%)
NA's:13 (41%)

DIL8098

2/1 : 3 ( 9%)
2/2 27 (84%)
NA's: 2 ( 6%)

DIL8089

1/1:27 (84%)
1/2: 4 (12%)
2/2: 1 ( 3%

DIL4573

1/1 : 2 ( 6%
2/1 :16 (50%)
2/2 :12 (38%)
NA's: 2 ( 6%)

We start by calculating LD statistics and displaying the D’ patterns.

> LDtable(LD(CD25), which = "D'")

DIL4580

1/1 :12 (38%)
1/2 :15 (47%)
2/2 : 2 ( 6%)
NA's: 3 ( 9%)

DIL808S
2/1: 2 ( 6%)
2/2:30 (94%)

It can be seen that LD is strong. However, many of the SNPs identified have
low frequency. We shall restrict attention to the subset of SNPs with minor allele
frequencies exceeding 5%. To create this restricted dataset:

> CD25.fr <- mamerge(CD25, maf = 0.05)

The warning messages just note the dropping of SNPs with MAF < 5%. We now

recalculate the LD statistics and inspect the D’ pattern:

> 1d <- LD(CD25.fr)
> LDtable(1ld, which = "D'")

This is not such a simple LD structure — there are not clearly differentiated
“blocks” but, equally, LD is not unbroken across the whole region.
Whereas D’ tells us about the history of recombinations, the important measure
which dictates the power to detect at an effect at one locus by typing another is the
value of the squared correlation coefficient between them, 2. We can extract this
from the LS summary very easily:

> r2 <- (1d$r) -2

> r2
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DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610

DIL8204

NA 0.0

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

DIL4608
0.002808320
0.037211199
0.014605481
0.006723128
0.144463774

DIL4613 DIL4612 DIL4611 DIL4610 DIL4609

2560562 0.01001133 0.004593949 0.09959370 0.07568741

NA 0.39451975 0.001137101 0.25801150 0.33938802

NA NA 0.058218722 0.10184129 0.13397339

NA NA NA 0.04734829 0.07064158

NA NA NA NA 0.65916216

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA

NA NA NA NA NA
DIL4607 DIL4606 DIL8201 DIL8200 DIL4605
0.930962358 0.010011329 0.006082692 0.003903699 0.025605623
0.023898582 0.051513296 0.031565644 0.155998951 0.999237501
0.009343907 0.020275310 0.012395052 0.005578746 0.394519754
0.004277336 0.009343907 0.005677179 0.003634859 0.001137101
0.092954122 0.199720637 0.122520206 0.040206520 0.258011504
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DIL4609 0.109809428 0.070641582 0.151833427

DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200

O O O O OO OO O oo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8198

.930962358
.023898582
.009343907
.004277336
.092954122
.070641582
.004433244
.997470953
.009343907
.005677179

0.093131902 0.052918930 0
NA 0.004433244 0.014605481 0.008942954 0.005711604 0O
NA 0.009343907 0.005677179 0.003634859 0
NA NA 0.613078938 0.007936920 0
NA NA NA 0.004823480 0
NA NA NA NA O

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA
DIL4604 DIL8195 DIL4603 DIL4601
.0151010375 0.1398035757 1.001133e-02 0.027715033
.4608730963 0.0586857557 5.146797e-02 0.923629747
.3792336488 0.0231206193 2.473606e-09 0.364665483
.0140943017 0.0106695790 9.343907e-03 0.005173307
.0458457588 0.0363811828 1.997206e-01 0.279127535
.0637416241 0.01195566109 1.518334e-01 0.258750855
.0219836830 0.0166645025 1.260873e-02 0.040268997
.0140943017 0.1400954774 9.343907e-03 0.025867364
.0005697671 0.0618506139 3.090607e-01 0.055738733
.0186520812 0.0204937180 6.130789e-01 0.034158782
.2634075721 0.0321664938 7.936920e-03 0.144187695

.003634859

O O O O O O OO o o o
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.339388023
.037211199
.023898582
.0561513296
.031565644
.155998951

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA



DIL4605 0.023898582 0.4608730963 0.0586857557

DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601

O O O O OO OO OO OO OO o oo

5.146797e-02

NA 0.0140943017 0.1400954774 9.343907e-03

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4599

.024789916
.035970825
.014118631
.006493820
.139648315
.106149113
. 785141782
.027172125
.014118631
.008640899
.005516896
.035970825
.027172125
.021250894
.016109019
.014118631
.038926697

GO NDNDNWOOONFL,FNOFR, PP~ NDNO -

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4593

.001133e-02
.151330e-02
.027531e-02
.217374e-09
.018413e-01
.339734e-01
.260873e-02
.343907e-03
.029827e-02
.069345e-03
.936920e-03
.151330e-02
.343907e-03
.047102e-02
.312062e-02
.029827e-02
.573873e-02

0.0001587816 3.044238e-02
NA 9.096365e-05

0.923629747
0.025867364
0.423842797
0.063500451
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NA 0.055643106

NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
NA NA
DIL4589 DIL4588
0.0058708400 0.0058708400
0.0304993697 0.0304993697
0.0119780173 0.0119780173
0.0054794507 0.0054794507
0.1183735930 0.1183735930
0.0899805777 0.0899805777
0.0002460259 0.0002460259
0.0054794507 0.0054794507
0.3410283023 0.3410283023
0.6022606542 0.6022606542
0.0046555877 0.0046555877
0.0304993697 0.0304993697
0.0054794507 0.0054794507
0.0180231453 0.0180231453
0.0011861506 0.0011861506
0.5923186601 0.5923186601
0.0330046871 0.0330046871

O O O OO OO OO OO0 OOoOOo oo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8186

.0058708400
.0304165631
.0034472410
.0054794507
. 0434222637
.0251994367
.0002460259
.0054794507
.1657759966
.0923047272
.0419701478
.0304165631
.0054794507
.0516660468
.2412415293
.1447620480
.0329690538



DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176

O O O O OO OO OO OO OO OO OO OO oo

NA 9.310817e-04 0.0083510005 0.0083510005
NA 0.0034472410 0.0034472410
NA 0.9985573052

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8176

.0114316917
.05686857557
.0231206193
.0106695790
.0442932818
.05640147297
.0053139164
.0106695790
.0231206193
.0097279696
.0090625533
.05686857557
.0106695790
.0347090295
.0263335843
.0231206193
.0635004512
.0006326678
.8767195560
.0093513085
.0093513085
.0136650220

NA

O O O O O OO OO ODOODOODOOOOOOoOOoOoOoOo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8175

.003764864
.019561332
.007651657
.003505782
.076067406
.0567809722
.005507136
.003505782
.380830500
.210245307
.002958326
.019561332
.003505782
.036691851
.334183083
.106005756
.021172329
.005319497
.007651657
.022760893
.022760893
.642056040
.008736420

O O O OO O OO O OO O OO OO0 OoOooooo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4585

.0568874204
.436090098
.172156911
.080111094
.081269945
.019819568
.085437146
.054949257
.009311843
.005084462
.068025475
.436090098
.054949257
.258192316
.010703766
.002469593
.471780336
.082589241
.118154510
.070011869
.070011869
.021240804
.134620437
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O O O O O O OO O OO OO0 OO0 OOoOOoOooo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4584

.0874844796
.1104922784
.0435798257
.0202021025
.0406636478
.0124679271
.1907616000
.0807682280
.0435798257
.0266968985
.0217202683
.1104922784
.0807682280
.0653442803
.1363763319
.0435798257
.1195491125
.3260413556
.0350906071
.0257955127
.0257956127
.0257956127
.0005077704

O O O O O O OO O OO O OO OO0 OOoOoooo

0.0083510005
0.0119780173
0.0960067566
0.0960067566

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8164

.0130274305
.0667535547
.0263172065
.0037258035
.0424193639
.0187563290
.0007002324
.0121589352
.0263172065
.0123301414
.0103271705
.0667535547
.0121589352
.0394790244
.0299759491
.0263172065
.0722304727
.0009448029
. 7706835792
.0155135956
.0155135956
.0155603072
.8781481626



DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583

O O O O OO OO OO ODODODOODODODOODOOOOOOOoO oo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8162

.0874844796
.1104922784
.0435798257
.0202021025
.0406636478
.0124679271
.1907616000
.0807682280
.0435798257
.0266968985
.0217202683
.1104922784
.0807682280
.0653442803
.1363763319
.0435798257
.1195491125
.3260413556
.0350906071
.0257955127
.0257955127
.0257956127
.0005077704
.0165366128
.2b333156321
.9992701569
.0334930416

