
Part 2

Lexical analysis

Lexical analysis 42

Outline

1. Principle

2. Regular expressions

3. Analysis with non-deterministic finite automata

4. Analysis with deterministic finite automata

5. Implementing a lexical analyzer

Lexical analysis 43

Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code

Lexical analysis 44

Lexical analysis or scanning

Goals of the lexical analysis
I Divide the character stream into meaningful sequences called lexemes.
I Label each lexeme with a token that is passed to the parser (syntax

analysis)
I Remove non-significant blanks and comments
I Optional: update the symbol tables with all identifiers (and numbers)

Provide the interface between the source program and the parser

(Dragonbook)

Lexical analysis 45

Example

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

(Keith Schwarz)

Lexical analysis 46

Example

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip

(Keith Schwarz)

Lexical analysis 47

Lexical versus syntax analysis

Why separate lexical analysis from parsing?

Simplicity of design: simplify both the lexical analysis and the syntax
analysis.

E�ciency: specialized techniques can be applied to improve lexical
analysis.

Portability: only the scanner needs to communicate with the outside

Lexical analysis 48

Tokens, patterns, and lexemes

A token is a hname, attributei pair. Attribute might be
multi-valued.

I Example: hIdent, ipi, hOperator , <i, h0)0, NILi

A pattern describes the character strings for the lexemes of the
token.

I Example: a string of letters and digits starting with a letter, {<, >,
, �, ==}, “)”.

A lexeme for a token is a sequence of characters that matches the
pattern for the token

I Example: ip, “<”, “)” in the following program
while (ip < z)

++ip

Lexical analysis 49

Defining a lexical analysis

1. Define the set of tokens

2. Define a pattern for each token (ie., the set of lexemes associated
with each token)

3. Define an algorithm for cutting the source program into lexemes and
outputting the tokens

Lexical analysis 50

Choosing the tokens

Very much dependent on the source language

Typical token classes for programming languages:
I One token for each keyword
I One token for each “punctuation” symbol (left and right parentheses,

comma, semicolon...)
I One token for identifiers
I Several tokens for the operators
I One or more tokens for the constants (numbers or literal strings)

Attributes
I Allows to encode the lexeme corresponding to the token when

necessary. Example: pointer to the symbol table for identifiers,
constant value for constants.

I Not always necessary. Example: keyword, punctuation...

Lexical analysis 51

Describing the patterns

A pattern defines the set of lexemes corresponding to a token.

A lexeme being a string, a pattern is actually a language.

Patterns are typically defined through regular expressions (that
define regular languages).

I Su�cient for most tokens
I Lead to e�cient scanner

Lexical analysis 52

Reminder: languages

An alphabet ⌃ is a set of characters
Example: ⌃ = {a, b}

A string over ⌃ is a finite sequence of elements from ⌃
Example: aabba

A language is a set of strings
Example: L = {a, b, abab, babbba}

Regular languages: a subset of all languages that can be defined by
regular expressions

Lexical analysis 53

Reminder: regular expressions

Any character a 2 ⌃ is a regular expression L = {a}
✏ is a regular expression L = {✏}
If R1 and R2 are regular expressions, then

I R1R2 is a regular expression
L(R1R2) is the concatenation of L(R1) and L(R2)

I R1|R2 (= R1

S
R2) is a regular expression

L(R1|R2) = L(R1)
S

L(R2)
I R⇤

1 is a regular expression
L(R⇤

1) is the Kleene closure of L(R1)
I (R1) is a regular expression

L((R1)) = L(R1)

Example: a regular expression for even numbers:

(+| � |✏)(0|1|2|3|4|5|6|7|8|9)⇤(0|2|4|6|8)

Lexical analysis 54

Notational conveniences

Regular definitions:

letter ! A|B|...|Z|a|b|...|z
digit ! 0|1|...|9

id ! letter(letter |digit)⇤

One or more instances: r+ = rr⇤

Zero or one instance: r? = r |✏
Character classes:

[abc]=a|b|c
[a-z]=a|b|...|z
[0-9]=0|1|...|9

Lexical analysis 55

Examples

Keywords:
if, while, for, . . .

Identifiers:
[a-zA-Z][a-zA-Z 0-9]⇤

Integers:
[+�]?[0-9]+

Floats:
[+�]?(([0-9]+ (.[0-9]⇤)?|.[0-9]+)([eE][+�]?[0-9]+)?)

String constants:
“([a-zA-Z0-9]|\[a-zA-Z])⇤”

Lexical analysis 56

Algorithms for lexical analysis

How to perform lexical analysis from token definitions through
regular expressions?

Regular expressions are equivalent to finite automata, deterministic
(DFA) or non-deterministic (NFA).

Finite automata are easily turned into computer programs

Two methods:
1. Convert the regular expressions to an NFA and simulate the NFA
2. Convert the regular expression to an NFA, convert the NFA to a DFA,

and simulate the DFA.

Lexical analysis 57

Reminder: non-deterministic automata (NFA)
A non-deterministic automaton is a five-tuple M = (Q, ⌃, �, s0, F)
where:

Q is a finite set of states,

⌃ is an alphabet,

� ⇢ (Q ⇥ (⌃
S

{✏}) ⇥ Q) is the transition relation,

s 2 Q is the initial state,

F ✓ Q is the set of accepting states

Example:

2.3. NONDETERMINISTIC FINITE AUTOMATA 17

We will mostly use a graphical notation to describe finite automata. States are
denoted by circles, possibly containing a number or name that identifies the state.
This name or number has, however, no operational significance, it is solely used
for identification purposes. Accepting states are denoted by using a double circle
instead of a single circle. The initial state is marked by an arrow pointing to it from
outside the automaton.

