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observing this score under the null hypoth-
esis is 1/68 million, or 1.5 × 10–8 . This prob-
ability—the probability that a score at least 
as large as the observed score would occur in 
data drawn according to the null hypothesis—
is called the P-value.

Likewise, the P-value of a candidate CTCF 
binding site with a score of 17.0 is equal to 
the percentage of scores in the null distribu-
tion that are ≥17.0. Among the 68 million 
null scores shown in Figure 1c, 35 are ≥17.0, 
leading to a P-value of 5.5 × 10–7 (35/68 mil-
lion). The P-value associated with score x 
corresponds to the area under the null dis-
tribution to the right of x (Fig. 1d).

Shuffling the human genome and rescan-
ning with the CTCF motif is an example of 
an ‘empirical null model’. Such an approach 
can be inefficient because a large number 
of scores must be computed. In some cases, 
however, it is possible to analytically calculate 
the form of the null distribution and calcu-
late corresponding P-values (that is, by defin-
ing the null distribution with mathematical 
formulae rather than by estimating it from 
measured data). 

In the case of scanning for CTCF motif 
occurrences, an analytic null distribution 
(gray line in Fig. 1d) can be calculated using 
a dynamic programming algorithm, assum-
ing that the sequence being scanned is gener-
ated randomly with a specified frequency of 
each of the four nucleotides3. This distribu-
tion allows us to compute, for example, that 
the P-value associated with the top score in 
Figure 1b is 2.3 × 10–10 (compared to 1.5 × 
10–8 under the empirical null model). This 
P-value is more accurate and much cheaper 
to compute than the P-value estimated from 
the empirical null model.

In practice, determining whether an 
observed score is statistically significant 
requires comparing the corresponding sta-
tistical confidence measure (the P-value) to 

how they are computed and some guidelines 
for how to select an appropriate measure for 
a given experiment.

As a motivating example, suppose that you 
are studying CTCF, a highly conserved zinc-
finger DNA-binding protein that exhibits 
diverse regulatory functions and that may 
play a major role in the global organization 
of the chromatin architecture of the human 
genome1. To better understand this protein, 
you want to identify candidate CTCF bind-
ing sites in human chromosome 21. Using 
a previously published model of the CTCF 
binding motif (Fig. 1a)2, each 20 nucleotide 
(nt) sub-sequence of chromosome 21 can be 
scored for its similarity to the CTCF motif. 
Considering both DNA strands, there are 68 
million such subsequences. Figure 1b lists the 
top 20 scores from such a search.

Interpreting scores with the null 
hypothesis and the P-value
How biologically meaningful are these 
scores? One way to answer this question is to 
assess the probability that a particular score 
would occur by chance. This probability can 
be estimated by defining a ‘null hypothesis’ 
that represents, essentially, the scenario that 
we are not interested in (that is, the random 
occurrence of 20 nucleotides that match the 
CTCF binding site). 

The first step in defining the null hypothesis 
might be to shuffle the bases of chromosome 
21. After this shuffling procedure, high-
scoring occurrences of the CTCF motif will 
only appear because of random chance. Then, 
the shuffled chromosome can be rescanned 
with the same CTCF matrix. Performing this 
procedure results in the distribution of scores 
shown in Figure 1c.

Although it is not visible in Figure 1c, out of 
the 68 million 20-nt sequences in the shuffled 
chromosome, only one had a score ≥26.30. 
In statistics, we say that the probability of  

Imagine that you have just invested a sub-
stantial amount of time and money in a 

shotgun proteomics experiment designed 
to identify proteins involved in a particular 
biological process. The experiment success-
fully identifies most of the proteins that you 
already know to be involved in the process 
and implicates a few more. Each of these 
novel candidates will need to be verified with 
a follow-up assay. How do you decide how 
many candidates to pursue?

The answer lies in the tradeoff between 
the cost associated with a false positive ver-
sus the benefit of identifying a novel partici-
pant in the biological process that you are 
studying. False positives tend to be particu-
larly problematic in genomic or proteomic 
studies where many candidates must be sta-
tistically tested. 

Such studies may include identifying genes 
that are differentially expressed on the basis 
of microarray or RNA-Seq experiments, scan-
ning a genome for occurrences of candidate 
transcription factor binding sites, search-
ing a protein database for homologs of a 
query protein or evaluating the results of a 
genome-wide association study. In a nutshell, 
the property that makes these experiments so 
attractive—their massive scale—also creates 
many opportunities for spurious discoveries, 
which must be guarded against.

In assessing the cost-benefit tradeoff, it is 
helpful to associate with each discovery a sta-
tistical confidence measure. These measures 
may be stated in terms of P-values, false 
discovery rates or q-values. The goal of this 
article is to provide an intuitive understand-
ing of these confidence measures, a sense for 
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Because the smallest observed P-value in 
Figure 1b is 2.3 × 10–10, no scores are deemed 
significant after correction.

