An introduction to phylogenetic networks

Steven Kelk
Department of Knowledge Engineering (DKE)
Maastricht University

Email: steven.kelk@maastrichtuniversity.nl
Web: http://skelk.sdf-eu.org
Genome sequence, comparative analysis and haplotype structure of the domestic dog

Lindblad-Toh et al, Nature 2005
(Almost) everything begins with Multiple Sequence Alignment
Dominant methods for building phylogenetic trees

- Character-based methods
 - Maximum Parsimony (MP)
 - Maximum Likelihood (ML)
- Bayesian methods (Markov Chain Monte Carlo - MCMC)
- Distance-based methods
 - Neighbour Joining
 - UPGMA
- “Supertree” methods: glueing together smaller subtrees
The “most parsimonious” tree solution

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html
Homology of HXT1p to other fungal hexose transporters.

Voegele R T et al. PNAS 2001;98:8133-8138
The role of haustoria in sugar supply during infection of broad bean by the rust fungus *Uromyces fabae*
There is more to life than trees

• All these methods assume that a (single) tree is the best way to model the underlying evolution.

• If this is not true, then we have a problem, because there is a high risk that the output of tree-building algorithms will then be meaningless.

• Sometimes there are clues about this:
 • Algorithms build very badly supported trees
 • Extra knowledge about the underlying evolutionary mechanisms

• But in general it is dangerously easy to confuse non-treelike evolution with a noisy tree signal.

• Therefore critical to understand and model underlying mechanisms.
Why might we get weak support for a tree?

“Noisy tree”
Data does fit a single tree, weak support is only a consequence of “noise”

“Trees in trees”
Data consists of multiple different tree signals...but both gene and species evolution are still ultimately treelike (e.g. due to incomplete lineage sorting, gene loss, gene duplication)

“Trees in networks”
Data consists of multiple different tree signals...gene evolution is treelike, but species evolution is no longer treelike (e.g. hybridization, horizontal gene transfer)

“Reticulation”
Inherently non-treelike (reticulate) phenomena, such as meiotic, sexual recombination
Phylogenetic networks

“Data display” networks

No explicit model of evolution: tries to graphically represent where the data is non-treelike

Evolutionary / explicit networks

Tries to model the events that caused the data to be non-treelike
Data-display networks (1)

From: Daniel Huson, ISMB-Tutorial 2007: Introduction to Phylogenetic Networks
Data-display networks (2)

A phylogenetic network. The network was generated by Neighbor-Net for a sequence-based data set comprising of Salmonella isolates that originally appeared in [17]. A detailed network-based analysis of this data is presented in [2], where the strains indicated in bold-face are tested for the presence of recombination. Note that the network is planar (that is, it can be drawn in the plane without any crossing edges), and that parallel edges in the network represent bipartitions of the data.

Data-display networks (3)

• Data-display networks do not automatically generate a hypothesis of what actually happened.

• They restrict themselves to showing how and where the input data is not tree-like.

• Some biologists are starting to use these networks, to perform what David Morrison calls “Exploratory Data Analysis (EDA)”.

• For an experienced biologist, looking to apply his/her own expert knowledge to explain what actually happened (i.e. ad-hoc hypothesis generation), such a tool can give very important insights.
Phylogenetic networks

No explicit model of evolution: tries to graphically represent where the data is non-treelike

Tries to model the events that caused the data to be non-treelike
Evolutionary phylogenetic networks

- Used to explicitly model reticulate evolution:
 - Hybridization
 - Horizontal Gene Transfer (HGT)
 - Recombination

- Reticulation events have an explicit biological interpretation

- Usually rooted, with an explicit “direction” of evolution

- Underlying mathematical abstractions are often similar, despite different scale levels of interpretation
Evolutionary phylogenetic networks

- Used to explicitly model reticulate evolution:
 - Hybridization
 - Horizontal Gene Transfer (HGT)
 - Recombination

- Reticulation events have an explicit biological interpretation

- Usually rooted, with an explicit “direction” of evolution

- Underlying mathematical abstractions are often similar, despite different scale levels of interpretation
Different models and scales, but always rooted, directed acyclic graphs (DAGs)

Ancestral Recombination Graph (ARG)

Horizontal Gene Transfer (HGT)

“Softwired cluster” network
Constructing evolutionary phylogenetic networks

• It’s important to ask ourselves several questions:

1. **MODEL:** What are we trying to model exactly? Is it biologically realistic?

2. **OBJECTIVE:** What do we consider to be an “optimal” solution within that model?

3. **TRACTABILITY:** Is there any hope of developing efficient algorithms to compute optimal solutions?

• Extremely challenging to simultaneously answer these questions well!