A transition is denoted by an arrow connecting two states. Near its midpoint,
the arrow is labelled by the symbol (possibly �) that triggers the transition. Note
that the arrow that marks the initial state is not a transition and is, hence, not marked
by a symbol.

Repeating the maze analogue, the circles (states) are rooms and the arrows
(transitions) are one-way corridors. The double circles (accepting states) are exits,
while the unmarked arrow to the starting state is the entrance to the maze.

Figure 2.3 shows an example of a nondeterministic finite automaton having
three states. State 1 is the starting state and state 3 is accepting. There is an epsilon-
transition from state 1 to state 2, transitions on the symbol a from state 2 to states 1
and 3 and a transition on the symbol b from state 1 to state 3. This NFA recognises
the language described by the regular expression a⇤(a|b). As an example, the string
aab is recognised by the following sequence of transitions:

from to by
1 2 �
2 1 a
1 2 �
2 1 a
1 3 b

At the end of the input we are in state 3, which is accepting. Hence, the string is
accepted by the NFA. You can check this by placing a coin at the starting state and
follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we are in state

���
��

1 �b

��

��
��
��
��

3

��
��

2

�
a

�

a

Figure 2.3: Example of an NFA
(Mogensen)

Transition table
State a b ✏
1 ; {3} {2}
2 {1,3} ; ;
3 ; ; ;

Lexical analysis 58

Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

✏

 a

st

s|t

s⇤

Lexical analysis 20

Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

✏

 a

st

s|t

s⇤

Lexical analysis 20

Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

✏

 a

st

s|t

s⇤

Lexical analysis 20

Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

✏

 a

st

s|t

s⇤

Lexical analysis 20

Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

✏

 a

st

s|t

s⇤

Lexical analysis 20

(Dragonbook)

Lexical analysis 59

Reminder: from regular expression to NFA
Example: (a|b)⇤ac (Mogensen)

20 CHAPTER 2. LEXICAL ANALYSIS

���
��

1 ��

�

�

��
��

2 �a ��
��

3 �c ��
��
��
��

4

��
��

5

��

��

��
��

6
�

a

��
��

7
�

b

��
��

8

�

�

Figure 2.5: NFA for the regular expression (a|b)⇤ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)⇤ac is shown in
figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding
out all shorthand, e.g. converting s+ to ss⇤, [0-9] to 0|1|2| · · · |9 and s? to s|�, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression �. This construction does not quite follow
the formula used in figure 2.4, as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for � just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|� will do fine if we use the optimised construction
for �.

The optimised constructions are shown in figure 2.6. As an example, an NFA
for [0-9]+ is shown in figure 2.7. Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: 2.2(a), 2.10(b).

The NFA N(r) for an expression r is such that:

N(r) has at most twice as many states as there are operators and
operands in R .

N(r) has one initial state and one accepting state (with no outgoing
transition from the accepting state and no incoming transition to
the initial state).

Each (non accepting) state in N(r) has either one outgoing
transition or two outgoing transitions, both on ✏.

Lexical analysis 60

Simulating an NFA

Algorithm to check whether an input string is accepted by the NFA:

(Dragonbook)

nextChar(): returns the next character on the input stream

move(S , c): returns the set of states that can be reached from
states in S when observing c .

✏-closure(S): returns all states that can be reached with ✏
transitions from states in S .

Lexical analysis 61

Lexical analysis

What we have so far:
I Regular expressions for each token
I NFAs for each token that can recognize the corresponding lexemes
I A way to simulate an NFA

How to combine these to cut apart the input text and recognize
tokens?

Two ways:
I Simulate all NFAs in turn (or in parallel) from the current position

and output the token of the first one to get to an accepting state
I Merge all NFAs into a single one with labels of the tokens on the

accepting states

Lexical analysis 62

Illustration

i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

Four tokens: IF=if, ID=[a-z][a-z0-9]⇤, EQ=’=’, NUM=[0-9]+

Lexical analysis of x = 6 yields:

hID, xi, hEQi, hNUM, 6i

Lexical analysis 63

Illustration: ambiguities
i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

Lexical analysis of ifu26 = 60
Many splits are possible:

hIF i, hID, u26i, hEQi, hNUM, 60i

hID, ifu26i, hEQi, hNUM, 60i

hID, ifui, hNUM, 26i, hEQi, hNUM, 6i, hNUM, 0i

....

Lexical analysis 64

Conflict resolutions

Principle of the longest matching prefix: we choose the longest
prefix of the input that matches any token

Following this principle, ifu26 = 60 will be split into:

hID, ifu26i, hEQi, hNUM, 60i
How to implement?

I Run all NFAs in parallel, keeping track of the last accepting state
reached by any of the NFAs

I When all automata get stuck, report the last match and restart the
search at that point

Requires to retain the characters read since the last match to
re-insert them on the input

I In our example, ’=’ would be read and then re-inserted in the bu↵er.

Lexical analysis 65

Other source of ambiguity

A lexeme can be accepted by two NFAs
I Example: keywords are often also identifiers (if in the example)

Two solutions:
I Report an error (such conflict is not allowed in the language)
I Let the user decide on a priority order on the tokens (eg., keywords

have priority over identifiers)

Lexical analysis 66

What if nothing matches

What if we can not reach any accepting states given the current
input?