The Bonferroni adjustment, when applied 
using a threshold of α to a collection of n scores, 
controls the ‘family-wise error rate’. That is, 
the adjustment ensures that for a given score 
threshold, one or more larger scores would be 
expected to be observed in the null distribution 
with a probability of α. Practically speaking, 
this means that, given a set of CTCF sites with 
a Bonferroni adjusted significance threshold 
of α = 0.01, we can be 99% sure that none of 
the scores would be observed by chance when 
drawn according to the null hypothesis.

In many multiple testing settings, minimizing 
the family-wise error rate is too strict. Rather 
than saying that we want to be 99% sure that 
none of the observed scores is drawn according 
to the null, it is frequently sufficient to identify 
a set of scores for which a specified percentage 
of scores are drawn according to the null. This 
is the basis of multiple testing correction using 
false discovery rate (FDR) estimation.

of a score of 17.0, even though it is associ-
ated with a seemingly small P-value of 5.5 × 
10–7 (the chance of obtaining such a P-value 
from null data is less than one in a million), 
scores of 17.0 or larger were in fact observed 
in a scan of the shuffled genome, owing to the 
large number of tests performed. We therefore 
need a ‘multiple testing correction’ procedure 
to adjust our statistical confidence measures 
based on the number of tests performed.

Correcting for multiple hypothesis tests
Perhaps the simplest and most widely used 
method of multiple testing correction is the 
Bonferroni adjustment. If a significance 
threshold of α is used, but n separate tests 
are performed, then the Bonferroni adjust-
ment deems a score significant only if the 
corresponding P-value is ≤α/n. In the CTCF 
example, we considered 68 million distinct 
20-mers as candidate CTCF sites, so achiev-
ing statistical significance at α = 0.01 accord-
ing to the Bonferroni criterion would require 
a P-value <0.01/(68 × 106) = 1.5 × 10–10. 

a confidence threshold α. For historical rea-
sons, many studies use thresholds of α = 0.01 
or α = 0.05, though there is nothing magical 
about these values. The choice of the signifi-
cance threshold depends on the costs associ-
ated with false positives and false negatives, 
and these costs may differ from one experi-
ment to the next.

Why P-values are problematic in a  
high-throughput experiment
Unfortunately, in the context of an experi-
ment that produces many scores, such as 
scanning a chromosome for CTCF binding 
sites, reporting a P-value is inappropriate. 
This is because the P-value is only statisti-
cally valid when a single score is computed. 
For instance, if a single 20-nt sequence had 
been tested as a match to the CTCF binding 
site, rather than scanning all of chromosome 
21, the P-value could be used directly as a 
statistical confidence measure.

In contrast, in the example above, 68 mil-
lion 20-nt sequences were tested. In the case 

Figure 1  Associating confidence measures with CTCF binding motifs scanned along human chromosome 21. (a) The binding preference of CTCF2 
represented as a sequence logo9, in which the height of each letter is proportional to the information content at that position. (b) The 20 top-scoring 
occurrences of the CTCF binding site in human chromosome 21. Coordinates of the starting position of each occurrence are given with respect to 
human genome assembly NCBI 36.1. (c) A histogram of scores produced by scanning a shuffled version of human chromosome 21 with the CTCF motif. 
(d) This panel zooms in on the right tail of the distribution shown in c. The blue histogram is the empirical null distribution of scores observed from 
scanning a shuffled chromosome. The gray line is the analytic distribution. The P-value associated with an observed score of 17.0 is equal to the area 
under the curve to the right of 17.0 (shaded pink). (e) The false discovery rate is estimated from the empirical null distribution for a score threshold 
of 17.0. There are 35 null scores >17.0 and 519 observed scores >17.0, leading to an estimate of 6.7%. This procedure assumes that the number of 
observed scores equals the number of null scores.
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focus on a single example, then the Bonferroni 
adjustment is more appropriate.

It is worth noting that the statistics lit-
erature describes a related probability score, 
known as the ‘local FDR’7. Unlike the FDR, 
which is calculated with respect to a collec-
tion of scores, the local FDR is calculated with 
respect to a single score. The local FDR is the 
probability that a particular test gives rise to 
a false positive. In many situations, especially 
if we are interested in following up on a single 
gene or protein, this score may be precisely 
what is desired. However, in general, the local 
FDR is quite difficult to estimate accurately.

Furthermore, all methods for calculating 
P-values or for performing multiple testing 
correction assume a valid statistical model—
either analytic or empirical—that captures 
dependencies in the data. For example, scan-
ning a chromosome with the CTCF motif 
leads to dependencies among overlapping 
20-nt sequences. Also, the simple null model 
produced by shuffling assumes that nucle-
otides are independent. If these assumptions 
are not met, we risk introducing inaccuracies 
in our statistical confidence measures.