NA
NA

O O O O O O OO OO OOOOOOOOOO OO OOoO oo oo

NA 0.0655568340 0.0165366128 0.0099551197
NA 0.2533315321 0.1531324429
NA 0.0334930416

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4583

.0568874204
.436090098
.172156911
.080111094
.081269945
.019819568
.085437146
.0564949257
.009311843
.005084462
.068025475
.436090098
.0564949257
.258192316
.010703766
.002469593
.471780336
.082589241
.118154510
.070011869
.070011869
.021240804
.134620437
.065558340
.999367157
.2563331532
.1563132443
.25633315632

NA

O, P, P OO, PP, NN ONOOFR PP, ONOOONOD OND NN

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4581

.633944e-02
.154360e-01
.341581e-02
.110132e-02
.077470e-03
.422068e-03
.625869e-02
.191681e-02
.284138e-02
.224707e-06
.257667e-02
.154360e-01
.191681e-02
.309320e-01
.396678e-03
.517347e-02
.285799e-01
.305007e-02
.331083e-01
.887818e-02
.887818e-02
.431644e-02
.516596e-01
.818591e-02
.257820e-01
.922497e-01
.725152e-01
.922497e-01
.257820e-01
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O O O O O O OO OO OO OODOODODIODODOOOOOO OO OoO oo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8098

.0036357725
.0265281728
.0073864128
.0033857641
.0024475386
.0005504595
.0053170171
.0033857641
.1207575208
.0228648190
.0028574801
.0265281728
.0033857641
.2449551572
.0998935541
.0030781422
.0263252832
.0051359515
.0073864128
.0246225248
.0246225248
.2184465121
.0084331736
.4078238507
.0632643377
.0159600936
.0096091783
.0159600936
.0632643377

O O O O O OO OO OO ODODODOODODODOOOOOOOOOoOOoOOoOOo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL4580

.035458729
.064221941
.042957424
.136359710
.010469772
.1056810954
.211878416
.033338159
.069424005
.042557399
.027381303
.064221941
.033338159
.104107013
.003173409
.069424005
.067926007
.204815802
.069429246
.041118870
.041118870
.041118870
.079047746
.026390006
.027436459
.250903752
.089965795
.250903752
.027436459



DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089

OO L Pk WkF,r WKk, PP PO NOO PP, PNMNWWOOWWEREEOWERFE WW

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8091

.144728e-01
.854017e-02
.512711e-02
.594206e-03
.663831e-02
.137312e-01
.453162e-03
.152677e-01
.911336e-02
.642594e-03
.920221e-03
.854017e-02
.1562677e-01
.276881e-02
.477273e-02
.308147e-03
.170718e-02
.766615e-03
.523288e-03
.955497e-03
.9556497e-03
.039728e-02
.725966e-02
.139905e-02
.125145e-03
.258274e-02
.972124e-02
.258274e-02
.125145e-03
.404462e-06
.511018e-03
.203600e-02

NA
NA
NA

O O O O O OO OO OO ODOODODODODODODOODODODOOOOOOOOOOOoOOo

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8090

.0207843042
.0412893494
.0914196105
.1035954904
.0026181516
.0916052903
.1609912339
.0136861613
.0350527170
.0560342624
.0360693496
.0412893494
.0136861613
.0070590746
.0455589952
.0913841014
.0441643501
.1556248594
.0913841014
.0541393161
.0641393161
.0021990729
.1041167530
.0076450196
.0063188947
.1609780519
.1184332210
.1609780519
.0063188947
.0002022256
.0818076584
.7596114436
.0684237540

NA
NA

O O O O O OO OO OO OO OOOOOOOOOOOOOOOOOOOoOoOoo
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NA 0.0561502030 0.007591774
NA 0.025468274

NA
NA
NA
NA
NA
NA
NA
NA
NA
DIL8089

.3216023347
.0372111986
.0146054808
.0044332444
.05687951384
.1098094275
.0008728294
.3236243520
.0410189798
.0104306344
.00567116038
.0372111986
.3236243520
.0219836830
.0437513888
.0016339778
.0402689971
.0089957565
.0126087347
.0086428260
.0086428260
.0112147123
.0166645025
.0436591314
.0022735587
.0315455250
.0190276625
.0315455250
.0022735587
.0001953281
.0053170171
.0501473968
.9639504802
.0660643142

NA

O O O O O OO OO OO OO OO OOOODOODOOOO0OOOOOOOOOOoOo oo

NA
NA
NA
NA
NA
NA
NA
NA
DIL4575

.066771314
.104254206
.034634014
.062319893
.063745321
.178088595
.096884732
.062319893
.004731064
.026199925
.010410483
.104254206
.062319893
.025611971
.067293679
.010434521
.122291010
.093655241
.064741647
.025199437
.025199437
.079391107
.172996058
.051000332
.006383743
.050182006
.093572802
.050182006
.006383743
.002405364
.049216372
.457359070
.100344901
.601745357
.096884732

O O O O O OO OO OO OO ODODODODODODODODOODOODOOOOOOOOOOOoOOo

NA
NA
NA
NA
NA
NA
NA
NA
DIL4574

.0207843042
.0412893494
.0914196105
.1035954904
.0026181516
.0916052903
.1609912339
.0136861613
.0350527170
.0560342624
.0360693496
.0412893494
.0136861613
.0070590746
.0455589952
.0913841014
.0441643501
.1556248594
.0913841014
.0541393161
.05641393161
.0021990729
.1041167530
.0076450196
.0063188947
.1609780519
.1184332210
.1609780519
.0063188947
.0002022256
.0818076584
.7596114436
.0684237540
.99943205652
.0660643142



DIL4575
DIL4574
DIL8087
DIL4573

DIL8204
DIL4613
DIL4612
DIL4611
DIL4610
DIL4609
DIL4608
DIL4607
DIL4606
DIL8201
DIL8200
DIL4605
DIL8198
DIL4604
DIL8195
DIL4603
DIL4601
DIL4599
DIL4593
DIL4589
DIL4588
DIL8186
DIL8176
DIL8175
DIL4585
DIL4584
DIL8164
DIL8162
DIL4583
DIL4581
DIL8098
DIL4580
DIL8091
DIL8090
DIL8089
DIL4575
DIL4574
DIL8087
DIL4573

O O O O O OO OO OO0 OO OODODODODODODODODODODODODOOOOOOOOOoOOoOOo

NA
NA
NA
NA
DIL8087

.290718581
.042318618
.016610155
.077300664
.056042549
.124881310
.082734872
.370579059
.093142200
.019070194
.006513356
.042318618
.370579059
.025001051
.067976308
.002421989
.045796114
.632163810
.024751902
.009844468
.009844468
.020673635
.019007820
.109558273
.004712566
.010091278
.003928730
.010091278
.004712566
.004225256
.006062595
.001897940
.909222439
.075264735
.877869941
.110182636
.075264735

NA
NA

O O O O O O OO O OO OO O OO O OO OO0 OO OODODOOOOOOOOOOoO oo

DIL4573

.04304362
.06819161
.03558727
.13285926
.01473747
.02903990
.20644175
.03099322
.07125401
.04368047
.02810531
.06819161
.03099322
.10685177
.00905028
.07125401
.07156556
.19956036
.07115846
.04220391
.04220391
.04220391
.08114282
.02708772
.01787636
.25951288
.09242631
.25951288
.01787636
.00363220
.02614154
.97390364
.056330344
. 77959574
.056149917
.46939068
. 77959574
.05867867

NA

NA
NA
NA
NA
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NA
NA
NA
NA

NA 0.6017453567

NA NA
NA NA
NA NA



(The brackets are not necessary but are included to make it clear exactly what
has been done). It can be seen that the values of 2 are much smaller than the values
of D'. This is even clearer if we plot a histogram of these values

> hist(r2)

Histogram of r2

Frequency
300 400 500
l l |

200
|

100
|

0.0 0.2 0.4 0.6 0.8 1.0

r2

This is somewhat depressing, suggesting that the phylogeny (the “family tree”) of
the observed haplotypes is rather fragmented and that many “tags” may be necessary
to mark al the variation in this region.