Add a “catch-all” rule that matches any character and reports an
error

i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

10! 11!
�

Lexical analysis 67

Merging all automata into a single NFA

In practice, all NFAs are merged and simulated as a single NFA

Accepting states are labeled with the token name

i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

10! 11!
�

0

Lexical analysis 68

Lexical analysis with an NFA: summary

Construct NFAs for all regular expression

Merge them into one automaton by adding a new start state

Scan the input, keeping track of the last known match

Break ties by choosing higher-precedence matches

Have a catch-all rule to handle errors

Lexical analysis 69

Computational e�ciency

(Dragonbook)

In the worst case, an NFA with |Q| states takes O(|S ||Q|2) time to
match a string of length |S |
Complexity thus depends on the number of states

It is possible to reduce complexity of matching to O(|S |) by
transforming the NFA into an equivalent deterministic finite
automaton (DFA)

Lexical analysis 70

Reminder: deterministic finite automaton

Like an NFA but the transition relation � ⇢ (Q ⇥ (⌃
S

{✏}) ⇥ Q) is
such that:

I Transitions based on ✏ are not allowed
I Each state has at most one outgoing transition defined for every letter

Transition relation is replaced by a transition function
� : Q ⇥ ⌃ ! Q

Example of a DFA
22 CHAPTER 2. LEXICAL ANALYSIS

���
��

1 �b

�a

��
��
��
��

3

��
��

2
�

a

�

b

Figure 2.8: Example of a DFA

2.5 Deterministic finite automata

Nondeterministic automata are, as mentioned earlier, not quite as close to “the ma-
chine” as we would like. Hence, we now introduce a more restricted form of finite
automaton: The deterministic finite automaton, or DFA for short. DFAs are NFAs,
but obey a number of additional restrictions:

• There are no epsilon-transitions.

• There may not be two identically labelled transitions out of the same state.

This means that we never have a choice of several next-states: The state and the
next input symbol uniquely determine the transition (or lack of same). This is why
these automata are called deterministic. Figure 2.8 shows a DFA equivalent to the
NFA in figure 2.3.

The transition relation if a DFA is a (partial) function, and we often write it as
such: move(s,c) is the state (if any) that is reached from state s by a transition on
the symbol c. If there is no such transition, move(s,c) is undefined.

It is very easy to implement a DFA: A two-dimensional table can be cross-
indexed by state and symbol to yield the next state (or an indication that there is no
transition), essentially implementing the move function by table lookup. Another
(one-dimensional) table can indicate which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special case of
NFA and any NFA can (as we shall shortly see) be converted to an equivalent DFA.
However, this comes at a cost: The resulting DFA can be exponentially larger than
the NFA (see section 2.10). In practice (i.e., when describing tokens for a program-
ming language) the increase in size is usually modest, which is why most lexical
analysers are based on DFAs.

Suggested exercises: 2.7(a,b), 2.8.

(Mogensen)

Lexical analysis 71

Reminder: from NFA to DFA

DFA and NFA (and regular expressions) have the same expressive
power

An NFA can be converted into a DFA by the subset construction
method

Main idea: mimic the simulation of the NFA with a DFA
I Every state of the resulting DFA corresponds to a set of states of the

NFA. First state is ✏-closure(s0).
I Transitions between states of DFA correspond to transitions between

set of states in the NFA:

�(S , c) = ✏-closure(move(S , c))

I A set of the DFA is accepting if any of the NFA states that it
contains is accepting

See INFO0016 or the reference book for more details

Lexical analysis 72

Reminder: from NFA to DFA20 CHAPTER 2. LEXICAL ANALYSIS

���
��

1 ��

�

�

��
��

2 �a ��
��

3 �c ��
��
��
��

4

��
��

5

��

��

��
��

6
�

a

��
��

7
�

b

��
��

8

�

�

Figure 2.5: NFA for the regular expression (a|b)⇤ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)⇤ac is shown in
figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding
out all shorthand, e.g. converting s+ to ss⇤, [0-9] to 0|1|2| · · · |9 and s? to s|�, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression �. This construction does not quite follow
the formula used in figure 2.4, as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for � just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|� will do fine if we use the optimised construction
for �.

The optimised constructions are shown in figure 2.6. As an example, an NFA
for [0-9]+ is shown in figure 2.7. Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: 2.2(a), 2.10(b).

20 CHAPTER 2. LEXICAL ANALYSIS

���
��

1 ��

�

�

��
��

2 �a ��
��

3 �c ��
��
��
��

4

��
��

5

��

��

��
��

6
�

a

��
��

7
�

b

��
��

8

�

�

Figure 2.5: NFA for the regular expression (a|b)⇤ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)⇤ac is shown in
figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding
out all shorthand, e.g. converting s+ to ss⇤, [0-9] to 0|1|2| · · · |9 and s? to s|�, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression �. This construction does not quite follow
the formula used in figure 2.4, as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for � just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|� will do fine if we use the optimised construction
for �.

The optimised constructions are shown in figure 2.6. As an example, an NFA
for [0-9]+ is shown in figure 2.7. Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: 2.2(a), 2.10(b).