• In the meantime: **many** different models, algorithms, packages
Several case studies

1. A “direct” method: constructing Ancestral Recombination Graphs (ARGs) by modelling crossover events.

2. “The trees within”: methods which analyse phylogenetic networks based on the set of trees contained within them.

 a) Extensions to Maximum Parsimony (MP) and Maximum Likelihood (ML)

 b) Parsimoniously embedding gene trees in species networks
Case study 1: constructing Ancestral Recombination Graphs (ARGs)

- Input is **binary character data** (i.e. strings of binary data)
- Reticulations represent **chromosomal crossover** (mostly single crossover, sometimes multiple crossover). Sometimes also gene conversion.
- Mutation model is the “**infinite sites**” model: at most one mutation per site (0 to 1, or 1 to 0).
- Goal is to construct an ARG with a **minimum number** of reticulation events.
Case study 1: constructing Ancestral Recombination Graphs (ARGs)

- Input is **binary character data** (i.e. strings of binary data)
- Reticulations represent **chromosomal crossover** (mostly single crossover, sometimes multiple crossover). Sometimes also gene conversion.
- Mutation model is the **“infinite sites”** model: at most one mutation per site (0 to 1, or 1 to 0).
- Goal is to construct an ARG with a **minimum number** of reticulation events.
Case study 1: constructing Ancestral Recombination Graphs (ARGs)

• Programs for constructing ARGs include HAPBOUND, SHRUB, BEAGLE

• Extensive interest and research from the theoretical computer science community (e.g. Dan Gusfield)

• Issues:
 • Difficult to solve (NP-hard, also difficult in practice)
 • Modelling of homoplasy (recurrent and back mutation) is in its infancy (infinite sites model excludes this)
 • Rigid biological model (crossover)
 • Software implementations still rather experimental
 • Standard phylogenetic concepts such as bootstrapping, branch-lengths etc. are not considered
“The trees within”: methods based on the set of trees inside a network
“The trees within”: methods based on the set of trees inside a network
Case study 2(a): extensions to Maximum Parsimony and Maximum Likelihood

- The group of Luay Nakhleh (Rice University, USA) is very interested in this.

- The general idea is to define the parsimony/likelihood score of a network, as a function of the set of trees contained within it.

- Software: PHYLONET, NEPAL

- Issues:
 - Again, a very specific (and thus rigid) model
 - Assumed independence of characters leads to problems
 - More reticulations = better score, so when do we stop adding reticulations?
 - Even “small” variant (e.g. here is a network, compute the best parsimony score for it) is algorithmically challenging
 - Algorithms for the “big” variant (i.e. find me the best network) are still very basic
MP analysis based on the ribosomal protein gene *rps11* of a group of 47 flowering plants, which was analysed by Bergthorsson et al (2003)
Case study 2(b): combining multiple gene trees into a single species network

• Recall this example:

Species network

Four gene trees contained in the species network

• Input: a set of gene trees

• Output: a species network that contains all the input gene trees and which has a minimum number of reticulations
Fig. 3. The two consensus trees computed from 100 bootstrap replicates for the matK (a) and PinA (b) datasets.
Fig. 4. The three hybridization networks obtained by the described algorithm for the matK and PinA consensus trees of Figure 3.
So...how far have we come? What do we still have to do?
Summary of progress/problems

- **Data-display networks** are starting to attract attention from the biological community as an instrument for Exploratory Data Analysis. But still very marginal. The software is there, however, and in time they will I think become mainstream tools.

- **Evolutionary phylogenetic networks** – those which try and hypothesise *what actually happened* – have the potential to become a very powerful tool for biologists. But at the moment they are, in practice, hardly used at all:

 - (Severe) **computational intractability.**

 - Algorithms in general do not generate multiple optimal solutions and have **no network equivalent of common “tree” concepts** such as bootstrapping, branch-lengths etc.

 - Very many biological phenomena can cause phylogenetic signals to be non-treelike. At the moment there is **no consensus amongst biologists** how to model these.
I ideas for the future (1/3)

• Remember the context...

• “Everyone” seems to build phylogenetic trees, but “nobody” uses software for (evolutionary) phylogenetic networks. What’s going wrong?

• Remember that the concept of “phylogenetic network” covers a very wide array of disparate evolutionary phenomena, many of which are still poorly understood.

• Is it realistic, then, to expect that there is one model/software package to rule them all? Perhaps it can and should remain a specialised phenomenon, adapted ad-hoc on a case-by-case basis?
Ideas for the future (2/3)

• Ensure that the software gives the biologists what they want

 • Phylogenetic tree construction is so standardized that certain concepts (such as bootstrapping: a measurement of solution robustness) are seen as essential.

 • It’s therefore important to develop (standardized?) equivalents for phylogenetic network construction; they are not yet there.

 • There is some reason for optimism here, since the question “how confident are you that this is the right solution?” can at least partially be answered in a model-neutral way.
Ideas for the future (3/3)

• Better co-ordination between computer scientists and biologists

 • Scientists working on the algorithmic efficiency side of phylogenetic networks rarely have more than a superficial understanding of the biological model. Much more contact with biologists needed.