The most commonly used methods of selecting tag SNPs are based, lloosely, on
cluster analysis. We first gather the SNPs into groups, or clusters, within which the
r? values are small. We then select a representative member of each cluster to use as
a tag. The most widely cited example of this is due to Carlson et al. (2004). It has
been pointed out recently (Rinaldo et al., 2005) that this method is closely related
to the standard statistical method of complete linkage hierarchical cluster analysis,
and that is how the calculations will be approached here. We start by expressing
the “distance” between SNPs as (1 — r?):

> dist <- as.dist(t(1 - r2))

The use of the t () function in the above needs a word of explanation. This swaps
the rows and columns of a matrix and is necessary here because the as.dist()
function (which prepares a distance matrix for cluster analysis) annoyingly requires

o1



the diagonally opposite part of the matrix from that which is calculated by LD(). We
now calculate, and plot, the hierachical cluster analysis using the complete linkage
method:

> hier <- hclust(dist, method = "complete")
> plot(hier)

Cluster Dendrogram
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hclust (*, "complete™)

You might like to widen the graphics window to see things better. To understand
what this graph means it is helpful to look at a tiny part of it comprising three SNPs:

> three <- c("DIL4581", "DIL4585", "DIL4583")

The axis labelled “height” in the plot shows distances, (1 —7?) and we can look
at the distances between these SNPs by simply typing

> 1 - r2[three, three]

DIL4581 DIL4585 DIL4583
DIL4581 NA NA NA
DIL4585 0.374218 NA 0.0006328426
DIL4583 0.374218 NA NA
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We divide the total collection of SNPs into clusters, in effect, by drawing a
horizontal line across the plot. If we draw a line at height 0.5, this will create
clusters in which the maximum distance between SNPs is 0.5, so that the minimum
r? is also 0.5. We can simultaneously draw the clusters on the graph and save them
for later processing with the following command:

> clusters <- rect.hclust(hier, h = 0.5)

Our final task to complete the process of choosing tags is to select a “central”
representative of each cluster. this is computed using the clusters we have just
calculated and the distance matrix:

> tags <- representative(clusters, dist)

The tags object so computed is a list with three elements:

1. $rep: the representatives or, here, the tags chosen

2. $is.rep: a logical array saying whether each of the original SNPs was or was
not chosen, and

3. $dist: the mean distance between other SNPs within the cluster and the tag.

You should look at the solution by typing tags and identifying the selected tags on

the plot. Note that we have chosen half the SNPs as tags while only guaranteeing
2

r<>0.5.

Multiple tagging

In this section we shall use some fancy Rto show how much better tagging can
be achieved by using the tags together rather than one-at-a-time. We'll start by
creating two lists of SNPs — those chosen as tags and those not chosen. To make
things hard for ourselves, we’ll start by randomly choosing only half of the tags
chosen by our previous approach, by an electronic flip of a coin:

> choose <- tags$is.rep & (runif(39) < 0.5)
> snps <- hier$labels
> chosen <- snps[choose]
> chosen
[1] "DIL4612" "DIL4611" "DIL4610" "DIL8200" "DIL4605" "DIL4604" "DIL4585"
[8] "DIL4584" "DIL4575" "DIL4574"
> not <- snps/[!choose]
> not
[1] "DIL8204" "DIL4613" "DIL4609" "DIL4608" "DIL4607" "DIL4606" "DIL8201"
[8] "DIL8198" "DIL8195" "DIL4603" "DIL4601" "DIL4599" "DIL4593" "DIL4589"
[15] "DIL4588" "DIL8186" "DIL8176" "DIL8175" "DIL8164" "DIL8162" "DIL4583"
[22] "DIL4581" "DIL8098" "DIL4580" "DIL8091" "DIL8090" "DIL8089" "DIL8087"
[29] "DIL4573"
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(The first line says that a SNP will only be chosen if it was chosen as a cluster
representative and if a random variable, evenly distributed over the region (0,1) is
less than 0.5). We now want to demonstrate how well all the chosen SNPs, taken
together, predict those not chosen. For this prediction we will use simple linear
regression, coding each SNP genotype as 0, 1 or 2. For a justification of this, see
Clayton et al. (2004).

We start by creating the prediction matrix adding one chosen SNP at a time

> mat <- NULL

> for (snmp in chosen) {

+ mat <- cbind(mat, allele.count(CD25[[snpl], 2))
+ }

> colnames(mat) <- chosen

The function cbind adds a column to mat, and the function allele.count
constructs the 0, 1, 2 scoring of genotypes by counting the “2” allele. You can look
at the first 5 rows of mat to see what you have achieved by typing

> mat[1:5, ]

DIL4612 DIL4611 DIL4610 DIL8200 DIL4605 DIL4604 DIL4585 DIL4584 DIL4575

[1,] 0 0 1 2 0 2 0 1

[2,] 0 0 2 2 0 2 0 1

[3,] 0 0 2 2 0 2 0 2

(4,] 0 0 2 2 2 NA 2 2

[5,] 0 0 0 NA 0 2 0 1
DIL4574

[1,] 1

[2,] 1

[3,] 0

(4,] 2

(5,1 0

We’ll now code each of the remaining SNPs in turn similarly, predict it by mul-
tiple regression on mat, and print the R>. But first we have to force Rto only use
subjects without missing values in these computations:

> options(na.action = na.omit)
> for (smp in not) {

+ gt <- allele.count(CD25[[snpl]l, 2)
+ reg <- 1lm(gt ~ mat)

+ print (summary (reg) $r.squared)

+ }

[1] 0.6893491
(1] 1
(1] 1

o4
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[1] 0.6725572
[1] 0.6893491
[1] 0.9220374
[1] 0.8011364
[1] 0.6893491
[1] 0.7461538
[1] 0.8397436
(1] 1
(1] 1
[1] 0.932916
[1] 0.7781065
[1] 0.7781065
(1] 1
[1] 0.9318182
(1] 1
[1] 0.932916
(1] 1
[1] 1
[1] 0.9275148
[1] 1
(1] 1
(1] 1
(1] 1
(1] 1
(1] 1
(1] 1

It usually works pretty well — certainly much better than single tagging. Note,
however, that omitting subjects with anything missing could lead to multiple tagging
being a very costly strategy indeed. For an alternative approach based on imputation
of missing values, see Vella et al. (2005). This paper describes the end result of the
CD25 study.

Power

The DGCgenetics package contains a number of functions for power calculations.
These assume a generalized codominant mode of action for the causal variant. Thus,
for a disease trait, each copy of the risk allele is assumed to multiply the risk by the
same amount, 0 say (theta) and, for a quantitative trait, each copy of the allele
adds the same amount to the trait mean. For case-control studies and quantitative
trait studies, the power is calculated by htPower.cc and htPower.qtl respectively.
Sample size calculations are carried out using the corresponding htSampleSize func-
tions. Consult the help page for details.

How big must a case-control study be in order to detect a causal variant in
a candidate gene with frequency 0.1 (10%) and 6 = 1.5. Even for a candidate
gene current opinion would suggest that you should aim for a signicance level no
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larger than o = 10™*. You might like to experiment with different values for these
parameters.

For quantitative traits, it might be reasonable to try and detect variants respon-
sible for only 1% of total variance of the trait. How big do such studies need to
be?
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Exercise 6: Transmission/disequilibrium: the TDT
and some extensions

Informative transmissions

The following represent trios of an affected offspring and both parents. Alleles are
coded 1-4 and unknown genotypes are denoted by 7/7.

1/2T3/4 1/2T3/3 1/2T1/1

1/3 1/3 1/2
(1) (2) (3)
1/2 1/2 1/2 1/2
/ B / / B /
1/1 1/2
(4) (5)
1/2 ?/7 1/2 7/7
/ B / / B /
1/1 1/3

(6) (7)

Determine, in each case, how many informative transmissions are provided by the
family. Using only these informative transmissions, make a table of how many times
each allele was either transmitted or not transmitted.

Preparing computer files for pedigree data

The most commonly used method for entering family data is in the standard “pre-
ped” format which was introduced in the LINKAGE package. This has one data
record per family member, and there are six standard fields. These, together with
their default names for my Rpackage, are as follows:

1. pedigree: the code identifying different families in the dataset.
2. id: the code identifying an individual within the family.
3. id.father: the identifier for the subject’s father.

4. id.mother: the identifier for the subject’s mother. This and the previous field
need only be filled in if the parent is present in the file. Note that sometimes
it is necessary to supply records for parents even when no data are available
for them, in order to make clear the relationship between subjects for whom
we do have data.

5. sex: this can be numerically coded, as 1 for male and 2 for female. Alterna-
tively it can be stored as a “factor” (the name for a categorical variable in R),
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providing male is the first level and female is the second level (this ensures the
correct underlying numerical codes).

6. affected: the disease status. The usual coding is 1 for not affected and 2 for
affected. But this can be stored as a factor in the same way as sex.