2.7. SIZE VERSUS SPEED 29

���
��

s�
0

����a

����b

��
��

s�
1 ����

c

�

a

�
b

��
��

s�
2

�a

�

b

��
��
��
��

s�
3

Figure 2.9: DFA constructed from the NFA in figure 2.5

move(s�
3,a) = �-closure({t | s 2 {4} and sat 2 T})

= �-closure({})
= {}

move(s�
3,b) = �-closure({t | s 2 {4} and sbt 2 T})

= �-closure({})
= {}

move(s�
3,c) = �-closure({t | s 2 {4} and sct 2 T})

= �-closure({})
= {}

Which now completes the construction of S� = {s�
0,s

�
1,s

�
2,s

�
3}. Only s�

3 contains the
accepting NFA state 4, so this is the only accepting state of our DFA. Figure 2.9
shows the completed DFA.

Suggested exercises: 2.2(b), 2.4.

2.7 Size versus speed

In the above example, we get a DFA with 4 states from an NFA with 8 states.
However, as the states in the constructed DFA are (nonempty) sets of states from
the NFA there may potentially be 2n �1 states in a DFA constructed from an n-state

s0
1 {3, 8, 1, 2, 5, 6, 7}

{8, 1, 2, 5, 6, 7}
s0
3

s0
2

{4}

{1, 2, 5, 6, 7}s0
0

NFA

DFA

(Mogensen)

Lexical analysis 73

Simulating a DFA

Time complexity is O(|S |) for a string of length |S |
Now independent of the number of states

Lexical analysis 74

Lexical analysis with a DFA: summary

Construct NFAs for all regular expressions

Mark the accepting states of the NFAs by the name of the tokens
they accept

Merge them into one automaton by adding a new start state

Convert the combined NFA to a DFA

Convey the accepting state labeling of the NFAs to the DFA (by
taking into account precedence rules)

Scanning is done like with an NFA

Lexical analysis 75

Example: combined NFA for several tokens

38 CHAPTER 2. LEXICAL ANALYSIS

�����
1

�

�
�

�

��

�

�

����
2 �i ����

3 �f �����4 IF

����
5 �[a-zA-Z] �����6�

[a-zA-Z 0-9]

ID

����
7 �[+-]

�
�

����
8 �[0-9] �����9

�
� NUM

����
10 �[+-]

�
�

����
11 �[0-9]

�

.

�����12
�

[0-9]

FLOAT

�.

�
[eE]

�����13
�

[0-9]

FLOAT

�
[eE]

����
14 �[0-9] �����15

FLOAT

�[eE]

�
�

����
16 �[+-]

�
�

����
17 �[0-9] �����18

�
� FLOAT

Figure 2.12: Combined NFA for several tokens
(Mogensen)

Lexical analysis 76

Example: combined DFA for several tokens

2.9. LEXERS AND LEXER GENERATORS 39

�

�����C
�

[a-zA-Z 0-9]
IF

�����B
�

f

�[a-eg-zA-Z 0-9]ID �����D�

[a-zA-Z 0-9]

ID

����
A

�
i

�

[a-hj-zA-Z]

�.

�

[0-9]

�
�

���

[+-]

����
E

�

[0-9]����
F

�
�

���
.

�
�

���
[0-9]

�����G �.

�
�

���

[eE]�

[0-9]

NUM �����H�

[0-9]

�
�

���

[eE]
FLOAT

����
I

�
�

���

[0-9]
�

�
���

[+-]

����
J �[0-9] �����K�

[0-9]

FLOAT

Figure 2.13: Combined DFA for several tokens

Try lexing on the strings:

if 17

3e-y

Lexical analysis 77

Speed versus memory

The number of states of a DFA can grow exponentially with respect
to the size of the corresponding regular expression (or NFA)

We have to choose between low-memory and slow NFAs and
high-memory and fast DFAs.

Note:

It is possible to minimise the number of states of a DFA in
O(n log n) (Hopcroft’s algorithm1)

I Theory says that any regular language has a unique minimal DFA
I However, the number of states may remain exponential in the size of

the regular expression after minimization

1http://en.wikipedia.org/wiki/DFA_minimization

Lexical analysis 78

http://en.wikipedia.org/wiki/DFA_minimization

Keywords and identifiers

Having a separate regular expression for each keyword is not very
e�cient.

In practice:
I We define only one regular expression for both keywords and

identifiers
I All keywords are stored in a (hash) table
I Once an identifier/keyword is read, a table lookup is performed to see

whether this is an identifier or a keyword

Reduces drastically the size of the DFA

Adding a keyword requires only to add one entry in the hash table.

Lexical analysis 79

Summary

Regular(
expressions(

NFA(

DFA(

minimiza5on(

determiniza5on(
Thompson’s(
construc5on(

Analyzer(

Kleene(
construc5on(

Token(
pa?erns(

Lexical analysis 80

Some langage specificities
Language specificities that make lexical analysis hard:

Whitespaces are irrelevant in Fortran.

DO 5 I = 1,25

DO5I = 1.25

PL/1: keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Python block defined by indentation:

if w == z:

a = b

else:

e = f

g = h

(the lexical analyser needs to record current indentation and output
a token for each increase/decrease in indentation)

(Keith Schwarz)

Lexical analysis 81

Some langage specificities

Sometimes, nested lexical analyzers are needed

For example, to deal with nested comments:

/* /* where do my comments end? here? */ or here? */

I As soon as /* is read, switch to another lexical analyzer that
I only reads /* and */,
I counts the level of nested comments at current position (starting at

0),
I get back to the original analyzer when it reads */ and the level is 0

Other example: Javadoc (needs to interpret the comments)

NB: How could you test if your compiler accepts nested comments
without generating a compilation error?

int nest = /*/*/0*/**/1;

Lexical analysis 82

Implementing a lexical analyzer

In practice (and for your project), two ways:
I Write an ad-hoc analyser
I Use automatic tools like (F)LEX.