In summary, in any experimental setting in 
which multiple tests are performed, P-values 
must be adjusted appropriately. The Bonferroni 
adjustment controls the probability of mak-
ing one false positive call. In contrast, false 
discovery rate estimation, as summarized in 
a q-value, controls the error rate among a set 
of tests. In general, multiple testing correction 
can be much more complex than is implied by 
the simple methods described here. In particu-
lar, it is often possible to design strategies that 
minimize the number of tests performed for a 
particular hypothesis or set of hypotheses. For 
more in-depth treatment of multiple testing 
issues, see reference 8.
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threshold remains unchanged relative to the  
simpler method.

Complementary to the FDR, Storey6 pro-
posed defining the q-value as an analog of 
the P-value that incorporates FDR-based 
multiple testing correction. The q-value is 
motivated, in part, by a somewhat unfor-
tunate mathematical property of the FDR: 
when considering a ranked list of scores, it is 
possible for the FDR associated with the first 
m scores to be higher than the FDR associ-
ated with the first m + 1 scores. For example, 
the FDR associated with the first 84 candidate 
CTCF sites in our ranked list is 0.0119, but 
the FDR associated with the first 85 sites is 
0.0111. Unfortunately, this property (called 
nonmonotonicity, meaning that the FDR 
does not consistently get bigger) can make the 
resulting FDR estimates difficult to interpret. 
Consequently, Storey proposed defining the 
q-value as the minimum FDR attained at or 
above a given score. If we use a score thresh-
old of T, then the q-value associated with T 
is the expected proportion of false positives 
among all of the scores above the threshold. 
This definition yields a well-behaved measure 
that is a function of the underlying score. We 
saw, above, that the Bonferroni adjustment 
yielded no significant matches at α = 0.05. 
If we use FDR analysis instead, then we are 
able to identify a collection of 519 sites at a 
q-value threshold of 0.05.

In general, for a fixed significance thresh-
old and fixed null hypothesis, performing 
multiple testing correction by means of FDR 
estimation will always yield at least as many 
significant scores as using the Bonferroni 
adjustment. In most cases, FDR analysis will 
yield many more significant scores, as in our 
CTCF analysis. The question naturally arises, 
then, whether a Bonferroni adjustment is 
ever appropriate.

Costs and benefits help determine the 
best correction method
Like choosing a significance threshold, choos-
ing which multiple testing correction method 
to use depends upon the costs associated with 
false positives and false negatives. In particu-
lar, FDR analysis is appropriate if follow-up 
analyses will depend upon groups of scores. 
For example, if you plan to perform a collec-
tion of follow-up experiments and are willing 
to tolerate having a fixed percentage of those 
experiments fail, then FDR analysis may be 
appropriate. Alternatively, if follow-up will 

The simplest form of FDR estimation is 
illustrated in Figure 1e, again using an empir-
ical null distribution for the CTCF scan. For 
a specified score threshold t = 17.0, we count 
the number sobs of observed scores ≥t and 
the number snull of null scores ≥t. Assuming 
that the total number of observed scores and 
null scores are equal, then the estimated FDR 
is simply snull/sobs. In the case of our CTCF 
scan, the FDR associated with a score of 17.0 
is 35/519 = 6.7%.

Note that, in Figure 1e, FDR estimates were 
computed directly from the score. It is also 
possible to compute FDRs from P-values 
using the Benjamini-Hochberg procedure, 
which relies on the P-values being uniformly 
distributed under the null hypothesis4. For 
example, if the P-values are uniformly distrib-
uted, then the P-value 5% of the way down 
the sorted list should be ~0.05. Accordingly, 
the procedure consists of sorting the P-values 
in ascending order, and then dividing each 
observed P-value by its percentile rank to get 
an estimated FDR. In this way, small P-values 
that appear far down the sorted list will result 
in small FDR estimates, and vice versa. 

In general, when an analytical null model 
is available, you should use it to compute 
P-values and then use the Benjamini-
Hochberg procedure because the result-
ing estimated FDRs will be more accurate. 
However, if you only have an empirical null 
model, then there is no need to estimate 
P-values in an intermediate step; instead you 
may directly compare your score distribution 
to the empirical null, as in Figure 1e.

These simple FDR estimation methods are 
sufficient for many studies, and the result-
ing estimates are provably conservative with 
respect to a specified null hypothesis; that 
is, if the simple method estimates that the 
FDR associated with a collection of scores 
is 5%, then on average the true FDR is ≤5%. 
However, a variety of more sophisticated 
methods have been developed for achiev-
ing more accurate FDR estimates (reviewed 
in ref. 5). Most of these methods focus on 
estimating a parameter π0, which represents 
the percentage of the observed scores that 
are drawn according to the null distribu-
tion. Depending on the data, applying such 
methods may make a big difference or almost 
no difference at all. For the CTCF scan, one 
such method6 assigns slightly lower esti-
mated FDRs to each observed score, but 
the number of sites identified at a 5% FDR 
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