The dataframe tdt.exercise contains a template of the datafile for the exercise
you have just completed, but the marker genotype is missing. You can load and
browse the dataframe, and enter the marker data by:

data(tdt.exercise)
fix(tdt.exercise)

(or, in MS Windows, you can initiate this from the drop-down menus.). You
should enter the genotypes as they are written in the exercise — as character strings
such as 1/2. When you have finished, quit the data editor. You might like to try
summary (tdt.exercise) to check that all is well. But marker is still stored as a
character string rather than as a genotype variable. The function makeGenotypes
is useful for this purpose. It can simultaneously change the storage mode of many
variables within a dataframe in this way, but the following command converts the
variable type of the single marker, making a new copy of the dataframe:

tdtex <- makeGenotypes(tdt.exercise, convert="marker")

> data(tdt.solution)
> tdtex <- tdt.solution

The dataframe should look like this:
> show(tdtex)

pedigree id id.father id.mother sex affected marker

1 1 1 NA NA 1 NA 1/2
2 1 2 NA NA 2 NA 3/4
3 1 3 1 2 NA 2 1/3
4 2 1 NA NA 1 NA 1/2
5 2 2 NA NA 2 NA 3/3
6 2 3 1 2 NA 2 1/3
7 3 1 NA NA 1 NA 1/2
8 3 2 NA NA 2 NA 1/1
9 3 3 1 2 NA 2 1/2
10 4 1 NA NA 1 NA 1/2
11 4 2 NA NA 2 NA 1/2
12 4 3 1 2 NA 2 1/1
13 5 1 NA NA 1 NA 1/2
14 5 2 NA NA 2 NA 1/2
15 5 3 1 2 NA 2 1/2
16 6 1 NA NA 1 NA 1/2
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17 6 2 NA NA 2 NA  <NA>
18 6 3 1 2 NA 2 1/1
19 7 1 NA NA 1 NA 1/2
20 7T 2 NA NA 2 NA  <NA>
21 7 3 1 2 NA 2 1/3

You can now carry out the TDT calculations:
> attach(tdtex)
The following object(s) are masked from popn :
affected sex
> tdt (marker)

Transmission/disequilibrium test
Data: marker

Untransmitted allele frequencies, informative transmissions
and exact P-values

Allele Frequency Transmitted Untransmitted P-value
1 0.27273 6 2 0.289
2 0.54545 2 6 0.289
3 0.09091 1 0 1.000
4 0.09091 0 1 1.000

Global chi-squared test = 3 on 2 df. Asymptotic P-value = 0.223

Here the tdt function has assumed the standard names and coding for the six
standard variables in pre-ped files. If different names were given you would have
had to supply these.

Check that the computer agrees with your answer to the first part of the exercise.

A real study

First, we will save tdtex to a disk file (seven_trios) for later use, and clear the
decks.

> save(tdtex, file = "seven_trios")
> clear()

The next exercise concerns the same markers discussed in the exercise on population—
based studies, but here measured in a family—based study of another disease. The
data are stored in the dataframe fmly. First load and attach the new dataframe,
and do a TDT test:
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> data(fmly)
> summary (fmly)

pedigree
Length:15591

Class

Mode

Min.

1st Qu.:
Median :

Mean

3rd Qu.:

Max.
NA's
C
1/1
1/2
2/2
NA's:

:character
:character

sex

.000
.000
.000
.494
.000
.000
000

NN R PR e

:35.

:5649 (36%)
16570 (42%)
12076 (13%)

1296 ( 8%)

> attach(fmly)
> tdt (A)

Data:

Min.
1st
Medi
Mean
3rd
Max.

aff
Min.
1st Qu

Median :

Mean
3rd Qu
Max.

D
1/1
2/1
2/2
NA's:

id

.00
.00
.00
.65
.00
00

Qu.;

an :

DN NN -

Qu.:
:18.

ected

.000
.000
.000
.331
.000
.000

11909 (12%)
:5581 (36%)
14469 (29%)

3632 (23%)

Min. :
1st Qu.:
Median :
Mean

3rd Qu.:
Max. :
NA's

1/1
1/2
2/2

NA's:

id.father

e

: 13,
:7818.

:56804 (37%)
16397 (41%)
11879 (12%)
1511 (10%)

Transmission/disequilibrium test

A

.000
.000
.000
.103
.000

000
000

1/1
1/2
2/2
NA'

id.mother
Min. :
1st Qu.:
Median :
Mean :
3rd Qu.:
Max.
NA's
B
:3720
:5898
12676
3297

S |
1781

(247
(38%
(17%

S: (21%

Untransmitted allele frequencies, informative transmissions

and exact P-values

Allele

2

Frequency

0.3

Transmitted

821 1821

2081

Untransmitted P-value

3.36e-05

Don’t worry about the warning messages — I said it was a real study!
Because some families have more than one affected offspring, these tests are
not strictly valid in the presence of linkage, since the transmissions to two affected
siblings are not independent of one another. This independence assumption can be
avoided using the robust option:

> tdt (A, robust

Data:

TRUE)

Transmission/disequilibrium test

A
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N~ NN -

)
)
)
)

.000
.000
.000
.926
.000
0.
6.

000
000



Untransmitted allele frequencies, informative transmissions
and asymptotic P-values

Allele Frequency Transmitted Untransmitted P-value
2 0.3821 1821 2081 3.20e-05

In fact linkage is very weak in this region and its effect is very small. The asymp-
totic properties of the robust test are not as good as the standard test. This author
would only advocate use of the robust option in the presence of strong linkage, but
this would not be universally accepted by all journal editors and reviewers.

As with allele counting methods for analysis of case-control data, the TDT test
is most powerful against the alternative model in which effects of alleles are mul-
tiplicative. In this case, the ratio of transmitted to untransmitted alleles provides
an estimate of the multiplicative effect of each allele, expressed relative to all the
remaining alleles. You should calculate the ratio of the number of times allele “2” of
marker A was transmitted to the number of times it was not and make a note of it
to compare with later results.

Case/pseudo-control studies

More complicated, genotype-based analyses may be carried out by considering the
transmitted pair of alleles as the “case” and the other three possible pairs of trans-
mitted alleles as “pseudo-controls” in a matched case/control study. The tool for
transforming the data in this way is the function pseudocc(). We shall experiment
with it using the data for the seven trios of the first exercise. We shall start by
clearing the global environment and restoring the dataframe tdtex:

> clear()
> load("seven_trios")
> summary (tdtex)

pedigree id id.father id.mother sex affected
Min. 11 Min. 01 Min. 1 Min. ;2 Min. :1.0 Min. 1 2
1st Qu.:2 1st Qu.:1 1st Qu.: 1 1st Qu.: 2 1st Qu.:1.0 1st Qu.: 2
Median :4 Median :2 Median : 1 Median : 2 Median :1.5 Median : 2
Mean 14 Mean 12 Mean 1 Mean : 2 Mean :1.5 Mean 1 2
3rd Qu.:6 3rd Qu.:3 3rd Qu.: 1 3rd Qu.: 2 3rd Qu.:2.0 3rd Qu.: 2
Max. 17 Max. :3 Max. 1 Max. ;2 Max. :2.0 Max. i 2
NA's :14 NA's :14 NA's :7.0 NA's 114

marker

1/1 : 3 (14%)
1/2 :11 (52%)
1/3 : 3 (14%)

3/3 : 1 (5%
3/4 : 1 ( 5%
NA's: 2 (10%)
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The case-control dataset can be created as follows
> pscc <- pseudocc(marker, data = tdtex)

The result, pscc is a new dataframe of cases and pseudo-controls. To inspect its
contents:

> show(pscc)

set cc pedigree id id.father id.mother marker marker.mother marker.father

1 1 1 1 3 1 2 1/3 3/4 1/2
2 1 0 1 3 1 2 1/4 3/4 1/2
3 1 0 1 3 1 2 2/3 3/4 1/2
4 1 0 1 3 1 2 2/4 3/4 1/2
5 2 1 2 3 1 2 1/3 3/3 1/2
6 2 0 2 3 1 2 1/3 3/3 1/2
7 2 0 2 3 1 2 2/3 3/3 1/2
8 2 0 2 3 1 2 2/3 3/3 1/2
9 3 1 3 3 1 2 1/2 1/1 1/2
10 3 0 3 3 1 2 1/2 1/1 1/2
11 3 0 3 3 1 2 1/1 1/1 1/2
12 3 0 3 3 1 2 1/1 1/1 1/2
13 4 1 4 3 1 2 1/1 1/2 1/2
14 4 O 4 3 1 2 1/2 1/2 1/2
15 4 0 4 3 1 2 1/2 1/2 1/2
16 4 0 4 3 1 2 2/2 1/2 1/2
17 5 1 5 3 1 2 1/2 1/2 1/2
18 5 0 5 3 1 2 1/1 1/2 1/2
19 5 0 5 3 1 2 2/2 1/2 1/2
20 5 0 5 3 1 2 1/2 1/2 1/2