First approach is more tedious. It is only useful to address specific
needs.

Second approach is more portable

Lexical analysis 83

Example of an ad-hoc lexical analyser
(source: http://dragonbook.stanford.edu/lecture-notes.html)

Definition of the token classes (through constants)

 2

example, the following input will not generate any errors in the lexical analysis phase,
because the scanner has no concept of the appropriate arrangement of tokens for a
declaration. The syntax analyzer will catch this error later in the next phase.

int a double } switch b[2] =;

Furthermore, the scanner has no idea how tokens are grouped. In the above sequence, it
returns b, [, 2, and] as four separate tokens, having no idea they collectively form an
array access.

The lexical analyzer can be a convenient place to carry out some other chores like
stripping out comments and white space between tokens and perhaps even some
features like macros and conditional compilation (although often these are handled by
some sort of preprocessor which filters the input before the compiler runs).

Scanner Implementation 1: Loop and Switch
There are two primary methods for implementing a scanner. The first is a program that
is hard-coded to perform the scanning tasks. The second uses regular expression and
finite automata theory to model the scanning process.

A "loop & switch" implementation consists of a main loop that reads characters one by
one from the input file and uses a switch statement to process the character(s) just read.
The output is a list of tokens and lexemes from the source program. The following
program fragment shows a skeletal implementation of a simple loop and switch scanner.
The main program calls InitScanner and loops calling ScanOneToken until EOF.
ScanOneToken reads the next character from the file and switches off that char to decide
how to handle what is coming up next in the file. The return values from the scanner
can be passed on to the parser in the next phase.

#define T_SEMICOLON ';' // use ASCII values for single char tokens
#define T_LPAREN '('
#define T_RPAREN ')'
#define T_ASSIGN '='
#define T_DIVIDE '/'
 ...

#define T_WHILE 257 // reserved words
#define T_IF 258
#define T_RETURN 259
 ...

#define T_IDENTIFIER 268 // identifiers, constants, etc.
#define T_INTEGER 269
#define T_DOUBLE 270
#define T_STRING 271

#define T_END 349 // code used when at end of file
#define T_UNKNOWN 350 // token was unrecognized by scanner

Lexical analysis 84

http://dragonbook.stanford.edu/lecture-notes.html

Example of an ad-hoc lexical analyser

Structure for tokens 3

struct token_t {
 int type; // one of the token codes from above
 union {
 char stringValue[256]; // holds lexeme value if string/identifier
 int intValue; // holds lexeme value if integer
 double doubleValue; // holds lexeme value if double
 } val;
};

int main(int argc, char *argv[])
{
 struct token_t token;

 InitScanner();
 while (ScanOneToken(stdin, &token) != T_END)
 ; // this is where you would process each token
 return 0;
}

static void InitScanner()
{
 create_reserved_table(); // table maps reserved words to token type
 insert_reserved("WHILE", T_WHILE)
 insert_reserved("IF", T_IF)
 insert_reserved("RETURN", T_RETURN)

}

static int ScanOneToken(FILE *fp, struct token_t *token)
{
 int i, ch, nextch;

 ch = getc(fp); // read next char from input stream
 while (isspace(ch)) // if necessary, keep reading til non-space char
 ch = getc(fp); // (discard any white space)

 switch(ch) {
 case '/': // could either begin comment or T_DIVIDE op
 nextch = getc(fp);
 if (nextch == '/' || nextch == '*')
 ; // here you would skip over the comment
 else
 ungetc(nextch, fp); // fall-through to single-char token case

 case ';': case ',': case '=': // ... and other single char tokens
 token->type = ch; // ASCII value is used as token type
 return ch; // ASCII value used as token type

 case 'A': case 'B': case 'C': // ... and other upper letters
 token->val.stringValue[0] = ch;
 for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
 token->val.stringValue[i] = ch;
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0'; // lookup reserved word
 token->type = lookup_reserved(token->val.stringValue);
 return token->type;

 case 'a': case 'b': case 'c': // ... and other lower letters
 token->type = T_IDENTIFIER;
 token->val.stringValue[0] = ch;
 for (i = 1; islower(ch = getc(fp)); i++)

Main function

 3

struct token_t {
 int type; // one of the token codes from above
 union {
 char stringValue[256]; // holds lexeme value if string/identifier
 int intValue; // holds lexeme value if integer
 double doubleValue; // holds lexeme value if double
 } val;
};

int main(int argc, char *argv[])
{
 struct token_t token;

 InitScanner();
 while (ScanOneToken(stdin, &token) != T_END)
 ; // this is where you would process each token
 return 0;
}

static void InitScanner()
{
 create_reserved_table(); // table maps reserved words to token type
 insert_reserved("WHILE", T_WHILE)
 insert_reserved("IF", T_IF)
 insert_reserved("RETURN", T_RETURN)