 • “The future of phylogenetic networks” – modelling workshop at Lorentz Center in Leiden, October 2012.
The Future of Phylogenetic Networks
from 15 Oct 2012 through 19 Oct 2012

Venue: Lorentz Center@Oort

- Description and aim of the workshop
- Registration form
- Participants
- Program
- Abstracts
- Event report
- Presentations

Scientific organizers:
Leo van Iersel (Amsterdam, Netherlands)
Steven Kelk (Maastricht, Netherlands)
David Morrison (Uppsala, Sweden)
Leen Stougie (Amsterdam, Netherlands)

What do biologists want?
What do biologists want?

- Biologists don't know what they want
- Depends on data and goals
- Changes all the time
Finally…further reading

- Daniel Huson, Regula Rupp and Celine Scornavacca, “Phylogenetic Networks”, Cambridge University Press, 2010

- “The genealogical world of phylogenetic networks”, http://phylonetworks.blogspot.nl/
Extra unused slides
Case study 2(b): combining multiple gene trees into a single species network

• There has been a huge amount of research from the theoretical computer science community for the case when the input consists of exactly two binary gene trees

• The result is a lot of very nice math, and increasingly fast algorithms (such as HYBRIDNET and an algorithm in DENDROSCOPE 4)

• Issues:
 • No software exists to reliably compute optimal solutions for three or more trees, even when binary
 • Multiple solutions? Branch lengths? Bootstrapping?
 • Rooting problems
Case study 3: “Piecewise” methods: combining triplets into a single species network

• **Rooted triplets**: phylogenetic trees with only 3 leaves

• The idea is that it might be easier to build lots of very small trees (rooted triplets) and to merge them into a single network, then to try and construct the network in one go

• Rooted triplets can be inferred directly/ad-hoc or extracted from gene trees

• Idea is similar to trees i.e. combine them into a single network such that the number of reticulations is *minimised*
Case study 3: “Piecewise” methods: combining triplets into a single species network

- For example. Suppose I want to reconstruct a plausible evolution for the species set \{w,x,y,z\}.
- I am given a set of rooted triplets \(zw|x\), \(yx|w\), \(xy|z\), \(wz|y\). (Note \(zw|x = wz|x\).)
Case study 3: “Piecewise” methods: combining triplets into a single species network

- For example. Suppose I want to reconstruct a plausible evolution for the species set \{w,x,y,z\}.
- I am given a set of rooted triplets zw|x, yx|w, xy|z, wz|y. (Note zw|x = wz|x.)
Case study 3: “Piecewise” methods: combining triplets into a single species network

- For example. Suppose I want to reconstruct a plausible evolution for the species set \{w,x,y,z\}.
- I am given a set of rooted triplets zw|x, yx|w, xy|z, wz|y. (Note zw|x = wz|x.)
Case study 3: “Piecewise” methods: combining triplets into a single species network

• For example, suppose the input is \(\{xy|z, xz|y\}\).
Case study 3: “Piecewise” methods: combining triplets into a single species network

- For example, suppose the input is \{xy|z, xz|y\}.

Diagram: Two trees are shown, one with nodes x, y, z, and another with nodes z, x, y. The diagrams are used to illustrate the combination of triplets into a single species network.
Case study 3: “Piecewise” methods: combining triplets into a single species network

- There are several programs for building networks from rooted triplets (LEVEL2, LEV1ATHAN, SIMPLISTIC)

- In theory the advantage for the user (above trees) is that it is not necessary to first construct entire gene trees; the user can instead choose to specify only high-quality fragments of them as input.

- Also possible to construct the rooted triplets from heterogeneous sources (because abstraction is “value free”).

- Issues:
 - How do we generate good rooted triplets in the first place?
 - Input-side demands to ensure tractability are too restrictive
 - Small amount of noise can inflate the number of reticulations
 - Multiple solutions? Branch lengths? Bootstrapping?
 - Lack of memory: topology is not preserved
Case study 3: “Piecewise” methods: combining triplets into a single species network

Figure 5. The level-1 network on the right with a single reticulation represents the union of the clusters (and triplets) obtained from the three trees on the left. However, any network that displays all three trees will have at least two reticulations and have level at least two.
Figure 3 Multigenic network of Triticeae. Network obtained from the 27 individual gene trees modified with PhySIC_JST [56] using a correction threshold of 0.9 (see details in Methods).

From: Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae), Escobar et al, BMC Evolutionary Biology 2011, 11:181
Very briefly: trees in trees

Fig. 16 A gene tree (solid lines) evolving within the branches of the species tree, where the gene tree topology is identical to that of T_2 in Fig. 1(b). The gene tree differs from the species tree due to (incomplete) lineage sorting.