Has the program produced the case-control sets you would expect?
We’ll now go through the same process in order to estimate the effect of the A
genotype on our larger family-based study:

> clear()

> data(fmly)

> pscc.fmly <- pseudocc(A, data = fmly)
> summary(pscc.fmly)

set cc pedigree id
Min. : 1 Min. :0.00 625 : 20  Min. : 3.000
1st Qu.:1191 1st Qu.:0.00 3699 : 16 1st Qu.: 3.000
Median :2324 Median :0.00 3776 : 16 Median : 3.000
Mean 12364 Mean :0.25 1172 : 12 Mean 3.618
3rd Qu.:3523 3rd Qu.:0.25 1814 : 12 3rd Qu.: 4.000
Max. :4856  Max. :1.00 2356 : 12 Max. :18.000
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(Other) : 16632

id.father id.mother A A.mother

Min. : 1.000 Min. :1.000 1/1:6788 (41%) 1/1:6732 (40%)
1st Qu.: 1.000 1st Qu.:2.000 1/2:7588 (45%) 1/2:7712 (46%)
Median : 1.000 Median :2.000 2/2:2344 (14%) 2/2:2276 (14%)
Mean : 1.148 Mean :1.882

3rd Qu.: 1.000 3rd Qu.:2.000

Max. :13.000 Max. :9.000

A.father

1/1:6628 (40%)
1/2:7896 (47%)
2/2:2196 (13%)

> attach(pscc.fmly)

We can now fit various relative risk models by use of the conditional logistic
regression function clogit(). To indicate that the variable set labels matched
case-control sets we include the term strata(set) in the model. For example, the
model of multiplicative allelic effects is fitted by

> gcontrasts(A) <- "additive"
> clogit(cc ~ A + strata(set))

Call:
clogit(cc ~ A + strata(set))

coef exp(coef) se(coef) z p
A:a:2 -0.133 0.875 0.0321 -4.16 3.2e-05

Likelihood ratio test=17.3 on 1 df, p=3.13e-05 n= 16720

In the output from this command, the relative risk parameters are labelled
exp(coef). How does this result compare with the transmitted:untransmitted ratio
obtained with the TDT?

You could test for deviation from the multiplicative model by adding a dominance
effect:

> gcontrasts(4) <- "dominance"
> clogit(cc ~ A + strata(set))

Call:
clogit(cc ~ A + strata(set))
coef exp(coef) se(coef) z P
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A:a:2  -0.1431 0.867 0.0342 -4.181 2.9e-05
A:d:1:2 0.0329 1.033 0.0391 0.842 4.0e-01

Likelihood ratio test=18.1 on 2 df, p=0.000121 n= 16720
There is no such suggestion!. If you wished to estimate genotype relative risks:

> gcontrasts(A) <- "genotype"
> clogit(cc ~ A + strata(set))

Call:
clogit(cc ~ A + strata(set))

coef exp(coef) se(coef) z P
A1/1 0.110 1.116 0.0424 2.60 0.0094
A2/2 -0.176 0.839 0.0601 -2.93 0.0034

Likelihood ratio test=18.1 on 2 df, p=0.000121 n= 16720

As with the TDT, in the presence of linkage it is technically incorrect to assume
that transmissions in different trios from the same family are independent. The
following command forces a “robust” variance estimate for the effects, which does
not depend on this assumption

> clogit(cc ~ A + strata(set) + cluster(pedigree), method = "approximate")

Call:

clogit(cc ™ A + strata(set) + cluster(pedigree), method = "approximate")
coef exp(coef) se(coef) robust se z P

A1/1 0.110 1.116 0.0424 0.0426 2.59 0.0096

A2/2 -0.176 0.839 0.0601 0.0599 -2.94 0.0033

Likelihood ratio test=18.1 on 2 df, p=0.000121 n= 16720

(the method is only approximate in a technical sense not relevant here, but this
argument to the function is nevertheless required).

Several loci

It is possible to extend case/pseudo-control analysis with several loci. There are
then two ways we can make the case-control study, according to whether or not we
require haplotype phase to be known for cases and controls[] We will first calculate
the phased case-control sets:

" Another option requires parent-of-origin to be inferred. This results in further loss of infor-
mation, since this is not possible for all trios, even when phase can be inferred. This is needed for
analyses of parent-of-origin effects.
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> clear()

> data(fmly)

> pscc <- pseudocc(4, C, data = fmly)
> summary (pscc)

set cc pedigree id
Min. : 1 Min. :0.0000 3776 : 16 Min. : 3.000
1st Qu.:1232 1st Qu.:0.0000 1172 : 12 1st Qu.: 3.000
Median :2364  Median :0.0000 1814 : 12 Median : 3.000
Mean 12378 Mean :0.2688 2356 : 12 Mean 3.629
3rd Qu.:3515 3rd Qu.:1.0000 2589 : 12 3rd Qu.: 4.000
Max. 14856 Max. :1.0000 2590 : 12 Max. :18.000
(Other) : 13034
id.father id.mother A.C A
Min. : 1.000 Min. :1.000 1:1/1:1:5711 (44%) 1/1:5962 (45%)
1st Qu.: 1.000 1st Qu.:2.000 1:1/2:2:2567 (20%) 1/2:2698 (21%)
Median : 1.000 Median :2.000 2:2/1:1:2537 (19%) 2/1:2666 (20%)
Mean 1.145 Mean :1.876 2:2/2:2:1732 (13%) 2/2:1784 (14%)
3rd Qu.: 1.000 3rd Qu.:2.000 1:1/1:2: 124 ( 1%)
Max. :13.000 Max . :9.000 1:2/1:1: 119 C 1%
(Other): 320 ( 2%)

C A.mother C.mother A.father
1/1:5813 (44%)  1/1:6402 (49%) 1/1:6228 (48%) 1/1:6232 (48%)
1/2:2717 (21%)  1/2:4536 (35%)  1/2:4624 (35%)  1/2:4772 (36%)
2/1:2685 (20%)  2/2:2172 (17%)  2/2:2258 (17%)  2/2:2106 (16%)
2/2:1895 (14%)

C.father

1/1:6100 (47%)
1/2:4776 (36%)
2/2:2234 (17%)

The dataset created now contains a two-locus haplotype variable, A.C. We'll
first attach the dataframe and examine the the counts of haplotypes for cases and
pseudo-controls,

> attach(pscc)
> allele.table(A.C)

1:1 1:2 2:1 2:2
16867 421 161 8771

Note the extremely strong LD. First let us fit a model for multiplicative haplotype
effects:
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> gcontrasts(A.C) <- "additive"
> clogit(cc ~ A.C + strata(set))

Call:
clogit(cc ~ A.C + strata(set))

coef exp(coef) se(coef) z P
A.C:a:1:2 -0.296 0.744 0.1339 -2.21 2.7e-02
A.C:a:2:2 -0.137 0.872 0.0336 -4.08 4.5e-05
A.C:a:2:1 -0.620 0.538 0.2168 -2.86 4.3e-03

Likelihood ratio test=26 on 3 df, p=9.49e-06 n= 13110

You can investigate the effect of using “robust” standard error estimates by adding
the cluster(pedigree) term to the model as demonstrated above. Next, consider
an unrestricted model for genotype relative risks ...

> gcontrasts(A.C) <- "dominance"
> clogit(cc ~ A.C + strata(set))

Call:
clogit(cc ~ A.C + strata(set))

coef exp(coef) se(coef) z P
A.C:a:1:2 -0.2269 0.797 0.4791 -0.474 0.64000
A.C:a:2:2 -0.1397 0.870 0.0364 -3.840 0.00012
A.C:a:2:1 0.2402 1.272 0.6953 0.346 0.73000
A.C:d:1:2:1:1 0.0702 1.073 0.4981 0.141 0.89000
A.C:d:1:2:2:2 -0.2166 0.805 0.5137 -0.422 0.67000
A.C:d:1:2:2:1 -0.9939 0.370 1.2748 -0.780 0.44000
A.C:d:1:1:2:2 0.0358 1.036 0.0504 0.711 0.48000
A.C:d:1:1:2:1 -0.8579 0.424 0.7371 -1.164 0.24000
A.C:d:2:2:2:1 -1.0676 0.344 0.7880 -1.355 0.18000

Likelihood ratio test=30 on 9 df, p=0.000437 n= 13110

There is some suggestion that there is a haplotype effect, or cis interaction, since
the 2.1 haplotype has a markedly different risk from the other three. A cis interaction
would suggest either, if A and C are indeed causal that both changes must occur on
the same chromosome for the causal effect to be observed, or that neither is causal
but are both in LD with the true causal variant

To test whether the effect of the A.C haplotype is greater than the combined
(multiplicative) effects of A and C, we can carry out the following sequence of com-
mands:
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> gcontrasts(A) <- "additive"

> gcontrasts(C) <- "additive"

> gcontrasts(A.C) <- "additive"

> clogit(cc ~ A + C + A.C + strata(set))

Call:
clogit(cc ~ A + C + A.C + strata(set))

coef exp(coef) se(coef) z P
A:a:2 -0.620 0.538 0.217 -2.86 0.0043
C:a:2 0.482 1.620 0.217 2.22 0.0270
A.C:a:1:2 -0.778 0.459 0.275 -2.83 0.0047
A.C:a:2:2 NA NA 0.000 NA NA
A.C:a:2:1 NA NA 0.000 NA NA

Likelihood ratio test=26 on 3 df, p=9.49e-06 n= 13110

The haplotype (cis interaction) effect is not significant when the two main effects
are in the model. Closer inspection reveals that the effect is quite large; it is not sig-
nificant because the LD is so strong that there is little information about haplotype
effects. This is an important lesson when using multiple markers in a region of very
strong LD — there is usually little point in considering haplotype effects unless one
is interested in very rare variants — and these are only detectable if they have very
large effects indeed.