}

static int ScanOneToken(FILE *fp, struct token_t *token)
{
 int i, ch, nextch;

 ch = getc(fp); // read next char from input stream
 while (isspace(ch)) // if necessary, keep reading til non-space char
 ch = getc(fp); // (discard any white space)

 switch(ch) {
 case '/': // could either begin comment or T_DIVIDE op
 nextch = getc(fp);
 if (nextch == '/' || nextch == '*')
 ; // here you would skip over the comment
 else
 ungetc(nextch, fp); // fall-through to single-char token case

 case ';': case ',': case '=': // ... and other single char tokens
 token->type = ch; // ASCII value is used as token type
 return ch; // ASCII value used as token type

 case 'A': case 'B': case 'C': // ... and other upper letters
 token->val.stringValue[0] = ch;
 for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
 token->val.stringValue[i] = ch;
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0'; // lookup reserved word
 token->type = lookup_reserved(token->val.stringValue);
 return token->type;

 case 'a': case 'b': case 'c': // ... and other lower letters
 token->type = T_IDENTIFIER;
 token->val.stringValue[0] = ch;
 for (i = 1; islower(ch = getc(fp)); i++)

Lexical analysis 85

Example of an ad-hoc lexical analyser

Initialization

 3

struct token_t {
 int type; // one of the token codes from above
 union {
 char stringValue[256]; // holds lexeme value if string/identifier
 int intValue; // holds lexeme value if integer
 double doubleValue; // holds lexeme value if double
 } val;
};

int main(int argc, char *argv[])
{
 struct token_t token;

 InitScanner();
 while (ScanOneToken(stdin, &token) != T_END)
 ; // this is where you would process each token
 return 0;
}

static void InitScanner()
{
 create_reserved_table(); // table maps reserved words to token type
 insert_reserved("WHILE", T_WHILE)
 insert_reserved("IF", T_IF)
 insert_reserved("RETURN", T_RETURN)

}

static int ScanOneToken(FILE *fp, struct token_t *token)
{
 int i, ch, nextch;

 ch = getc(fp); // read next char from input stream
 while (isspace(ch)) // if necessary, keep reading til non-space char
 ch = getc(fp); // (discard any white space)

 switch(ch) {
 case '/': // could either begin comment or T_DIVIDE op
 nextch = getc(fp);
 if (nextch == '/' || nextch == '*')
 ; // here you would skip over the comment
 else
 ungetc(nextch, fp); // fall-through to single-char token case

 case ';': case ',': case '=': // ... and other single char tokens
 token->type = ch; // ASCII value is used as token type
 return ch; // ASCII value used as token type

 case 'A': case 'B': case 'C': // ... and other upper letters
 token->val.stringValue[0] = ch;
 for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
 token->val.stringValue[i] = ch;
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0'; // lookup reserved word
 token->type = lookup_reserved(token->val.stringValue);
 return token->type;

 case 'a': case 'b': case 'c': // ... and other lower letters
 token->type = T_IDENTIFIER;
 token->val.stringValue[0] = ch;
 for (i = 1; islower(ch = getc(fp)); i++)

Lexical analysis 86

Example of an ad-hoc lexical analyser

Scanning (single-char tokens)

 3

struct token_t {
 int type; // one of the token codes from above
 union {
 char stringValue[256]; // holds lexeme value if string/identifier
 int intValue; // holds lexeme value if integer
 double doubleValue; // holds lexeme value if double
 } val;
};

int main(int argc, char *argv[])
{
 struct token_t token;

 InitScanner();
 while (ScanOneToken(stdin, &token) != T_END)
 ; // this is where you would process each token
 return 0;
}

static void InitScanner()
{
 create_reserved_table(); // table maps reserved words to token type
 insert_reserved("WHILE", T_WHILE)
 insert_reserved("IF", T_IF)
 insert_reserved("RETURN", T_RETURN)

}

static int ScanOneToken(FILE *fp, struct token_t *token)
{
 int i, ch, nextch;

 ch = getc(fp); // read next char from input stream
 while (isspace(ch)) // if necessary, keep reading til non-space char
 ch = getc(fp); // (discard any white space)

 switch(ch) {
 case '/': // could either begin comment or T_DIVIDE op
 nextch = getc(fp);
 if (nextch == '/' || nextch == '*')
 ; // here you would skip over the comment
 else
 ungetc(nextch, fp); // fall-through to single-char token case

 case ';': case ',': case '=': // ... and other single char tokens
 token->type = ch; // ASCII value is used as token type
 return ch; // ASCII value used as token type

 case 'A': case 'B': case 'C': // ... and other upper letters
 token->val.stringValue[0] = ch;
 for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
 token->val.stringValue[i] = ch;
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0'; // lookup reserved word
 token->type = lookup_reserved(token->val.stringValue);
 return token->type;

 case 'a': case 'b': case 'c': // ... and other lower letters
 token->type = T_IDENTIFIER;
 token->val.stringValue[0] = ch;
 for (i = 1; islower(ch = getc(fp)); i++)

Lexical analysis 87

Example of an ad-hoc lexical analyser
Scanning: keywords

 3

struct token_t {
 int type; // one of the token codes from above
 union {
 char stringValue[256]; // holds lexeme value if string/identifier
 int intValue; // holds lexeme value if integer
 double doubleValue; // holds lexeme value if double
 } val;
};

int main(int argc, char *argv[])
{
 struct token_t token;

 InitScanner();
 while (ScanOneToken(stdin, &token) != T_END)
 ; // this is where you would process each token
 return 0;
}

static void InitScanner()
{
 create_reserved_table(); // table maps reserved words to token type
 insert_reserved("WHILE", T_WHILE)
 insert_reserved("IF", T_IF)
 insert_reserved("RETURN", T_RETURN)