If we only wish to fit the model A + C, with alleles of A and C both acting
multiplicatively, then phase is irrelevant, since all alleles would act multiplicatively
and, for example, the genotype 1.2/2.1 would predict the same risk as 1.1/2.2. phase
becomes irelevant.There is then a more efficient way of forming the case-control
dataframe. This was originally suggested by Falk and Rubinstein. The idea is to
treat the pair of untransmitted alleles at each locus as an unphased genotype. This
allows us to use many more trios, and there is no loss in including many markers at
the same time:

> clear()

> data(fmly)

> pscc <- pseudocc(A, B, C, D, data = fmly, phase = FALSE)
> summary (pscc)

set cc pedigree id id.father
Min. : 1 Min. :0.0 3795 12 Min. : 2.000 Min. 01
1st Qu.:1215 1st Qu.:0.0 625 . 10 1st Qu.: 3.000 1st Qu.: 1
Median :2428 Median :0.5 3699 : 8 Median : 3.000 Median : 1
Mean 12428 Mean :0.5 3776 : 8 Mean : 3.632 Mean i1
3rd Qu.:3642 3rd Qu.:1.0 1172 : 6 3rd Qu.: 4.000 3rd Qu.: 1
Max. 14856 Max. :1.0 1304 : 6 Max. :18.000 Max. :13.

(Other) : 9662

67

.000
.000
.000
.163
.000

000



id.mother A B C

Min. : 1.000 1/1 :2351 (24%) 1/1 :1786 (18%) 1/1 :2281 (23%)
1st Qu.: 2.000 1/2 :2658 (27%) 1/2 :2775 (29%) 1/2 :2670 (27%)
Median : 2.000 2/2 : 801 ( 8%) 2/2 :1249 (13%) 2/2 : 859 ( 9%)
Mean 1.882 NA's:3902 (40%) NA's:3902 (40%)  NA's:3902 (40%)
3rd Qu.: 2.000

Max. :10.000

D A.mother B.mother C.mother

1/1 : 950 (10%) 1/1 :3552 (37%) 1/1 :2494 (26%) 1/1 :3442 (35%)
2/1 :2723 (28%) 1/2 :4032 (42}%) 1/2 :3762 (39%) 1/2 :4192 (43%)
2/2 :2137 (22%) 2/2 :1242 (13}) 2/2 :1640 (17%)  2/2 :1338 (14%)
NA's:3902 (40%) NA's: 886 ( 9%) NA's:1816 (19%) NA's: 740 ( 8%)
D.mother A.father B.father C.father

1/1 :1228 (13%) 1/1 :3516 (36%) 1/1 :2414 (25%) 1/1 :3432 (35%)
2/1 :3612 (37%) 1/2 :4162 (43%) 1/2 :3784 (39%) 1/2 :4240 (44%)
2/2 :2828 (29%) 2/2 :1154 (12%) 2/2 :1650 (17%) 2/2 :1302 (13%)
NA's:2044 (21%) NA's: 880 ( 9%) NA's:1864 (19%) NA's: 738 ( 8%)
D.father

1/1 :1268 (13%)

2/1 :3662 (38%)

2/2 :2736 (28%)

NA's:2046 (21%)

The A+C model can now be fitted by:

> attach(pscc)

> gcontrasts(A) <- "additive"

> gcontrasts(C) <- "additive"

> clogit(cc ~ A + C + strata(set))
Call:

clogit(cc ™ A + C + strata(set))

coef exp(coef) se(coef) z P

A:a:2 -0.1284 0.879 0.113 -1.134 0.26
C:a:2 -0.0336 0.967 0.112 -0.299 0.77

Likelihood ratio test=17.0 on 2 df, p=0.000201 n=5810 (3902 observations deleted
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This analysis forms the basis of an efficient method of analysing “tagged” regions
or candidate genes, although some extension is necessary to better detect dominance
effects at a causal locus. Rtools for such analyses are under development.
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Exercise 7: Parent-of-origin effects

The next exercise studies effects of parent-of-origin of an associated allele. We shall
use some data concerning insulin dependent diabetes mellitus (IDDM) and a set of
three closely spaced markers in the MHC class 3 region. The data are a very small
subset of a much larger study. The markers (bat2, bat3 and ng36 are separated by
20 kb and 260 kb respectively. These cover a region strongly implicated in IDDM

by linkage analysis. These data form the dataframe mhc3iddm:

> data(mhc3iddm)
> summary (mhc3iddm)

pedigree id id.father id.mother sex
Min. : 3.00 Min. :1.00 Min. 01 Min. 2 Min.
1st Qu.: 45.50 1st Qu.:1.75 1st Qu.: 1 1st Qu.: 2 1st Qu.:
Median : 89.50 Median :2.50 Median : 1 Median : 2 Median :
Mean : 89.47 Mean :2.50 Mean 1 Mean 2 Mean
3rd Qu.:134.25 3rd Qu.:3.25 3rd Qu.: 1 3rd Qu.: 2 3rd Qu.:
Max. :180.00 Max. :4.00 Max. 01 Max. 2 Max.

NA's 1192 NA's 1192

affected bat2 bat3 ng36
Min. :1.0 1/1 : 98 (26%) 1/1 : 78 (20%) 1/1 :198 (52%)
1st Qu.:1.0 2/1 :179 47%) 2/1 :171 (45%) 1/2 :126 (33%)
Median :1.5 2/2 :101 (26%) 2/2 :126 (33%) 2/2 : 47 (12%)
Mean :1.5 NA's: 6 ( 2%) NA's: 9 ( 2%) NA's: 13 ( 3%)
3rd Qu.:2.0
Max. :2.0

> attach(mhc3iddm)
The following object(s) are masked from pscc :
id id.father id.mother pedigree
To test for association with the ba2 locus:
> tdt(bat2)

Transmission/disequilibrium test
Data: bat2

Untransmitted allele frequencies, informative transmissions
and exact P-values

Allele Frequency Transmitted Untransmitted P-value
2 0.4220 107 66 0.00226
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Note, however, that these data concern affected sib pairs and there is very strong
linkage in the region. This means that transmissions to the two siblings cannot be
regarded as independent. To allow for this, you could use the robust option with
the tdt function, e.g.

> tdt(bat2, robust = TRUE)

Transmission/disequilibrium test
Data: bat2

Untransmitted allele frequencies, informative transmissions
and asymptotic P-values

Allele Frequency Transmitted Untransmitted P-value
2 0.4220 107 66 0.0174

You can look at transmission of maternal and paternal alleles separately using
the tdt function e.g.

> tdt(bat2, parent = "mother")

Transmission/disequilibrium test
Data: bat2

Untransmitted allele frequencies, informative transmissions
and exact P-values

Allele Frequency Transmitted Untransmitted P-value
2 0.4242 42 27 0.0912

> tdt(bat2, parent = "father")

Transmission/disequilibrium test
Data: bat2

Untransmitted allele frequencies, informative transmissions
and exact P-values

Allele Frequency Transmitted Untransmitted P-value
2 0.3975 42 16 0.000862

These results are suggestive of a difference. It has been commonplace to test for
this by combining the data into a 2 x 2 table and doing a simple chi-squared test:

> tab <- matrix(c(42, 27, 42, 16), nrow = 2)
> tab
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(,1] [,2]
[1,] 42 42
[2,] 27 16

> chisq.test(tab)

Pearson's Chi-squared test with Yates' continuity correction

data: tab
X-squared = 1.3952, df = 1, p-value = 0.2375

although this is not a valid test for reasons explained in the lecture. (In the
above sequence, the function c() is the concatenation function — a general func-
tion to group simple objects together. The function matrix () establishes the 2 x 2
structure.)