}

static int ScanOneToken(FILE *fp, struct token_t *token)
{
 int i, ch, nextch;

 ch = getc(fp); // read next char from input stream
 while (isspace(ch)) // if necessary, keep reading til non-space char
 ch = getc(fp); // (discard any white space)

 switch(ch) {
 case '/': // could either begin comment or T_DIVIDE op
 nextch = getc(fp);
 if (nextch == '/' || nextch == '*')
 ; // here you would skip over the comment
 else
 ungetc(nextch, fp); // fall-through to single-char token case

 case ';': case ',': case '=': // ... and other single char tokens
 token->type = ch; // ASCII value is used as token type
 return ch; // ASCII value used as token type

 case 'A': case 'B': case 'C': // ... and other upper letters
 token->val.stringValue[0] = ch;
 for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
 token->val.stringValue[i] = ch;
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0'; // lookup reserved word
 token->type = lookup_reserved(token->val.stringValue);
 return token->type;

 case 'a': case 'b': case 'c': // ... and other lower letters
 token->type = T_IDENTIFIER;
 token->val.stringValue[0] = ch;
 for (i = 1; islower(ch = getc(fp)); i++)

Scanning: identifier

 3

struct token_t {
 int type; // one of the token codes from above
 union {
 char stringValue[256]; // holds lexeme value if string/identifier
 int intValue; // holds lexeme value if integer
 double doubleValue; // holds lexeme value if double
 } val;
};

int main(int argc, char *argv[])
{
 struct token_t token;

 InitScanner();
 while (ScanOneToken(stdin, &token) != T_END)
 ; // this is where you would process each token
 return 0;
}

static void InitScanner()
{
 create_reserved_table(); // table maps reserved words to token type
 insert_reserved("WHILE", T_WHILE)
 insert_reserved("IF", T_IF)
 insert_reserved("RETURN", T_RETURN)

}

static int ScanOneToken(FILE *fp, struct token_t *token)
{
 int i, ch, nextch;

 ch = getc(fp); // read next char from input stream
 while (isspace(ch)) // if necessary, keep reading til non-space char
 ch = getc(fp); // (discard any white space)

 switch(ch) {
 case '/': // could either begin comment or T_DIVIDE op
 nextch = getc(fp);
 if (nextch == '/' || nextch == '*')
 ; // here you would skip over the comment
 else
 ungetc(nextch, fp); // fall-through to single-char token case

 case ';': case ',': case '=': // ... and other single char tokens
 token->type = ch; // ASCII value is used as token type
 return ch; // ASCII value used as token type

 case 'A': case 'B': case 'C': // ... and other upper letters
 token->val.stringValue[0] = ch;
 for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
 token->val.stringValue[i] = ch;
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0'; // lookup reserved word
 token->type = lookup_reserved(token->val.stringValue);
 return token->type;

 case 'a': case 'b': case 'c': // ... and other lower letters
 token->type = T_IDENTIFIER;
 token->val.stringValue[0] = ch;
 for (i = 1; islower(ch = getc(fp)); i++)
 4

 token->val.stringValue[i] = ch; // gather lowercase
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0';
 if (lookup_symtab(token->val.stringValue) == NULL)
 add_symtab(token->val.stringValue); // get symbol for ident
 return T_IDENTIFIER;

 case '0': case '1': case '2': case '3': //.... and other digits
 token->type = T_INTEGER;
 token->val.intValue = ch - '0';
 while (isdigit(ch = getc(fp))) // convert digit char to number
 token->val.intValue = token->val.intValue * 10 + ch - '0';
 ungetc(ch, fp);
 return T_INTEGER;

 case EOF:
 return T_END;

 default: // anything else is not recognized
 token->val.intValue = ch;
 token->type = T_UNKNOWN;
 return T_UNKNOWN;
 }
}

The mythical source language tokenized by the above scanner requires that reserved
words be in all upper case and identifiers in all lower case. This convenient feature
makes it easy for the scanner to choose which path to pursue after reading just one
character. It is sometimes necessary to design the scanner to "look ahead" before
deciding what path to follow— notice the handling for the '/' character which peeks at
the next character to check whether the first slash is followed by another slash or star
which indicates the beginning of a comment. If not, the extra character is pushed back
onto the input stream and the token is interpreted as the single char operator for
division.

Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design
and purpose of solving a specific instance rather a general problem. For a sufficiently
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s
needed— it requires no other tools. The gcc front-end uses an ad hoc scanner, in fact. On
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of
code is correct is much harder to justify if your lexer does not see the extent of use that
gcc’s front-end experiences.

Lexical analysis 88

Example of an ad-hoc lexical analyser

Scanning: number

 4

 token->val.stringValue[i] = ch; // gather lowercase
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0';
 if (lookup_symtab(token->val.stringValue) == NULL)
 add_symtab(token->val.stringValue); // get symbol for ident
 return T_IDENTIFIER;

 case '0': case '1': case '2': case '3': //.... and other digits
 token->type = T_INTEGER;
 token->val.intValue = ch - '0';
 while (isdigit(ch = getc(fp))) // convert digit char to number
 token->val.intValue = token->val.intValue * 10 + ch - '0';
 ungetc(ch, fp);
 return T_INTEGER;

 case EOF:
 return T_END;

 default: // anything else is not recognized
 token->val.intValue = ch;
 token->type = T_UNKNOWN;
 return T_UNKNOWN;
 }
}

The mythical source language tokenized by the above scanner requires that reserved
words be in all upper case and identifiers in all lower case. This convenient feature
makes it easy for the scanner to choose which path to pursue after reading just one
character. It is sometimes necessary to design the scanner to "look ahead" before
deciding what path to follow— notice the handling for the '/' character which peeks at
the next character to check whether the first slash is followed by another slash or star
which indicates the beginning of a comment. If not, the extra character is pushed back
onto the input stream and the token is interpreted as the single char operator for
division.

Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design
and purpose of solving a specific instance rather a general problem. For a sufficiently
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s
needed— it requires no other tools. The gcc front-end uses an ad hoc scanner, in fact. On
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of
code is correct is much harder to justify if your lexer does not see the extent of use that
gcc’s front-end experiences.

Scanning: EOF and default

 4

 token->val.stringValue[i] = ch; // gather lowercase
 ungetc(ch, fp);
 token->val.stringValue[i] = '\0';
 if (lookup_symtab(token->val.stringValue) == NULL)
 add_symtab(token->val.stringValue); // get symbol for ident
 return T_IDENTIFIER;

 case '0': case '1': case '2': case '3': //.... and other digits
 token->type = T_INTEGER;
 token->val.intValue = ch - '0';
 while (isdigit(ch = getc(fp))) // convert digit char to number
 token->val.intValue = token->val.intValue * 10 + ch - '0';
 ungetc(ch, fp);
 return T_INTEGER;

 case EOF:
 return T_END;

 default: // anything else is not recognized
 token->val.intValue = ch;
 token->type = T_UNKNOWN;
 return T_UNKNOWN;
 }
}

The mythical source language tokenized by the above scanner requires that reserved
words be in all upper case and identifiers in all lower case. This convenient feature
makes it easy for the scanner to choose which path to pursue after reading just one
character. It is sometimes necessary to design the scanner to "look ahead" before
deciding what path to follow— notice the handling for the '/' character which peeks at
the next character to check whether the first slash is followed by another slash or star
which indicates the beginning of a comment. If not, the extra character is pushed back
onto the input stream and the token is interpreted as the single char operator for
division.

Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design
and purpose of solving a specific instance rather a general problem. For a sufficiently
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s
needed— it requires no other tools. The gcc front-end uses an ad hoc scanner, in fact. On
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of
code is correct is much harder to justify if your lexer does not see the extent of use that
gcc’s front-end experiences.

Lexical analysis 89

Flex

flex is a free implementation of the Unix lex program

flex implements what we have seen:
I It takes regular expressions as input
I It generates a combined NFA
I It converts it to an equivalent DFA
I It minimizes the automaton as much as possible
I It generates C code that implements it
I It handles conflicts with the longest matching prefix principle and a

preference order on the tokens.

More information
I http://flex.sourceforge.net/manual/

Lexical analysis 90

http://flex.sourceforge.net/manual/

Input file

Input files are structured as follows:
%{
Declarations
%}
Definitions
%%
Rules
%%
User subroutines

Declarations and User subroutines are copied without modifications
to the generated C file.

Definitions specify options and name definitions (to simplify the
rules)

Rules: specify the patterns for the tokens to be recognized

Lexical analysis 91

Rules

In the form:
pattern1 action1
pattern2 action2
...

Patterns are defined as regular expressions. Actions are blocks of C
code.

When a sequence is read that matches the pattern, the C code of
the action is executed

Examples:
[0-9]+ {printf("This is a number");}
[a-z]+ {printf("This is symbol");}

Lexical analysis 92

Regular expressions

Many shortcut notations are permitted in regular expressions:
I [], -, +, *, ?: as defined previously
I .: a dot matches any character (except newline)
I [^x]: matches the complement of the set of characters in x (ex: all

non-digit characters [^0-9]).
I x{n,m}: x repeated between n and m times
I "x": matches x even if x contains special characters (ex: "x*"

matches x followed by a star).
I {name}: replace with the pattern defined earlier in the definition

section of the input file

Lexical analysis 93

Interacting with the scanner

User subroutines and action may interact with the generated scanner
through global variables:

I yylex: scan tokens from the global input file yyin (defaults to
stdin). Continues until it reaches the end of the file or one of its
actions executes a return statement.

I yytext: a null-terminated string (of length yyleng) containing the
text of the lexeme just recognized.

I yylval: store the attributes of the token
I yylloc: location of the tokens in the input file (line and column)
I . . .

Lexical analysis 94

Example 1: hiding numbers

hide-digits.l:
%%
[0-9]+ printf("?");
. ECHO;

To build and run the program:
% flex hide-digits.l
% gcc -o hide-digits lex.yy.c -ll
% ./hide-digits

Lexical analysis 95

Example 2: wc

count.l:
%{

int numChars = 0, numWords = 0, numLines = 0;
%}
%%
\n {numLines++; numChars++;}
[^ \t\n]+ {numWords++; numChars += yyleng;}
. {numChars++;}
%%

int main() {
yylex();
printf("%d\t%d\t%d\n", numChars, numWords, numLines);

}

To build and run the program:
% flex count.l
% gcc -o count lex.yy.c -ll
% ./count < count.l

Lexical analysis 96

Example 3: typical compiler

Lexical analysis 97

Example 3: typical compiler

User defined subroutines

Lexical analysis 98