An alternative analysis is to create a case—control dataset in which the parent of
origin of each allele is tracked:

> clear()

> data(mhc3iddm)

> ccmhc <- pseudocc(bat2, data = mhc3iddm, parent.of.origin = TRUE)
> summary (ccmhc)

set cc pedigree id id.father
Min. : 1.00 Min. :0.0000 Min. : 3.00 Min. :3.000 Min. 01
1st Qu.: 44.00 1st Qu.:0.0000 1st Qu.: 41.00 1st Qu.:3.000 1st Qu.:1
Median : 97.00 Median :0.0000 Median : 91.00 Median :4.000 Median :1
Mean 1 94.22 Mean :0.2747 Mean . 87.35 Mean :3.505 Mean 01
3rd Qu.:139.00 3rd Qu.:1.0000 3rd Qu.:130.00 3rd Qu.:4.000 3rd Qu.:1
Max. :192.00 Max. :1.0000 Max. :180.00 Max. :4.000 Max. 01
id.mother bat2 bat2.mother bat2.father
Min. :2 1/1:175 (30%) 1/1:204 (35%)  1/1:220 (38%)

1st Qu.:2 1/2:138 (24Y%) 2/1:218 (37%) 2/1:174 (30%)
Median :2  2/1:132 (23%) 2/2:164 (28%) 2/2:192 (33%)
Mean 12 2/2:141 (24%)

3rd Qu.:2

Max. 12

Note that the summary statistics for bat2 now distinguish between the 1/2 and
2/1 genotypes. This is because parent of origin is tracked; the program puts the
allele inherited from the mother ﬁrst.l?f] We can now carry out a conditional logistic
regression analysis, using a new set of contrasts:

> attach(ccmhc)
> gcontrasts(bat2) <- "dominance.origin"
> clogit(cc ~ bat2 + strata(set))

8In the genetics package, a genotype variable in which the order of alleles is significant is called
a haplotype variable. This conflicts with standard usage of the term (as a colection of alleles at
linked loci and inherited together on the same chromosome.)
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Call:
clogit(cc ~ bat2 + strata(set))

coef exp(coef) se(coef) z P
bat2:a:2 0.520 1.682 0.165 3.14 0.0017
bat2:d:2:1 -0.359 0.698 0.257 -1.40 0.1600
bat2:p:2:1 -0.922 0.398 0.519 -1.78 0.0750

Likelihood ratio test=14.2 on 3 df, p=0.00271 n= 586

With these contrasts, the three degree of freedom test for different risks between
the four types of subject is now broken down into three components

1. the average additive effect (a:...),
2. the dominance effect (d:...), and
3. the parent-of-origin effect (p:...).

The relative risks in the exp(coef) column represent, respectively, the average mul-
tiplicative effect of each “2” allele, the average relative risk for heterozygotes as
compared with the (geometric) mean risk for the two types of homozygote and,
finally, the relative risk for the 2/1 genotype versus the 1/2 genotype.

Interaction between maternal genotype and child’s genotype can masquerade as
parental origin effects. The following commands investigate interaction between
maternal and foetal genotype. Note that we do not require to track parental origin
of alleles for this.

> clear()

> data(mhc3iddm)

> ccmhc <- pseudocc(bat2, data = mhc3iddm)

> attach(ccmhc)

> gcontrasts(bat2) <- "additive"

> gcontrasts(bat2.mother) <- "additive"

> clogit(cc ~ bat2 + bat2.mother + bat2:bat2.mother + strata(set))

Call:
clogit(cc ™ bat2 + bat2.mother + bat2:bat2.mother + strata(set))

coef exp(coef) se(coef) z p
bat2:a:2 0.909 2.482 0.419 2.17 0.03
bat2.mother:a:2 NA NA 0.000 NA NA
bat2:a:2:bat2.mother:a:2 -0.435 0.647 0.393 -1.11 0.27

Likelihood ratio test=11.1 on 2 df, p=0.00396 n= 736
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The interaction is not significant. Note that the main effect of bat2.mother could
not be fitted. This is because the case and the matched pseudo-controls always have
the same mother, so there is no information! Nevertheless this term needs to be in
the model, since the regression program doesn’t know this.

Counting case-parent trios

An alternative approach to the problem of parent—of-origin effects has been devel-
oped by Weinberg and colleagues (American Journal of Human Genetics, 65:229-
235, 1998). This involves counting trios of parents and affected offspring. There are
15 types of trio, but only 10 types of trio in which maternal and paternal genotypes
are different. An Rtool to count these types of trio is trio.types(). For the bat2
marker:

> clear()

> data(mhc3iddm)

> attach(mhc3iddm)

> trio.types(bat2, first = TRUE, parent.of.origin = TRUE)

affected.offspring mother father frequency

1 1/1 2/1 1/1 8
2 1/1 1/1 2/1 2
3 2/1 2/1 1/1 2
4 2/1 1/1 2/1 7
5 2/1 2/2 1/1 8
6 2/1 1/1 2/2 8
7 2/1 2/2 2/1 2
8 2/1 2/1 2/2 4
9 2/2 2/2 2/1 4
10 2/2 2/1 2/2 6

Note the use of the first option so that only the first affected offspring of any
family is used. ﬂ You will see that the trio types are arranged in five pairs such
that the two members of each pair are the same except for reversal of paternal
and maternal genotype. Were it not for selection of trios by affected offspring we
would expect the two frequencies within a pair to be equal. However, because of the
selection, we expect the ratio of frequencies to reflect the ratio of offspring risks. For
each pair, how would you expect the ratio of frequencies to be affected by different
risks being associated with paternal and maternal copies of the ‘27 allele? Informally,
do the trio counts suggest such an effect?

More formally, we can carry out a test for this using the command origin().
This command fits the logistic regression model which predicts the ratio of frequen-
cies of the two trios in each pair, and carries out an analysis of deviance:

9 The first option has been used because Weinberg’s method may be misleading if there are
multiple affected offspring. Even with this option in force there are difficulties. If families have
been ascertained to have at least two affected offspring and there is a parent-of-origin effect, the
expected distribution of trios will not be the same as predicted by the simple theory. This should
not affect the validity of significance tests, but it will lead to biased estimates of effects.
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> origin(bat2)

Analysis of Deviance Table
Model: binomial, link: logit
Response: p

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 5 7.8791
maternal.origin 1  1.5944 4 6.2848

(Note that, by default, origin() only uses the first affected offspring in any fam-
ily).In this case the logistic regression model is a very simple one — it is required
only to detect deviation from a 50:50 split in all pairs of trios. However, Weinberg
also pointed out that a direct (presumably inter-uterine) effect of maternal geno-
type on subsequent disease risk in the offspring may also distort the ratio of trio
frequencies. This may be allowed for in the logistic regression; the model allows two
parameters to model the maternal genotype effect:

> origin(bat2, maternal.effect = TRUE)

Analysis of Deviance Table
Model: binomial, link: logit
Response: p

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 5 7.8791
mother 2 0.8367 3 7.0424
maternal.origin 1 4.1096 2 2.9328

(These commands continue to work with multi-allelic loci, although the degrees
of freedom for the test statistics change.)

Extending the case/pseudo—control analysis

Weinberg’s approach is more efficient than the case/pseudo—control approach de-
scribed earlier. Essentially, the additional information is derived at the expense of
an additional assumption — that of ezchangeability of parental genotypes. Formally
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this means that for a given mating type, a/b+ c/d say, in the population it is just
as likely that the father is a/b and the mother is ¢/d as if the mother is a/b and the
father ¢/d. However, as described earlier, the likelihood used by this analysis is not
correct when, as in the case of our MHC data, families are ascertained on the basis
of > 1 affected offspring; parameter estimates will then be biased.

With the same caveat regarding ascertainment, the parental exchangeability as-
sumption may also be incorporated into the creation of a case/pseudo—control study;
additional pseudo—controls are created by simply switching the maternal and pa-
ternal alleles of the existing case and pseudo—controls. To experiment with this,
return to the dataframe you created for the seven-family TDT exercise. If you no
longer have this, a version is available as tdt.solution. You can create the new
case/pseudo-control study as follows:

> clear()
> data(tdt.solution)
> pscc <- pseudocc(marker, data = tdt.solution, exchangeable = TRUE)

(Note that setting exchangeable to TRUE also sets parent.of.origin.) Look
at the resultant dataframe:

> show(pscc)

set cc pedigree id id.father id.mother marker marker.mother marker.father

1 1 1 1 3 1 2 3/1 3/4
2 1 0 1 3 1 2 4/1 3/4
3 1 0 1 3 1 2 3/2 3/4
4 1 0 1 3 1 2 4/2 3/4
5 1 0 1 3 2 1 1/3 1/2
6 1 0 1 3 2 1 1/4 1/2
7 1 0 1 3 2 1 2/3 1/2
8 1 0 1 3 2 1 2/4 1/2
9 2 1 2 3 1 2 3/1 3/3
10 2 0 2 3 1 2 3/1 3/3
11 2 0 2 3 1 2 3/2 3/3
12 2 0 2 3 1 2 3/2 3/3
13 2 0 2 3 2 1 1/3 1/2
14 2 0 2 3 2 1 1/3 1/2
15 2 0 2 3 2 1 2/3 1/2
16 2 0 2 3 2 1 2/3 1/2
17 3 1 3 3 1 2 1/2 1/1
18 3 0 3 3 1 2 1/2 1/1
19 3 0 3 3 1 2 1/1 1/1
20 3 O 3 3 1 2 1/1 1/1
21 3 O 3 3 2 1 2/1 1/2
22 3 0 3 3 2 1 2/1 1/2
23 3 0 3 3 2 1 1/1 1/2
24 3 0 3 3 2 1 1/1 1/2
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Exercise 8: Multiple testing

Multi-phase studies with “stopping for futility”

This exercise explores two situations in which multiple testing is involved. In the
first of these, we test many markers (or regions) for association in an initial screen,
taking through any which achieve a certain level of statistical significance to be
tested in further subjects. Several phases may be considered. Markers which do not
look promising in early stages are dropped from further study. In the sequential
testing literature, this strategy is termed “stopping for futility”.

We shall consider the design of a study in which 5000 cases and 5000 controls
are available. We shall first explore the power that would be achieved if all of these
cases and controls were used in a single stage design. We shall assume a relative risk
of 1.33 for a causal variant with population frequency 20% tagged with R = 0.8" by
10 tag SNPs in the gene. We shall require a significance level of o = 107°:

> htPower.cc(df = 10, alpha = 1e-06, P = 0.2, theta = 1.33, R2 = 0.8,
+ N.case = 5000)

$ncp
[1] 56.12091

$power
[1] 0.8990161

The power is very close to 90%. Note that the non-centrality parameter is
56.12091 — in a multi-phase study we can choose to allocate how we “spend” this
between the difference phases.

We first consider a design in which we use 1000 cases and 1000 controls (20% of
the sample) in the first stage, and consider genes for phase 2 only if they achieve
p < 0.1 in phase 1. Phase 2 will use 2000 cases and 2000 controls (40% of the
available resource). Finally, genes will be tested in the remaining 2000 cases and
2000 controls if they achieve p < 0.01 in phase 2. At the end of the study we could
imagine carrying out tests at nominal signifcance levels 1074, 107>, and 1075, The
following command calculates the probabilities of possible outcomes for any single
SNP in this design under the null hypothesis (since simulation is used, this can take
some time to run)

> N.stage(df = 10, ncp = 0, frac = c(0.2, 0.4), alpha.int = c(0.1,
+ 0.01), alpha.end = c(1e-04, 1e-05, 1e-06))

$p.final
[1] 3.601374e-05 4.924903e-06 6.190267e-07

$p.interim
[1] 0.100000000 0.004126574

$simulations
[1] 803556 80350 3300
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The output element p.final represent the probabilities of achieving “signifi-
cance” at the final three nominal levels. It can be seen that these are appreciably
smaller than the nominal levels — if we are to adjust p-values for stopping for futil-
ity, the adjustment is downwards. This can be controversial, and there are differing
opinions on whether one should adapt final significance levels in this manner. The
output element p.interim gives the probability that the set of tags considerd will
survive in the study beyond each stage. Thus 10% of tags for true negative genes
will not be considered beyond phase 1.

To calculate the power against the alternative scenario discussed above, we sim-
ply re-run the command with ncp=56.12091 in place of ncp=0. You will find that,
with this design, there is quite a substantial loss of power. The secret of a good
design is not to lose, early on, findings that will eventually achieve significance. To
improve the current design, you might choose to increase the sample size at phase 1,
or to take a greater proportion of SNPs through to phase 2. You might like to
explore some of these options.

Although this software allows for the tests carried out after each phase to be chi-
squared tests with different degrees of freedom, the conclusions are not very sensitive
to the df parameter.

False discovery rates

The next exercise considers the estimation of false discovery rates when one has
carried out a succession of tests. It uses the qvalue package written by John Storey
of the University of Washington. We will first read in three datasets:

> data(pvalues)
> summary (p.cand)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0009711 0.0691400 0.3457000 0.4104000 0.7659000 0.9457000

> summary (p.nsSNP)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.077e-26 2.333e-01 4.946e-01 4.906e-01 7.403e-01 9.998e-01

> summary (p.noHLA)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.559e-05 2.423e-01 5.007e-01 4.976e-01 7.436e-01 9.998e-01

Each of these is a set of p-values. The first set were obtained by testing a se-
quence of 36 good candidate genes, so it is not unreasonable to expect a rather high
proportion of true positives. We will start by comparing the distribution of these
p-values with its expectation under the hypothesis of no true positives. Then the
p—values would be uniformly distributed, and —log p would be distributed as expo-
nential variates with mean 1. We’ll use the latter result and plot —logp against the
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expected values of an ordered sample of size 36 from the exponential(1) distribu-
tion?] We'll also add a line of slope 1 to the plot to show what we would expect if
there were no true posistives:

> plot(cumsum(1/(36:1)), -log(p.cand))
> abline(0, 1)

—log(p.cand)

cumsum(1/(36:1))

Note that small values of p correspond with large values for —logp. This plot
suggests that there are substantial numbers of true positives, although few achieve
p-values that would be considered particularly noteworthy in genetic epidemiology.

The g-value method attemps to estimate the true negative rate (denoted by )
using the observed proportion of p-values that exceed a value A. As A is increased,
the upward bias on 7 is reduced, but the variance of the estimate is increased. The
software attempts an optimal trade-off between bias and variance in choosing an
appropriate value of A with which to estimate 7y. A sample size of 36 is really too
small for these procedures, but it is nevertheless interesting to see what happens
with these data. The following commands calculate the g-values and plot some
useful graphs:

> g.cand <- gvalue(p.cand)
> plot(q.cand)

1

0For a sample of size N these are given by %, (ﬁ + ﬁ), ( + ﬁ + ﬁ), ete..

==
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The graph in the top left corner shows the estimate of 7y as a function of A,
together with the “optimal” estimate. The top right graph plots g-values against
p-values. The bottom left graph plots the number of tests which would be selected
at different thresholds for the g-value and the bottom right graph estimates the
number of these that would be expected to be false positives. The default ranges of
values plotted were not too useful here so we’ll re-plot them:

> plot(q.cand, rng = c(0, 0.5))
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This suggests that, out of the 12 most significant results we might expect only 3
of them to be false positives. However, this estimate is dependent on the estimate
of the true negative rate, 7y, and this is unreliable when based on so few points.

The next example concerns a screen of 4732 non-synonymous SNPs in ~ 800
cases of type 1 diabetes and approximately the same number of controls. These
SNPs were not selected to be in candidate genes, so the true positive rate must be
expected to be very much smaller in this case. We'll first look at the distribution of

—log p values

> plot(cumsum(1/(4732:1)), -log(p.nsSNP))
> abline(0, 1)
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This suggests substantial numbers of true positives, and this is supported by the
g-value analysis:

> q.nsSNP <- qvalue(p.nsSNP)
> plot(q.nsSNP)
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However 103 of these SNPs were in the HLA region on chromosome 6, and there
are known to be very strong HLA associations in this region coupled with strong
linkage disequilibrium. If we omit these and analyse the remaining 4629 SNPs we
get a very different picture:

> plot(cumsum(1/(4629:1)), -log(p.noHLA))
> abline(0, 1)
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> q.noHLA <- gvalue(p.noHLA)
> plot(q.noHLA)
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On the face of it this is rather depressing — over the range of thresholds most
“findings” will be false positives. However, this was the first stage of a multi-phase
study and we must expect most positives to be false positives. The graphs are not,
perhaps, as much use as a tabulation here. The following command allows us to see
how many of these tests would pass thresholds which allowed false positive rates of
90% and 95%:

> summary(q.noHLA, cut = c(0.9, 0.95))

Call:
gvalue(p = p.noHLA)

piO: 0.978645
Cumulative number of significant calls:
<0.9 <0.95

p-value 4179 4397
g-value 147 1399

86



